Contents lists available at SciVerse ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Mepyramine–JNJ7777120-hybrid compounds show high affinity to hH₁R, but low affinity to hH₄R

Eva Wagner^a, Hans-Joachim Wittmann^b, Sigurd Elz^a, Andrea Strasser^{c,*}

^a Department of Pharmaceutical/Medicinal Chemistry I, Institute of Pharmacy, University of Regensburg, D-93040 Regensburg, Germany

^b Faculty of Chemistry and Pharmacy, University of Regensburg, D-93040 Regensburg, Germany

^c Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany

ARTICLE INFO

Article history: Received 15 June 2011 Revised 31 August 2011 Accepted 1 September 2011 Available online 7 September 2011

Keywords: Histamine H₁ receptor Histamine H₄ receptor Mepyramine JNJ777120 Hybrid compounds Molecular dynamics

ABSTRACT

In literature, a synergism between histamine H_1 and H_4 receptor is discussed. Furthermore, it was shown, that the combined application of mepyramine, a H_1 antagonist and JNJ7777120, a H_4 receptor ligand leads to a synergistic effect in the acute murine asthma model. Thus, the aim of this study was to develop new hybrid ligands, containing one H_1 and one H_4 pharmacophor, connected by an appropriate spacer, in order to address both, H_1R and H_4R . Within this study, we synthesized nine hybrid compounds, which were pharmacologically characterized at hH_1R and hH_4R . The new compounds revealed (high) affinity to hH_1R , but showed only low affinity to hH_4R . Additionally, we performed molecular dynamic studies for some selected compounds at hH_1R , in order to obtain information about the binding mode of these compounds on molecular level.

© 2011 Elsevier Ltd. All rights reserved.

Histamine H₁ receptor antagonists are used in general for the treatment of allergic reactions, whereas the histamine H₄ receptor is suggested to be involved in allergic diseases, like conjunctivitis, rhinitis or bronichal asthma as well as in atopic dermatitis and pruritus.^{1–4} Mepyramine **1** (Scheme 1) is a prominent H₁R antagonist, whereas JNJ7777120 2 (Scheme 1) shows high affinity to the $H_4 R.^4$ In 2003 [N]7777120 **2** was described as a potent and selective H_4 antagonist, which has meanwhile established to a H_4R standard antagonist.⁵ Further studies revealed that JNJ7777120 acts as inverse agonist at hH_4R but as partial agonist at mH_4R .⁶ Recently, it was shown experimentally, that the combined application of mepyramine 1 and INI77771202 in the acute murine asthma model leads to a synergistic effect.⁷ Thus, the development of combined H_1/H_4 -receptor ligands may be a worthwhile goal for treatment of allergic reactions,¹ since differences in bioavailability are expected if two drugs are administered. This is not the case, if H₁R and H₄R can be addressed with only one drug. Furthermore, ligands addressing both H₁R and H₄R are important pharmacological tools to get deeper insights with regard to ligand binding and selectivity on molecular level. One strategy for development of dual H₁/H₄-receptor ligands is the connection of one H₁- and one H₄-pharmacophor by a spacer. This concept was already applied by Schunack with regard to H₁R and H₂R.^{8,9} Since the combined application of mepyramine **1** and JNJ7777120 **2** lead to the synergistic effect in the acute murine asthma model,⁷ the aim of this study was to synthesize and pharmacologically characterize a number of compounds, combining mepyramine as H₁- and JNJ7777120 as H₄-pharmacophor.

The hybrid ligands **16–21** were obtained as described (Scheme 2). The structures of compounds **26**, **38** and **45** are presented in Scheme 3, whereas the strategy with regard to synthesis can be found in the supplementary material. Further details with regard to synthesis, as well as analytics of all hybrid compounds are given in the supplementary material.

