Dehydration of 5-amino-1-pentanol over rare earth oxides

Kaishu Ohta, Yasuhiro Yamada, Satoshi Sato*
Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan

A R T I C L E I N F O

Article history:

Received 16 December 2015
Received in revised form 2 February 2016
Accepted 1 March 2016
Available online 3 March 2016

Keywords:

Catalytic dehydration
Amino alcohol
Unsaturated amine
Rare earth metal oxides

Abstract

Vapor-phase catalytic dehydration of 5-amino-1-pentanol was investigated over various oxide catalysts including rare earth oxides (REOs). Over ordinary acidic oxides such as $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}, \mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}$, and ZrO_{2}, a cyclic amine such as piperidine was mainly produced at temperatures of $300{ }^{\circ} \mathrm{C}$ and higher. In contrast, basic REOs with a cubic bixbyite structure showed the catalytic activity in the conversion of 5 -amino-1-pentanol to produce 4 -penten- 1 -amine at $425^{\circ} \mathrm{C}$. In REO catalysts, $\mathrm{Tm}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}$, and $\mathrm{Lu}_{2} \mathrm{O}_{3}$ showed the high conversion of 5-amino-1-pentanol and the high selectivity to 4-penten-1-amine. Especially, $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$ showed a high formation rate of 4-penten-1-amine with the selectivity of ca. 90% at $425^{\circ} \mathrm{C}$. In comparing the reactivity of several amino alcohols to form the corresponding unsaturated amines, $\mathrm{Yb}_{2} \mathrm{O}_{3}$ effectively catalyzed the dehydration of 6-amino-1-hexanol into 5-hexen-1amine, whereas 3-amino-1-propanol and 4-amino-1-butanol were not effectively dehydrated due to the decomposition of the reactant.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Unsaturated amines, which have both a carbon double bond and an amino group in the molecule, can be used for various applications such as polymer, ion-exchange membrane, raw material of chemical, pharmaceutical and agricultural chemical intermediates. As a pioneering report, Zimmermann et al. have reported that unsaturated amines can be produced by hydroaminomethylation of olefins using three gases such as $\mathrm{H}_{2}, \mathrm{CO}$, and NH_{3} [1]. In the method, however, the resulting primary amines are further converted into the secondary amine. Nicolai et al. have showed that 4 -penten-1-amine is produced by reduction of 4-pentenamido [2], while 4 -penten-1-amine is produced with a low yield, which is approximately 40%.

We have previously reported a novel catalytic synthesis process of unsaturated alcohols via the dehydration of alkanediols such as 1,5-pentanediol [3-5], 1,4-butanediol [5-8], and 1,3butanediol [5,9-11] over rare earth oxides (REOs) calcined at $800^{\circ} \mathrm{C}$. In the dehydration of 1,5-pentanediol, heavy REOs such as $\mathrm{Lu}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}$, and $\mathrm{Tm}_{2} \mathrm{O}_{3}$ are highly active and selective for the formation of 4 -penten-1-ol, and the highest selectivity of 4 -penten-1-ol was 80.3% over $\mathrm{Tm}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}[4,5]$. It is also known that REOs $[12,13]$ as well as $\mathrm{ZrO}_{2}[14-16]$ and $\mathrm{CeO}_{2}-$

[^0]ZrO_{2} [17] have unique character to catalyze the dehydration of 2 -alcohol to produce α-olefin via Hoffman elimination. We have also reported the dehydration of 1,4 -butanediol as well as $1,5-$ pentanediol over composite oxides of cubic $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.5,1.0$, and 1.5) [18]: the highest selectivity to 3 -buten-1-ol surpassed 80% in the dehydration of 1,4 -butanediol over the $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}$ ($\mathrm{x}=0.5,1.0$, and 1.5) catalysts calcined at $800^{\circ} \mathrm{C}$. Thus, we expected that REOs could work effectively in the dehydration of amino alcohols.

