
ORIGINAL PAPER

Selective synthesis of nitroalcohols in the presence of Ambersep
900 OH as heterogeneous catalyst

Rajsekhar Lodh • Manas Jyoti Sarma •

Arun Jyoti Borah • Prodeep Phukan

Received: 9 September 2014 / Accepted: 17 December 2014

� Springer-Verlag Wien 2015

Abstract A green protocol has been developed for the

selective synthesis of b-nitroalcohols using commercially

available Ambersep 900 OH as reusable heterogeneous

catalyst. The reaction between aldehyde and nitromethane

was performed under solvent-free condition at room tem-

perature within a short time (70–150 min) in the presence

of 10 wt % of Ambersep 900 OH to produce corresponding

nitroalcohols in high yield (72–91 %). After the reaction is

over, the catalyst can be separated and reused (3 cycles)

without appreciable loss in its activity.
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Introduction

The Henry reaction of carbonyl compounds with alkyl nitro

compounds bearing a-hydrogen atoms is one of the most

fundamental and widely utilized methods for the con-

struction of carbon–carbon bonds that leads to the

formation of b-nitroalcohols which in turn can be used as

valuable building blocks in organic synthesis [1–9]. From

the synthetic point of view, b-nitroalcohols are very

important difunctional compounds as they are versatile

precursors for the preparation of a great variety of phar-

maceutically active compounds such as b-aminoalcohols,

a-hydroxycarboxylic acids, 2-nitroketones, or nitroalkenes

[1–11]. Classical methods for preparing b-nitroalkanols

include the condensation of the carbonyl compounds and a

nitroalkane in the presence of a base such as alkali metal

hydroxides, carbonates, bicarbonates, alkaline earth oxides,

alkaline earth hydroxides or magnesium and aluminum

alkoxides, rhodium complex, potassium exchanged zirco-

nium phosphate and also organic bases such as primary,

secondary, and tertiary amines [1–9]. Competitive reac-

tions such as Cannizzaro reaction, Tishchenko reaction,

and Nef-type reactions were also observed during the

course of this particular reaction [1–11]. In certain cases,

base catalyzed elimination of water leads to the formation

of nitroalkenes which further undergo nitration to yield 1,3-

dinitro compounds [12–14]. Different solid catalysts such

as alumina [15, 16], alumina-KF [17], Amberlyst A21 [18,

19], SiO2 [20], hydrotalcites [21–24], etc. were found to

promote nitroaldol reaction. Some metal incorporated

heterogeneous phases such as polyacrylic acid template

[25], carbon nanotubes [26], and metal organic frame

works [27] were also developed. Phase transfer catalyst has

also been utilized for this particular reaction to improve the

selectivity [28]. Some of the former approaches require
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longer reaction time and in some cases, the reaction pro-

duces condensed olefin as one of the products [29–31].

Apart from these, some more catalytic systems have also

been developed, which include the use of tetramethyl-

guanidine [32], dendritic catalysts [33], rhodium complex

[34], and proazaphosphatranes [3c]. Due to the importance

of this particular transformation in organic synthesis,

several asymmetric synthetic approaches were developed

using metallic catalyst in the presence of a chiral ligand

[1–9, 35–40]. There are also reports for the nitroaldol

reaction in aqueous media [18, 19, 28, 41–45] and under

solvent-free conditions [46–53]. However, long reaction

time and formation of nitroalkene as side product are the

major issues for many of these methods. Hence, the

development of a convenient protocol using commercially

available heterogeneous catalyst for selective synthesis of

b-nitroalcohol is a prime concern for many chemical

processes.

Heterogeneous catalysts are getting importance in

organic transformations under solvent-free condition [54–

56]. From industrial point of view, heterogeneous catalysts

are important in organic transformation due to their easy

separation process and economically favorable reusability.

Similar to Amberlyst A21, Ambersep� 900 OH is also an

anionic macromolecular ion-exchange resin, but it is

strongly basic in comparison to Amberlyst A21. The utility

of Ambersep 900 OH is very limited with a very few

reported reactions [57–60]. Herein, we are reporting a new

protocol for selective synthesis of nitroalcohols using

Ambersep 900 OH as heterogeneous green catalyst

(Scheme 1).

Results and discussion

To begin with, the condensation of benzaldehyde with

nitromethane (1.2 equiv.) was examined at room temper-

ature in the presence of 5 wt % of Ambersep 900 OH

(Table 1, entry 1) under solvent-free condition. The

reaction selectively produced corresponding nitro alcohol

in 43 % yield after 2 h of reaction. When the catalyst

loading was increased to 10 wt %, the reaction completes

in 1.5 h with 86 % isolated yield (Table 1, entry 2).