The synthesized compounds were routinely investigated in competition binding assays. In case of hH₁R, Sf9 cell membranes, coexpressing hH₁R and RGS4 were used for competition binding assays in presence of 5 nM [³H]mepyramine.¹⁰ In case of hH₄R, Sf9 cell membranes, coexpressing hH₄R-RGS19, $G\alpha_{i2}$ and $G\beta_1\gamma_2$ were used for competition binding assays in presence of 10 nM [³H]histamine.¹¹ Furthermore, some selected compounds were analyzed at hH₄R with the GTP γ S-assay in order to determine the efficacy.¹² Additionally, most of the new compounds were tested routinely on isolated guinea-pig ileum.¹³ Since only H₁R, but not H₄R is expressed on ileum, in organ pharmacology, assays at guinea-pig ileum are well established in order to study the affinity and functionality at gpH₁R. The histamine-induced contraction of the guinea-pig ileum is measured in presence and absence of an antagonist.¹³

Since the new hybrid compounds showed affinity to H_1R , but did not act as (partial) agonists at H_1R , a model of hH_1R in the inactive conformation was generated by homology modelling, based on

^{*} Corresponding author. Tel.: +49 941 943 4821; fax: +49 941 943 4820. *E-mail address*: andrea.strasser@chemie.uni-regensburg.de (A. Strasser).

astemizole, 4

Scheme 1. Structures of H₁ (mepyramine, **1**; diphenhydramine, **3**; astemizole, **4**) and H₄ (JNJ7777120, **2**; JNJ-derivative, **5**; JNJ-derivative, **6**) receptor ligands.

the crystal structure 2RH1,¹⁴ analogue, as already described.¹⁵ A comparison of our H₁R homology model, refined by molecular dynamic simulations, with the recently published hH₁R crystal¹⁶ showed no significant differences. The compounds **16**, **19** and **38** were docked manually into the binding pocket of hH₁R using the software package SYBYL 7.0 (Tripos Inc.). Molecular dynamic simulations, using the software GROMACS 4.0.2 (http://www.gromacs.org), were performed, as already described.¹⁰ Ligand parameterization was obtained from the PRODRG server (http:// davapc1.bioch.dundee.ac.uk/prodrg/). For both compounds a 6 ns productive phase in molecular dynamic simulations was performed subsequent to a 1 ns equilibration phase.

The pharmacological and modeling data of reference compounds and the new hybrid compounds are given in Tables 1–4. For compounds **16** and **19**, the experimental pharmacological data are shown in Figure 1.

Compared to mepyramine, the affinity of compounds 16-18 is significantly reduced of about 1.5-2 log units at hH₁R. The introduction of one chlorine atom in the indole moiety 17 leads to a slight decrease in affinity to hH₁R, compared to 16. The exchange of the indole moiety 16 into a benzimidazole 18 leads to a decrease in affinity at hH₁R. For compound **19**, an affinity comparable to that of mepyramine $\mathbf{1}$ at hH_1R could be observed. The introduction of one chlorine atom on the corresponding position in the JNJ7777120 partial structure 20 leads to a significant decrease in affinity at hH₁R, compared to **19**. In compounds **16–18**, the basic nitrogen atom is embedded in a piperazine moiety, which shows a higher rigidity than an ethylene spacer. This more voluminous piperazine mojety is suggested to disturb the electrostatic interaction between the positively charged amine and Asp^{3.32}, leading to a significantly decreased affinity. Based on the molecular dynamic studies, a mean coulomb energy (short range) between 16 and hH_1R of about -157 ± 1 kJ/mol was detected (Fig. 2). In contrast, a coulomb energy (short range) of -197 ± 1 kJ/mol was detected between **19** and hH₁R (Fig. 2, Table 2). Both interaction energies are, according to a t-test, significant different to each other (p <0.0001). In contrast, there is no significant difference with regard