In this work, we investigated the dehydration of 5-amino-1pentanol into 4-penten-1-amine over REOs and $\mathrm{Sc}_{2 \text {-x }} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.5$, 1.0 , and 1.5) at $425^{\circ} \mathrm{C}$ to search a suitable catalyst and the efficient reaction conditions. We have found that 4-penten-1-amine is efficiently produced over $\mathrm{Tm}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}$, and $\mathrm{Lu}_{2} \mathrm{O}_{3}$ in the dehydration of 5-amino-1-pentanol (Scheme 1). We also investigated the catalytic features of $\mathrm{Yb}_{2} \mathrm{O}_{3}$ in the dehydration of 5-amino-1-pentanol. Furthermore, we performed other amino alcohols with different carbon chain length, such as 3-amino-1-propanol, 4-amino-1butanol, and 6-amino-1-hexanol, to produce the corresponding unsaturated amines over $\mathrm{Yb}_{2} \mathrm{O}_{3}$.

2. Experimental

2.1. Catalyst samples

Metal nitrate hydrates, such as $\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Nd}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Sm}\left(\mathrm{NO}_{3}\right)_{3}$, $\mathrm{Eu}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Gd}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{~Tb}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Ho}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Y}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Er}\left(\mathrm{NO}_{3}\right)_{3}$,

Scheme 1. Dehydration of 5-amino-1-pentanol to 4-penten-1-amine.
$\mathrm{Tm}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Yb}\left(\mathrm{NO}_{3}\right)_{3}, \mathrm{Lu}\left(\mathrm{NO}_{3}\right)_{3}$, and $\mathrm{Sc}\left(\mathrm{NO}_{3}\right)_{3}$, were purchased from Sigma-Aldrich Co., Ltd., Japan. $\mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{Pr}_{6} \mathrm{O}_{11}, \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$, and $\mathrm{Dy}\left(\mathrm{NO}_{3}\right)_{3}$ hexahydrate were purchased from Wako Pure Chemicals Co., Japan. 5-Amino-1-pentanol, 3-amino-1-propanol, and 4-amino-1-butanol were purchased from Wako Pure Chemicals Co., Japan. 6-Amino-1-hexanol aqueous solution ($70 \mathrm{wt} . \%$) was purchased from Sigma-Aldrich Co., Ltd., Japan.

Except $\mathrm{La}_{2} \mathrm{O}_{3}$ and $\mathrm{Pr}_{6} \mathrm{O}_{11}$, other REOs such as $\mathrm{CeO}_{2}, \mathrm{Nd}_{2} \mathrm{O}_{3}$, $\mathrm{Sm}_{2} \mathrm{O}_{3}, \mathrm{Eu}_{2} \mathrm{O}_{3}, \mathrm{Gd}_{2} \mathrm{O}_{3}, \mathrm{~Tb}_{2} \mathrm{O}_{3}, \mathrm{Dy}_{2} \mathrm{O}_{3}, \mathrm{Ho}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{Tm}_{2} \mathrm{O}_{3}$, $\mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{Lu}_{2} \mathrm{O}_{3}$, and $\mathrm{Sc}_{2} \mathrm{O}_{3}$ were prepared by the calcination of the corresponding nitrate. MgO and CaO were also prepared by the calcination of the corresponding nitrate. Monoclinic $\mathrm{Yb}_{2} \mathrm{O}_{3}$ was supplied by Kanto Kagaku Co., Ltd., Japan. Three $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.5$, 1.0 , and 1.5) catalysts were supplied by Daiichi Kigenso Kagaku Kogyo Co., Ltd., Japan [18]. Rutile TiO_{2} (JRC-TIO-3) and anatase TiO_{2} (JRC-TIO-4) were supplied by Catalyst Reference of Japan. Amorphous SiO_{2} (CARiACT Q10) was supplied by Fuji Silycia Chemical Ltd. Monoclinic ZrO_{2} (RSC HP) and tetragonal ZrO_{2} were supplied by Daiichi Kigenso Kagaku Kogyo Co., Ltd., Japan and Saint-Gobain, respectively. $\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~N} 611 \mathrm{~N})$ and $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$ (N631L) were purchased from Nikki Chemical Co., Ltd., Japan.