Further increase of catalyst amount did not improve the

yield significantly. So the use of 10 wt % of the catalyst at

room temperature was chosen as the best reaction condi-

tion for optimum yield.

After optimizing the reaction condition, the process was

extended to a number of aldehydes. Results are summa-

rized in Table 2. Aryl aldehydes with large -I effect (or

small ?R effect) requires less time than aldehydes with a

large ?R effect. However, the positions of substituent on

the phenyl ring do not have considerable effect on rate of

the reaction. Aromatic aldehydes such as 3-nitrobenzalde-

hyde, 4-methylbenzaldehyde, 4-methoxybenzaldehyde,

and 3,4-dimethoxybenzaldehyde produced lower yield of

the product. Moreover, for these particular substrates the

transformations took relatively longer reaction time for

completion. Reaction with heterocyclic aldehydes such as

furan-2-carbaldehyde produced low yield of corresponding

Scheme 1
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Table 1 Optimization condition of nitroaldol reaction of

benzaldehyde

Entry Catalyst loading/wt % Time/h Yield/%a

1 5 2 43

2 10 1.5 86

3 15 1.5 84

Reaction conditions: 10 mmol benzaldehyde, 12 mmol nitromethane,

room temperature
a Isolated yield

Table 2 Henry reaction of nitromethane with various aldehydes

(Scheme 1)

Entry R Prod. Time/min Yield/%a References

1 C6H5 1b 90 86 [61]

2 4-Cl-C6H4 2b 70 91 [62]

3 4-F-C6H4 3b 80 87 [63]

4 4-Br-C6H4 4b 90 82 [62]

5 4-NO2-C6H4 5b 70 86 [61]

6 3-Cl-C6H4 6b 80 91 [61]

7 3-Br-C6H4 7b 90 88 [61]

8 2-Cl-C6H4 8b 80 78 [61]

9 3-NO2-C6H4 9b 80 72 [61]

10 4-CH3-C6H4 10b 120 76 [63]

11 4-CH3O-C6H4 11b 120 77 [63]

12 2-Naphthyl 12b 120 78 [61]

13 C6H5CH2CH2 13b 120 78 [61]

14 2-Furanyl 14b 120 72 [61]

15 3,4-(CH3O)2-C6H3 15b 150 75 [45]

Reaction conditions: 1.2 equiv. nitromethane and 10 wt % Ambersep

900 OH at room temperature
a Isolated yield
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nitroalcohol. Aliphatic aldehydes, such as 3-phenylprop-

anal, also produced low yield of the corresponding product.

Since we are using a solid resin catalyst, we were

interested to examine the feasibility of recycling the cata-

lyst. The catalyst was recovered from the reaction mixture

just by filtration and then it was washed with ethanol for

2–3 times. The recyclability experiment was carried out for

condensation of p-nitrobenzaldehyde and nitromethane

under the optimized reaction conditions for three consec-

utive cycles. During the first two consecutive cycles, the

similar yield (85 %) was recorded (Fig. 1). In the third

round of catalytic cycle, though the yield was found to be

lower (82 %), the change was not detrimental.

Conclusions

In conclusion, an efficient, green, and controlled method-

ology for the synthesis of b-nitroalcohols has been

developed using Ambersep 900 OH as heterogeneous cat-

alyst. Moreover, the reaction is very easy to carry out and

the catalyst can be recovered just by filtration of the

reaction mixture with the aid of small amount of dichlo-

romethane. The catalyst could be recycled for the same

process without having detrimental effect. Both aromatic

and aliphatic aldehydes undergo the Henry reaction with

high yield within a short time. The advantages of our

methods can be easily realized by comparing the recent

results on the use of reusable catalysts for selective syn-

thesis of nitroalcohols via Henry reaction, which are

presented in Table 3.

Experimental

All reagents were purchased from Sigma–Aldrich. The

catalyst Ambersep 900 OH was obtained from Alfa Aesar.

The solvents were purified through distillation prior to use.

All reactions were carried out under indicated conditions.

NMR spectra were recorded using Bruker 300 MHz

instruments (300 MHz for 1H, 75.3 MHz for 13C). Chem-

ical shifts are given in d units relative to the

tetramethylsilane (TMS) signal as an internal reference. IR

spectra were recorded on Perkin Elmer Spectrum RX I FT-

IR System.

General procedure

To a solution of aldehyde (10 mmol) in nitromethane

(12 mmol) was added Ambersep 900 OH (10 wt %). The

solution was stirred for appropriate time and progress of

the reaction was monitored by TLC. After completion of

the reaction, 5 cm3 dichloromethane was added and the

catalyst was filtered off and washed with 2 cm3 ethanol

twice. The combined organic extract was evaporated under

reduced pressure and the crude product was purified by

flash column chromatography using petroleum ether and

ethyl acetate as eluent.
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