to the Lennard-Jones energy (short-range) interaction energies between **16** ($-252 \pm 1 \text{ kJ/mol}$) or **19** ($-253 \pm 1 \text{ kJ/mol}$) and hH₁R (Table 2). Thus, the dynamic studies support the hypothesis that the piperazine moiety disturbs the electrostatic interaction between 16 and hH₁R. This difference in the short range coulomb interaction is reflected by the experimentally determined pK_i values of **16** and **19** at hH₁R (Fig. 1A). However, during the molecular dynamic simulations, a stable hydrogen bond interaction could be detected between the carbonyl moiety of **16** and Asn^{2.61} (Fig. 2). Additionally, an aromatic interaction between the indole moietv of **16** and Tyr^{2.64} was observed during the simulation (Fig. 2). In compound 19, the amino moiety, suggested to interact with Asp^{3.32} is flexible, analogous to mepyramine itself and in contrast to compounds 16-18. Thus, the interaction between the amine moiety and Asp^{3.32} can be established well. This is also confirmed by the stronger electrostatic interaction between hH₁R and **19**. compared to **16** (Fig. 2). However, the elongation of mepvramine by the JNJ7777120 partial structure did not lead to an increased affinity at hH₁R, compared to mepyramine **1**. Since there is a significant difference in affinity of **19** and **20** at hH₁R, it may be suggested, that the additional [N]7777120 partial structure interacts specifically with the hH₁R. A stable hydrogen bond was detected during the molecular dynamic simulation between the carbonyl moiety of 19 and Thr182 (E2-loop) (Fig. 2). The exchange of the piperazine moiety by a more flexible aminopyrrolidine moiety 26 leads only to a slight decrease in affinity at hH₁R, compared to 16. The diphenhydramine-JNJ-hybrid compound 21, analogue to the mepyramine-JNJ-hybrid compound 16 leads to a decrease in affinity of about 1 log unit at hH₁R, compared to diphenhydramine 3. For the analogoue astemizole-JNJ-hybrid compound 45, only a slight decrease in affinity was observed at hH₁R, compared to astemizole 4. Thus, the introduction of a JNJ partial structure into mepyramine and diphenhydramine leads to a stronger decrease in affinity, compared to the corresponding H₁ antagonists. In contrast, the INI-astemizole hybrid shows an affinity in the same range as found for astemizole (Fig. 3). Compound 38 shows a significant decrease in affinity at hH₁R, compared to **19**. In **38**, the INI partial structure is connected to mepvramine via the indole moiety, whereas in 19, the [N] partial structure is connected via the piperazine moiety to mepyramine. Thus, this switch is suggested to be responsible for the observed differences in affinity. Compound 38 was obtained experimentally as racemate, but in molecular modelling, both enantiomers were analyzed (Fig. 2). Molecular dynamic simulations revealed a stable binding mode for both enantiomers. The mepyramine partial structure (for both enantiomers) is located in the same part of the binding pocket, as already described for 16 or 19 and the positively charged amino moiety of 38 (both enantiomers) interacts electrostatically with Asp^{3.32}. Molecular dynamic simulations revealed a stable hydrogen bond interaction between the carbonyl moiety of 38 (R- and S-configuration) and Trp^{7.40}. For **38** (S-configuration), the carbonyl moiety establishes an additional hydrogen bond to Asn^{2.61}. Aromatic interactions between the indole moiety of 38 and the receptor were not detected. However, both enantiomers showed slight differences in conformation in its receptor bound state. Theses differences are reflected in the interaction energy between 38 and hH₁R. Between the R enantiomer of **38** and hH₁R, a coulomb energy (short range) of $-166 \pm 3 \text{ kJ/mol}$ and a Lennard–Jones energy (short range) of -285 ± 2 kI/mol was observed. In contrast, between the S enantiomer of **38** and hH₁R, a coulomb energy (short range) of $-241 \pm 2 \text{ kJ/mol}$ and a Lennard–Jones (short range) of -284 ± 1 kJ/mol was observed (Table 2).