2.2. Catalytic reaction

The dehydration of amino alcohols, such as 5-amino-1pentanol, 3-amino-1-propanol, 4-amino-1-butanol, and 6-amino-1-hexanol, were carried out in a fixed-bed down flow reactor with an inside diameter of 20 mm under the atmospheric pressure of either N_{2} or H_{2} gas. In each test, 0.5 g of catalyst was loaded

Fig. 1. XRD profiles of REO and $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}$ samples calcined at $800^{\circ} \mathrm{C}$.
into the reactor. Amino alcohols were dehydrated at temperatures between 300 and $450^{\circ} \mathrm{C}$. Prior to the reaction, the catalyst was preheated in the flow reactor in a carrier gas at the same temperature as the reaction temperature for 1 h . After the pretreatment, an amino alcohol was fed through the top of the reactor at a liquid feed rate of $1.71 \mathrm{~cm}^{3} \mathrm{~h}^{-1}$, which corresponds to $16 \mathrm{mmol} \mathrm{h}^{-1}$ for 5 -amino-1-pentanol and $W / F=31 \mathrm{~g}_{\text {cat. }} \mathrm{h} \mathrm{mol}^{-1}$ where W is catalyst weight and F is a reactant feed rate, together with a carrier gas flow of $20 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. An effluent mixture collected every hour was analyzed by gas chromatography (GC-8A, Shimadzu, Japan) with a capillary column of TC-5 (30m, GL Science Inc., Japan) over a temperature range controlled from 70 to $280^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. The major products in the dehydration were 4-penten-1-amine, piperidine, tetrahydropyridine, δ-valerolactam, and n-pentyl amine.

Since the catalytic activity is stable in the similar manner to the previous works reported in the dehydration of diols [3-11], the conversion of 5-amino-1-pentanol and the selectivity to each product were averaged in the $1-5 \mathrm{~h}$ to evaluate the catalytic activity. The formation rate of the corresponding unsaturated amines per unit surface area [$\mathrm{mmol} \mathrm{h}^{-1} \mathrm{~m}^{-2}$] was calculated by using the feed rate of the reactant multiplied by the conversion and the selectivity divided by the catalyst weight and specific surface area.

2.3. Characterization

The specific surface area (SA) of each catalyst was calculated by the BET method using the N_{2} isotherm at $-196^{\circ} \mathrm{C}$. X-ray diffraction (XRD) patterns were recorded on an XRD7000 (Shimadzu, Japan) using Cu Ka radiation ($\lambda=0.15 \mathrm{~nm}$) to detect the crystal structure of the samples. The tube voltage and current were 40 kV and 40 mA , respectively.

Temperature-programmed desorption (TPD) of adsorbed CO_{2} was measured to estimate the basicity of the catalysts. The numbers of basic sites were estimated from neutralization-titration curves of diluted NaOH solution [19,20]. Prior to the CO_{2} adsorption, a sample (ca. 50 mg) was preheated in a quartz tube at $500^{\circ} \mathrm{C}$ for 1 h under a reduced pressure. In CO_{2}-TPD, CO_{2} was adsorbed on the sample at room temperature for 72 h and evacuated for 1 h . After no CO_{2} had been observed in N_{2} flow at room temperature, the sample was heated from room temperature to $800^{\circ} \mathrm{C}$ at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$ in an N_{2} flow of $34 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. The desorbed CO_{2} molecules, together with N_{2} gas, were bubbled into an electric conductivity cell containing a dilute NaOH solution $\left(50 \mathrm{~cm}^{3}\right)$. The conductivity of the solution was monitored, and the resulting conductivity curve was differentiated to provide a distribution curve of CO_{2} desorbed from adsorbent.