As shown in Table 2, a comparison of the calculated ligandreceptor-interaction energies (C+LJ LR, Table 2) does not reflect the observed pK_i values of **16**, **19** and **38**. However, this observation can be explained: During molecular dynamic simulations, the

Scheme 2. Synthesis of the hybrid compounds 16-21. A detailed information with regard to synthesis and analytic data is available in the Supplementary data.

penetration of water molecules from the extracellular side into the binding pocket could be observed. These internal water molecules interact with the ligand and with the receptor and mediate ligand-receptor-interactions. Thus, a term, quantifying the interaction between ligand and internal water has to be introduced (Table 2). Taking into account both, interaction of the ligand with the receptor and with the internal water leads to a good correspondence with the experimentally observed pK_i values. Additionally, before establishing the ligand-receptor-complex, the ligand is solved in aqueous solution. Thus, for transfer of the ligand from aqueous solution into the binding pocket of the receptor, changes in solvation energies have to be taken into account. Changes in Gibbs energy of solvation for the ligand can be calculated by molecular dynamic studies.¹⁸

The predicted changes in Gibbs energy of solvation for the transfer of **16**, **19** and **38** from aqueous phase into binding pocket of $hH_1R(\Delta G_{sol}^0$ (water $\rightarrow hH_1R$)) exhibit a quite well correlation with the experimentally determined pK_i values (Table 3). Furthermore, these data reveal also the importance to take into account the Gibbs energy of solvation for the ligand in aquous solution (ΔG_{sol}^0 (L, wat)). Only looking onto ΔG_{sol}^0 (L, hH₁R) would lead to wrong predictions. However, calculations of Gibbs energies of solvation for the transfer of a ligand from aqueous phase into binding pocket of a GPCR are rarely found in literature. Thus, more data have to be obtained in future on different GPCRs in order to judge the predictive quality of such calculations.

None of the hybrid compounds revealed (partial) agonism at gpH₁R. Exemplary for compounds **16** and **19**, the dose-response

Scheme 3. Structures of compounds **26**, **38** and **45**. A detailed information with regard to synthesis and analytic data is available in the Supplementary data.

Table 1

Binding affinities and functional data of the reference compounds and the hybrid compounds determined in the competition binding assay and on the isolated guinea pig ileum

	pK _i (hH ₁ R)	pK _i (hH ₄ R)	pA ₂
	(Sf9) ^a	(Sf9) ^b	(gp-ileum) ^c
Mepyramine, 1 JNJ7777120, 2 Diphenhydramine, 3 Astemizole, 4 JNJ derivative, 5 JNJ derivative, 6 16 17 18 19 20	$(St9)^{a}$ 8.35 ± 0.03 ¹⁷ 4.33 ± 0.12 7.83 ± 0.03 ¹⁷ 8.68 ± 0.05 n.d. n.d. 6.77 ± 0.05 6.11 ± 0.08 6.22 ± 0.07 8.15 ± 0.10 7.00 + 0.02	$(5f9)^{0}$ $<4^{7}$ 7.73 ± 0.04^{11} 4.37 ± 0.10^{7} 5.10 ± 0.06^{7} 6.86 ± 0.05^{11} 6.54 ± 0.04^{11} 5.23 ± 0.09 4.80 ± 0.29 4.65 ± 0.04 5.05 ± 0.11 5.17 ± 0.00	$(gp-1leum)^{c}$ 9.07 ± 0.03 ¹³ 5.80 ± 0.13 7.93 ± 0.04 ^d 8.42 ± 0.10 n.d. n.d. 7.97 ± 0.08 7.69 ± 0.09 ^d 8.14 ± 0.09 8.31 ± 0.08 ^d 8.12 ± 0.11 ^d
20	7.00 ± 0.03	5.17 ± 0.09	$ \begin{array}{c} 8.12 \pm 0.11 \\ n. d. \\ 8.07 \pm 0.06 \\ 7.90 \pm 0.06^{d} \\ 8.42 \pm 0.08^{d} \end{array} $
21	6.65 ± 0.06	4.75 ± 0.14	
26	6.34 ± 0.10	4.56 ± 0.09	
38	6.67 ± 0.09	4.85 ± 0.09	
45	8.26 ± 0.17	4.98 ± 0.04	