3. Results

3.1. Characterization of REOs

Fig. 1 shows the XRD patterns of REOs and $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$. REO samples had different crystal structures with A , B-, C-, and C_{F}-type [21,22]. Light REOs such as $\mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{Pr}_{6} \mathrm{O}_{11}$, and $\mathrm{Nd}_{2} \mathrm{O}_{3}$ had a hexagonal structure of A-type. Other light REOs such as $\mathrm{Sm}_{2} \mathrm{O}_{3}$ had a monoclinic structure of B-type. On the other hand, heavy REOs such as $\mathrm{Gd}_{2} \mathrm{O}_{3}, \mathrm{~Tb}_{4} \mathrm{O}_{7}, \mathrm{Dy}_{2} \mathrm{O}_{3}, \mathrm{Ho}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3}$, $\mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{Tm}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{Lu}_{2} \mathrm{O}_{3}, \mathrm{Sc}_{2} \mathrm{O}_{3}$, and $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.5,1.0$, and 1.5) [18] had a cubic bixbyite structure of C-type. $\mathrm{Eu}_{2} \mathrm{O}_{3}$ had an unknown phase, and CeO_{2} had a cubic fluorite structure of C_{F}-type. The crystal phases of REOs and $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}$ as well as their SA are summarized in Table 1.

Fig. 2 shows TPD profiles of CO_{2} adsorbed on the REOs. Several desorption peaks of CO_{2} from light REOs, such as $\mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{CeO}_{2}$,

Table 1
Dehydration of 5-amino-1-pentanol over REOs and $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}$ catalysts at $425^{\circ} \mathrm{C}^{\mathrm{a}}$.

${ }^{\text {a }}$ Conversion and selectivity were averaged in the $1-5 \mathrm{~h} . \mathrm{N}_{2}$ flow is $20 \mathrm{~cm}^{3} \mathrm{~min}^{-1} . W / F=31 \mathrm{~g}_{\text {cat. }}$. mol^{-1}. Samples were calcined at $800^{\circ} \mathrm{C}$.
${ }^{\text {b }}$ Ionic radius of trivalent rare earth cation with coordination number 6, except Ce^{4+} with coordination number of 8 (Ref. [22]).
${ }^{\text {c }}$ CP, crystal phase: H, A-type hexagonal; M, B-type monoclinic; C, C-type cubic bixbyite; C ${ }_{\mathrm{F}}$, cubic fluorite.
${ }^{\text {d }} 4$ P1A, 4 -penten-1-amine; PD, piperidine; THP, tetrahydropyridine; DVL, δ-valerolactam; PA, n-pentyl amine; Others, unidentified products.

Fig. 2. TPD profiles of CO_{2} adsorbed on REOs calcined at $800^{\circ} \mathrm{C}$.
$\mathrm{Pr}_{6} \mathrm{O}_{11}, \mathrm{Nd}_{2} \mathrm{O}_{3}, \mathrm{Sm}_{2} \mathrm{O}_{3}, \mathrm{Eu}_{2} \mathrm{O}_{3}, \mathrm{Gd}_{2} \mathrm{O}_{3}$, and $\mathrm{Tb}_{4} \mathrm{O}_{7}$, were observed at a wide temperature range between 100 and $800^{\circ} \mathrm{C}$. In contrast, over heavy REOs such as $\mathrm{Dy}_{2} \mathrm{O}_{3}, \mathrm{Ho}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{Tm}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}$, $\mathrm{Lu}_{2} \mathrm{O}_{3}$, and $\mathrm{Sc}_{2} \mathrm{O}_{3}$, desorption peaks were observed at low temper-
atures between 100 and $300^{\circ} \mathrm{C}$. The light REOs have strong basic sites, whereas heavy REOs have weak basic sites. These results are basically consistent with those of the previous report [22]. The desorption peak at the highest temperature in each REO had a tendency that the peak shifted to low temperatures as the atomic number decreases. However, TPD of adsorbed NH_{3} was not performed because no adsorption of basic NH_{3} on REOs was observed even at $25^{\circ} \mathrm{C}$ [22].