^a Affinities at hH₁R, coexpressed with RGS4 in Sf9 cell membranes in the $[^{3}H]$ mepyramine competition binding assay. $K_{\rm D}$ (mepyramine) at hH₁R: 4.49 ± 0.35 nM.¹⁰

^b Affinities at hH₄R-RGS19, coexpressed with $G\alpha_{i2}$ and $G\beta_{1\gamma2}$ in Sf9 cell membranes in the [³H]histamine competition binding assay. K_D (histamine) at hH₄R: 9.8 ± 0.9 nM.⁶

^c Incubation time: 15 min. For most analyzed compounds, a depression in histamine induced contractile effect was observed for higher ligand concentrations. A more detailed description of experimental methods is described by Elz et al.¹³

^d Slope in Schild plot analysis was set to 1. Results of Schild plot analysis with observed slope m (cpd., m, pA₂): **3**, 0.8, 8.37; **17**, 1.3, 7.50; **19**, 1.3, 7.88; **20**, 1.8, 7.46; **38**, 1.3, 7.56; **45**, 1.7, 7.83.

curves at gpH_1R are shown (Fig. 1C). For some ligands, for example, **19**, the dose-response curves show a strong depression at higher ligand concentrations. A reason for this partially insurmountable antagonism may be a slow rate of dissociation kinetics of the antagonist, resulting in hemi-equilibrium conditions.¹⁹ In general, the pA_2 values at gpH_1R are higher, than the pK_i values at hH_1R .

For compounds **16–21**, **26**, **38** and **45**, the pA_2 values are found in a range from about 7.7 up to 8.4, whereas the pK_i values at hH₁R are found in a range from about 6.1 up to 8.3. There might be two reasons for these differences: First, the data at gpH₁R are functional data obtained from isolated organ experiments, whereas the data at hH₁R are binding data. Secondly and more importantly, species differences between hH₁R and gpH₁R should be taken into account. Asn^{2.61}, for example, was identified to be responsible for species differences between hH₁R and gpH₁R, especially in case of long and bulky ligands.²⁰

All analyzed hybrid compounds 16-21, 26, 38 and 45 exhibit only low affinity to hH₄R in a range of about 4.5 to 5.2. Thus, compared to [N]7777120 or to the corresponding [N]-analogues 5 and 6, the affinity is significantly decreased (Fig. 3). The introduction of a chlorine into the indole moiety of 5, leading to JNJ7777120 (compd 2), results in a significant increase in affinity at hH₄R.¹¹ Corresponding structure-activity relationships could not be observed for the analogue series $16 \rightarrow 17$ and $19 \rightarrow 20$ (Fig. 3). Two reasons may explain the experimental data: The hH₄R does not tolerate any linker and/or linked groups. Furthermore, it can be speculated that the binding mode of the INI-partial structures in the hybrid compounds at hH₄R might be different to the [N]-derivatives itself. In literature, two completely different binding modes for INI-derivatives at H₄R are described. Within a modelling study, an interaction of the indole-NH with Asp^{3.32} and an interaction of the positively charged piperazine moiety with Glu^{5.46} is suggested.²¹ A different binding mode, the positively charged piperazine moiety interacting with Asp^{3.32}, was found within an other modelling study.¹¹ In this case, the indole moiety is embedded in a small pocket between Glu^{5.46} and Trp^{6.48}.¹¹ With the latter binding mode, structure-activity relationships of INI-derivatives with different substitution patterns in the indole moiety could be explained.¹¹ In compounds **19** and **38**, the mepyramine partial structure is connected differently to the INI partial structure. Compound **19** should show affinity to hH₄R, if the binding mode of JNJ7777120 presented by Schneider et al is energetically preferred.¹¹ Here, the piperazine moiety is suggested to interact with Asp^{3.32}. Thus, there is space left in the binding pocket in direction to TM II for a ligand elongation at the piperazine moiety. In contrast, compound **38** should show affinity to hH₄R, if the binding mode of INI7777120 presented by Jojart et al. is energetically preferred.²¹ Here, the indole moiety is suggested to interact with Asp^{3.32}. Thus, there is space left in the binding pocket in direction to TM II for a ligand elongation at the indole moiety. Unfortunately, both compounds, 19 and 38, exhibit only poor affinity to hH₄R. One reason for the poor affinity of **38** to hH₄R, might be a wrong connection point of the mepyramine with the indole moiety. It can be speculated that a different aromatic substitution position might lead to higher affinities at hH₄R. However, it is noteworthy, that a JNJ derivative with an amino moiety in 5-position ((5-amino-1H-indol-2-yl)(4-methylpiperazin-1-yl)methanon) is described in literature⁵ with an pK_i value of about 7.8 at hH₄R. In contrast, in our competition binding assay, a pK_i of 6.80 ± 0.13 was determined. In general, the data within this study show that more experimental and modeling studies at hH₄R have to be performed, in order to get a more detailed insight into interaction of ligands with hH₄R on molecular level.