3.2. Dehydration of 5-amino-1-pentanol over several acidic and basic catalysts

Table 2 lists catalytic activities of several oxide catalysts in the dehydration of 5 -amino-1-pentanol. The conversion of 5 -amino-1-pentanol and the selectivity to each product were averaged in the initial $1-5 \mathrm{~h}$ to evaluate the catalytic activity. Over $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{SiO}_{2}$, $\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}$, and tetragonal ZrO_{2}, piperidine was dominantly produced. We have reported that acids catalyze the formation of saturated cyclic ether such as tetrahydrofuran and tetrahydropyran from the corresponding diols such as 1,4-butanediol and 1,5 -pentanediol, respectively [3,23]. It is reasonable that these catalysts promote the piperidine formation. Over monoclinic ZrO_{2}, on the other hand, a small amount of 4-penten-1-amine was produced. Because monoclinic ZrO_{2} has more basic sites than tetragonal sites [24], the monoclinic phase of ZrO_{2} could catalyze the dehydration of 5-amino-1-pentanol at a high temperature of $375^{\circ} \mathrm{C}$. In other words, basic sites would work as the catalyst for the formation of 4 -penten-1-amine in the dehydration of 5-amino-1-pentanol. In contrast to the acidic catalysts, basic MgO and CaO were inactive

Table 2
Dehydration of 5-amino-1-pentanol over several catalysts ${ }^{\text {a }}$.

Catalyst ${ }^{\text {b }}$	$\mathrm{SA}\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	Reaction temperature (${ }^{\circ} \mathrm{C}$)	Conversion (mol\%)	Selectivity (mol\%) ${ }^{\text {c }}$		
				4P1A	PD	Others
TiO_{2} (rutile)	40	300	56.7	0	93.1	6.9
TiO_{2} (anatase)	23	300	56.8	0	91.1	8.9
SiO_{2}	320	325	23.8	0	99.1	0.9
$\mathrm{Al}_{2} \mathrm{O}_{3}$	170	325	66.4	2.0	85.9	12.1
$\mathrm{SiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}$	440	300	59.0	0.4	85.4	14.2
$\mathrm{m}-\mathrm{ZrO}_{2}$	46	375	40.6	12.8	64.5	22.7
$\mathrm{t}-\mathrm{ZrO}_{2}$	91	300	56.8	0	92.0	8.0
MgO	7.1	425	0.7	0	0	100
CaO	6.6	425	0.5	0	0	100

${ }^{\text {a }}$ Conversion and selectivity were averaged in the $1-5 \mathrm{~h}$. Flow rate of N_{2} carrier gas was $20 \mathrm{~cm}^{3} \mathrm{~min}^{-1} . W / F=31 \mathrm{~g}_{\text {cat. }} \mathrm{h} \mathrm{mol}^{-1}$, where W and F are catalyst weight and flow rate of reactant feed, respectively.
${ }^{\mathrm{b}} \mathrm{m}-\mathrm{ZrO}_{2}$ means monoclinic ZrO_{2}, and $\mathrm{t}-\mathrm{ZrO}_{2}$ means tetragonal ZrO_{2}.
${ }^{\mathrm{c}}$ Notation of products is the same as those in Table 1.
for the dehydration. Thus, we investigated rare earth oxides with basic sites in the following research.

3.3. Dehydration of 5-amino-1-pentanol over various rare earth oxide catalysts

Table 1 lists catalytic activities of various REOs and $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}$ catalysts in the dehydration of 5-amino-1-pentanol at $425^{\circ} \mathrm{C}$. In all of the REOs, $\mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{CeO}_{2}, \mathrm{Pr}_{6} \mathrm{O}_{11}, \mathrm{Sm}_{2} \mathrm{O}_{3}$, and $\mathrm{Sc}_{2} \mathrm{O}_{3}$ showed the selectivity to 4 -penten-1-amine lower than 70%. In particular, the selectivity to 4 -penten-1-amine over $\mathrm{Sc}_{2} \mathrm{O}_{3}$ was the lowest among the REOs. Exceptionally, $\mathrm{Sc}_{2} \mathrm{O}_{3}$ produced piperidine with high selectivity. Over CeO_{2}, several by-products such as δ-valerolactam and n-pentyl amine were produced, whereas the conversion of 5 -amino-1-pentanol was high. On the other hand, the other REOs such as $\mathrm{Nd}_{2} \mathrm{O}_{3}, \mathrm{Eu}_{2} \mathrm{O}_{3}, \mathrm{Gd}_{2} \mathrm{O}_{3}, \mathrm{~Tb}_{4} \mathrm{O}_{7}, \mathrm{Dy}_{2} \mathrm{O}_{3}, \mathrm{Ho}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{Tm}_{2} \mathrm{O}_{3}$, $\mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{Lu}_{2} \mathrm{O}_{3}$, and $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}$ showed the selectivity to 4 -penten1 -amine higher than 70%. In particular, over $\mathrm{Nd}_{2} \mathrm{O}_{3}, \mathrm{Eu}_{2} \mathrm{O}_{3}, \mathrm{Gd}_{2} \mathrm{O}_{3}$, $\mathrm{Tb}_{4} \mathrm{O}_{7}, \mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{Lu}_{2} \mathrm{O}_{3}$, and $\mathrm{Sc}_{0.5} \mathrm{Yb}_{1.5} \mathrm{O}_{3}$, the selectivity to 4 -penten- 1 -amine exceeded 80%, whereas the conversion of 5 -amino-1-pentanol was lower than 40% over $\mathrm{Nd}_{2} \mathrm{O}_{3}, \mathrm{Eu}_{2} \mathrm{O}_{3}, \mathrm{Gd}_{2} \mathrm{O}_{3}$, $\mathrm{Tb}_{4} \mathrm{O}_{7}, \mathrm{Dy}_{2} \mathrm{O}_{3}, \mathrm{Ho}_{2} \mathrm{O}_{3}, \mathrm{Er}_{2} \mathrm{O}_{3}$, and $\mathrm{Tm}_{2} \mathrm{O}_{3}$. Over $\mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{Lu}_{2} \mathrm{O}_{3}$, and $\mathrm{Sc}_{0.5} \mathrm{Yb}_{1.5} \mathrm{O}_{3}$, the conversion exceeded 50% with the selectivity higher than 80%. Especially, over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ and $\mathrm{Lu}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$, the formation rate of 4 -penten- 1 -amine per unit surface area exceeded $1 \mathrm{mmolh}^{-1} \mathrm{~m}^{-2}$. The three $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.5,1.0$, and 1.5) catalysts with lattice constants between $\mathrm{Yb}_{2} \mathrm{O}_{3}$ and $\mathrm{Sc}_{2} \mathrm{O}_{3}$ showed a tendency to decrease the selectivity to 4-penten-1-amine from 83.3 to 74.5% with decreasing Yb content.

3.4. Dehydration of 5-amino-1-pentanol over $\mathrm{Yb}_{2} \mathrm{O}_{3}$

We have found that $\mathrm{Yb}_{2} \mathrm{O}_{3}$ performed the best formation rate of 4-penten-1-amine in REO catalysts. Therefore, we investigated the dehydration of 5-amino-1-pentanol over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ prepared under different conditions. Table 3 lists the dependency of calcination temperature of $\mathrm{Yb}_{2} \mathrm{O}_{3}$ on the catalytic activity in the dehydration of 5 -amino-1-pentanol into 4 -penten- 1 -amine at $425^{\circ} \mathrm{C}$. The conversion of 5-amino-1-pentanol and the selectivity to 4 -penten1 -amine were maximized at a calcination temperature of $800^{\circ} \mathrm{C}$. At calcination temperatures of $900^{\circ} \mathrm{C}$ or higher, the conversion decreased with increasing calcination temperature. This is due to decrease in specific surface area. On the other hand, the selectivity to 4 -penten- 1 -amine maintains approximately 80% irrespective to the calcination temperature. In short, $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$ showed the highest values in the conversion and the selectivity to 4 -penten-1-amine. We also performed the dehydration over monoclinic $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $500^{\circ} \mathrm{C}$ for 3 h . Monoclinic $\mathrm{Yb}_{2} \mathrm{O}_{3}$ showed

Fig. 3. Dependence of reaction temperature on (closed circle) 5-amino-1-pentanol conversion and (open circle) selectivity into 4 -penten- 1 -amine over $\mathrm{Yb}_{2} \mathrm{O}_{3}$. Calcination temperature, $800^{\circ} \mathrm{C} ; W / F, 31 \mathrm{~g}_{\text {cat. }} \mathrm{h} \mathrm{mol}^{-1}$.
a lower selectivity to 4-penten-1-amine than cubic bixbyite $\mathrm{Yb}_{2} \mathrm{O}_{3}$ because of the formation of THP.