In order to obtain information, if the hybrid compounds act as partial agonists, antagonists or inverse agonists at hH_4R , we performed for two selected compounds **16** and **19** a GTP γ S-assay (Fig. 1B, Table 4).

The data revealed, that **16** acts as a partial agonist at hH_4R , whereas **19** shows inverse agonism (Fig. 1B). The partial agonism of **16** at hH_4R is unexpected, since mepyramine and JNJ7777120 were identified as inverse agonists at hH_4R .^{7.22}

A comparison of the pharmacological data between hH_1R and hH_4R shows, that the H_1R tolerates the linking of an H_1R antagonist

Table 2	
Calculated interaction energies between ligand and hH1R or ligand and internal water for compounds 16, 19 and 3	38

	C LR (kJ/mol)	LJ LR (kJ/mol)	C LW (kJ/mol)	LJ LW (kJ/mol)	C+LJ LR (kJ/mol)	C+LJ LW (kJ/mol)	C+LJ LR+LW (kJ/mol)
16	-157 ± 1	-252 ± 1	-119 ± 1	-32 ± 1	-409 ± 2	-151 ± 2	-560 ± 2
19	-197 ± 1	-253 ± 1	-186 ± 1	-47 ± 1	-450 ± 2	-233 ± 2	-683 ± 2
38 (R)	-166 ± 1	-286 ± 1	-94 ± 1	-51 ± 1	-452 ± 2	-145 ± 2	-597 ± 2
38 (S)	-243 ± 1	-286 ± 1	-43 ± 1	-33 ± 1	-529 ± 2	-76 ± 2	-605 ± 2

The interaction energies were calculated with GROMACS. C: Coulomb (short range); LJ: Lennard–Jones (short range); LR: interaction between ligand and hH1R; LW: interaction between ligand and internal water.

Figure 1. (A) Competition binding isotherms for compounds **16** and **19** at hH₁R, coexpressed with RGS4 in Sf9 cell membranes. (B) Functional GTP γ S binding assay for compounds **16** and **19** at hH₄R-RGS19 coexpressed with G α_{i2} and G $\beta_1\gamma_2$ in Sf9 cell membranes. (C) Contraction of guinea-pig ileum (whole segments) by histamine in absence and presence of the inhibitors **16** and **19**. Inset: Schild plot for the corresponding inhibitor.

to JNJ7777120. But affinity is dependent from linker length. In contrast, the hH_4R does not tolerate linked pharmacophores, since the affinity of all analyzed hybrid compounds was significantly decreased compared to JNJ7777120. All hybrid compounds were antagonists at gpH₁R. In contrast, the hH_4R is sensitive with regard to linker length concerning the efficiency. Here, the linker length acts as a partial (16)-inverse (19) agonism switch at hH_4R . Thus, linker length has completely different influences onto pharmacology of hH_1R and hH_4R .