Fig. 3 shows the conversion and the selectivity in the dehydration of 5 -amino-1-pentanol into 4 -penten-1-amine at different reaction temperatures over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$. The conversion monotonously increased from 9.4 to 80.8% with increasing reaction temperature. The selectivity to 4-penten-1-amine showed the highest level, 83.7%, at $425^{\circ} \mathrm{C}$. For the dehydration of 5-amino-1-pentanol, we calculated an apparent activation energy in an Arrhenius plot at temperatures between 375 and $425^{\circ} \mathrm{C}$ to be $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Fig. 4 presents the effect of contact time, W/F, on the conversion of 5-amino-1-pentanol and the selectivity to 4-penten-1-amine at $425^{\circ} \mathrm{C}$ over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$. The conversion of 5 -amino-1-pentanol increased with increasing W / F, whereas the selectivity to 4 -penten- 1 -amine slightly decreased. At a large contact time, i.e. $\mathrm{W} / \mathrm{F}=93 \mathrm{~g} \mathrm{~h} \mathrm{~mol}^{-1}$ using 1.5 g of catalyst, the conversion of $5-$ amino-1-pentanol was 85.0% with the selectivity of 76.3%. This result indicates that the excessive reaction, such as the hydrogenation of 4-penten-1-amine into n-pentyl amine, rarely proceeds even at a high contact time, W/F.

3.5. Dehydration of 5-amino-1-pentanol over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ in different carrier gases

Table 4 summarizes conversion and selectivity in the dehydration of 5-amino1-pentanol over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ at $425^{\circ} \mathrm{C}$ in different carrier gases. In H_{2} flow instead of N_{2}, the conversion of 5-amino-1-pentanol decreased from 66.2 to 58.4%, while the selectivity to

Table 3
Dehydration of 5-amino-1-pentanol over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ at different calcination temperatures.

Temperature (${ }^{\circ} \mathrm{C}$)	$\mathrm{SA}\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)$	CP	Conversion (mol\%)	Selectivity (mol\%)				4P1A formation rate ($\mathrm{mmol} \mathrm{h}^{-1} \mathrm{~m}^{-2}$)
				4P1A	THP	PA	Others	
500	37	C	63.8	79.8	2.8	3.3	14.1	0.44
600	21	C	58.8	77.8	3.1	3.6	15.5	0.68
700	17	C	59.9	80.7	2.1	2.7	14.5	0.83
800	8.4	C	66.2	83.7	4.7	3.0	8.6	2.1
900	7.6	C	46.9	80.1	4.7	3.2	12.0	1.6
1000	6.9	C	39.1	80.9	3.7	2.4	12.9	1.4
500	47	M	73.3	74.5	6.1	3.9	15.5	0.36

Reaction conditions, symbols, and notation of products are the same as those in Table 1.

Fig. 4. Dependence of contact time on (closed circle) 5-amino-1-pentanol conversion and (open circle) selectivity to 4 -penten-1-amine over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ at $425^{\circ} \mathrm{C}$. Calcination temperature, $800^{\circ} \mathrm{C}$.

Table 4
Dehydration of 5-amino-1-pentanol over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ in different carrier gases.

Carrier gas	Conversion (mol\%)	Selectivity (mol\%)				
		4P1A	PD	THP	PA	Others
N_{2}	66.2	83.7	0	4.7	3.0	8.6
H_{2}	58.4	90.0	0	3.5	2.4	4.1
$\mathrm{~N}_{2}+\mathrm{NH}_{3}{ }^{\mathrm{a}}$	45.7	85.3	0	3.0	2.7	9.0
CO_{2}	100	0	0	0	0	100 (unrecovered)
$\mathrm{N}_{2}{ }^{\mathrm{b}}$	47.6	14.4	78.4	0.2	0.0	7.0

Reaction conditions and notation of products are the same as those in Table 1. Total flow rate of carrier gas was $20 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$.
${ }^{\text {a }} \mathrm{N}_{2}\left(15 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)+\mathrm{NH}_{3}\left(5 \mathrm{~cm}^{3} \mathrm{~min}^{-1}\right)$ was used.
${ }^{\text {b }}$ The sample was modified by impregnation with $\mathrm{H}_{3} \mathrm{PO}_{4}$ in Ref. [19].