Within this study we presented new hybrid compounds with different H_1 - and H_4 -pharmacophores. These compounds showed (high) affinity to hH_1R , but rather low affinity to hH_4R . However,

Figure 2. Binding mode of 16, 19 and 38 at hH₁R and interaction energy between 16, 19 or 38 with hH₁R or internal water, obtained by molecular dynamics.

similar studies with regard to H_1/H_2 -hybrid compounds showed that high affinity to both receptors is only achieved for distinct H_1/H_2 -pharmacophores.^{8,9} Thus, the connection of H_1 -antagonis-

tic pharmacophores with H_4 -pharmacophores, different from the JNJ partial structure may lead to compounds with high affinity to both, H_1R and H_4R . However, this study revealed

Figure 3. Trends in affinities at hH₁R and hH₄R.

Table 3

Calculated Gibbs energy of solvation for compounds 16, 19 and 38 in water and in the binding pocket of hH1R

	$\Delta G_{ m sol}^0$ (L, wat)	$\Delta G_{\rm sol}^0$ (L, hH ₁ R)	$\Delta\Delta G_{sol}^0$ (water \rightarrow hH ₁ R)
16	-171 ± 2	-446 ± 21	-275 ± 23
19	-145 ± 3	-436 ± 16	-291 ± 19
38 (R)	-248 ± 4	-515 ± 18	-267 ± 22
38 (S)	-243 ± 3	-507 ± 16	-264 ± 19

The calculations were performed, based on the thermodynamic integration method, using the coupling parameter λ , switching on, respectively off the interaction between ligand and surrounding, as described previously.¹⁸ ΔG_{sol}^0 (L, wat) corresponds to the Gibbs energy of solvation of the ligand L in water, ΔG_{sol}^0 (L, hH₁R) corresponds to the Gibbs energy of solvation of the ligand L in the binding pocket of hH_1R and $\Delta\Delta G_{sol}^0$ (water $\rightarrow hH_1R$) corresponds to the change in Gibbs energy of solvation for transferring the ligand from water into binding pocket of hH1R

important insights into structure-activity relationships at hH1R and hH₄R.

Table 4

Efficacies of selected compounds 16 and 19 in the GTPγS-assay at hH4R

	Potency pEC ₅₀	Efficacy E _{max} (%)
histamine	n.d.	1.00^{a}
JNJ7777120, 2	n.d.	-0.74 ± 0.19 ^b
16	3.98 ± 0.31	0.88 ± 0.18
19	<4 ^c	<-1 ^c

^a The efficacy of histamine was determined at a concentration of 10 μ M and set to 1.00 (pEC_{50} = 7.86 \pm 0.20^{22}) b The efficacy of JNJ7777120 was determined at a concentration of 10 μM and

was determined relative to the efficacy of histamine ($pEC_{50} = 7.80 \pm 0.21$, $E_{\rm max} = -0.59^{22}$)

^c A rapid decrease in $[^{35}S]$ GTP γ S binding was observed for concentrations of **19** greater than 100 μ M, thus, neither potency nor efficacy could be determined exactly

Acknowledgments

We are grateful to Christine Braun, Kerstin Röhrl and Gertraud Wilberg for expert technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (Project STR 1125/1-1 and the Graduate Training Program (Graduiertenkolleg) GRK 760, 'Medicinal Chemistry: Molecular Recognition-Ligand-Receptor Interactions').

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.bmcl.2011.09.001.

References and notes

- Thurmond, R. L.; Gelfand, E. W.; Dunford, P. J. Nat. Rev. Drug Disc. 2008, 7, 41. 1 Dunford, P. J.; O'Donnell, N.; Riley, J. P.; Williams, K. N.; Karlsson, L.; Thurmond, 2.
- R. L. J. Immunol. 2006, 176, 7062. 3.
- Rossbach, K.; Stark, H.; Sander, K.; Leurs, R.; Kietzmann, M.; Bäumer, W. Vet. Dermatol. 2009, 20, 555.
- Parsons, M. E.; Ganellin, C. R. Br. J. Pharmacol. 2006, 147, S127.
- 5. Jablonowski, J. A.; Grice, C. A.; Chai, W.; Dvorak, C. A.; Venable, J. D.; Kwok, A. K.; Ly, K. S.; Wei, J.; Baker, S. M.; Desai, P. J.; Jiang, W.; Wilson, S. J.; Thurmond, R. L.; Karlsson, L.; Edwards, J. P.; Lovenberg, T. W.; Carruthers, N. I. J. Med. Chem. 2003, 46, 3957
- Schnell, D.; Brunskole, I.; Ladova, K.; Schneider, E. H.; Igel, P.; Dove, S.; 6. Buschauer, A.; Seifert, R. Naunyn-Schmied Arch. Pharmacol. 2011, 383, 457.
- 7. Deml, K. F.; Beermann, S.; Neumann, D.; Strasser, A.; Seifert, R. Mol. Pharmacol. 2009, 76, 1019.
- 8 Schulze, F. R.; Buschauer, A.; Schunack, W. Eur. J. Pharm. Sci. 1998, 6, 177.
- 9. Wolf, C.; Schulze, F. R.; Buschauer, A.; Schunack, W. Eur. J. Pharm. Sci. 1998, 6,
- 187. 10. Strasser, A.; Striegl, B.; Wittmann, H.-J.; Seifert, R. J. Pharmacol. Exp. Ther. 2008, 324, 60.
- 11. Schneider, E. H.; Strasser, A.; Thurmond, R. L.; Seifert, R. J. Pharmacol. Exp. Ther. 2010. 334. 513.
- Schneider, E. H.; Schnell, D.; Papa, D.; Seifert, R. Biochemistry 2009, 48, 1424. 12.
- Elz, S.; Kramer, K.; Pertz, H. H.; Detert, H.; ter Laak, A. M.; Kühne, R.; Schunack, 13. W. J. Med. Chem. 2000, 43, 1071.
- 14. Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258.
- Strasser, A.; Wittmann, H.-J. J. Comput. Aided Mol. Des. 2010, 24, 759. 15.
- Shimamura, T.; Han, G. W.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; 16. Katritch, V.; Abagyan, R.; Cherezov, V.; Liu, W.; Kobayashi, T.; Stevens, R.; Iwata, S. Nature 2011, 475, 65.
- 17. Wittmann, H.-J.; Seifert, R.; Strasser, A. Mol. Pharmacol. 2009, 76, 25.
- Wittmann, H.-J.; Strasser, A.; Seifert, R. Naunyn Schmied Arch. Pharmacol. 2011, 18. 384. 287.
- Kenakin, T.; Jenkinson, S.; Watson, C. J. Pharmcol. Exp. Ther. 2006, 319, 710.
- Bruysters, M.; Jongejan, A.; Gillard, M.; van de Manakker, F.; Bakker, R. A.; Chatelain, P.; Leurs, R. Mol. Pharmacol. 2005, 67, 1045.
- Jojart, B.; Kiss, R.; Viskolcz, B.; Keseru, G. M. J. Chem. Inf. Model 2008, 48, 1199. 21.
- 22. Sander, K.; Kottke, T.; Tanrikulu, Y.; Proschak, E.; Weizel, L.; Schneider, E. H.; Seifert, R.; Schneider, G.; Stark, H. Bioorg. Med. Chem. 2009, 17, 7186.