4-penten-1-amine increased from 83.7 to 90.0%. It was found that the formation of by-products was suppressed in H_{2} flow. In order to clarify the role of acidic and basic sites of $\mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{NH}_{3}$ and CO_{2} were used as a poisoning gas in the following.

Although no adsorption of basic NH_{3} to REOs is observed even at $25^{\circ} \mathrm{C}$ [7], in basic NH_{3} flow, the conversion of 5-amino-1pentanol decreased without significant change in the selectivity to 4 -penten- 1 -amine: the formation rate of 4 -penten- 1 -amine was approximately three fourths of the rate in N_{2} flow over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$. This means that basic NH_{3} gas also affects the active sites of $\mathrm{Yb}_{2} \mathrm{O}_{3}$. On the other hand, CO_{2} carrier gas was used in order to poison basic sites, but no dehydration products were observed: in acidic CO_{2} flow, two equivalents of 5-amino-1-pentanol reacted with carbon dioxides and ammonium salt were formed in the vapor phase.

We attempted to impregnate $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$ with $\mathrm{H}_{3} \mathrm{PO}_{4}$ aqueous solution to poison the basic sites. $\mathrm{H}_{3} \mathrm{PO}_{4}$ was impregnated onto the sample to neutralize 70% of basic sites determined in CO_{2}-TPD. After, the sample was dried overnight at $110^{\circ} \mathrm{C}$

Table 5
Dehydration of amino alcohols over $\mathrm{Yb}_{2} \mathrm{O}_{3}{ }^{\mathrm{a}}$.

Reactant	Reaction temperature $\left({ }^{\circ} \mathrm{C}\right)$	Conversion $(\mathrm{mol} \%)$	Selectivity (mol\%)	

${ }^{\text {a }}$ Conversion and selectivity were averaged in the $1-5 \mathrm{~h} . \mathrm{H}_{2}$ flow is $20 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. The sample was calcined at $800^{\circ} \mathrm{C}$. Others: unknown and unrecoverd products.
${ }^{\mathrm{b}}$ Unsaturated amine is allylamine. $W / F=22 \mathrm{~g}_{\text {cat. }} \mathrm{h} \mathrm{mol}^{-1}$.
${ }^{\text {c }}$ Unsaturated amine is 3-buten- 1 -amine. $W / F=25 \mathrm{~g}_{\text {cat. }}$. $\mathrm{h} \mathrm{mol}^{-1}$.
${ }^{\text {d }}$ Unsaturated amine is 5 -hexen-1-amine. 70 wt .\% 6-amino-1-hexanol aqueous solution was used. $\mathrm{W} / \mathrm{F}=49 \mathrm{~g}_{\text {cat. }} \mathrm{h} \mathrm{mol}^{-1} . \varepsilon$-Caprolactam was detected as a byproduct with the selectivity of $4.8 \mathrm{~mol} \%$.
and used. The conversion and the selectivity to 4-penten-1-amine decreased, on the other hand, piperidine was produced and the selectivity to piperidine reached to ca. 80%. These issues should be taken into consideration when we discuss the reaction mechanism.

3.6. Dehydration of several amino alcohols over $\mathrm{Yb}_{2} \mathrm{O}_{3}$

The reactivity of 5-amino-1-pentanol with other amino alcohols, such as 3-amino-1-propanol, 4-amino-1-butanol, and 6-amino-1-hexanol over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$ are compared in Table 5. The conversions of 3-amino-1-propanol and 4 -amino-1butanol increased with increasing reaction temperature. However, the selectivities to allylamine and 3-buten-1-amine were lower than that of 4-penten-1-amine because many by-products were produced in the dehydration of 3-amino-1-propanol and 4-amino-1-butanol. Consequently, in the dehydration of amino alcohols with short carbon chains of C 3 and C 4 , it is concluded that $\mathrm{Yb}_{2} \mathrm{O}_{3}$ is ineffective.

In the dehydration of 6-amino-1-hexanol, in contrast, the conversion dramatically increased from 9.5 to 66.4% with increasing reaction temperature. Additionally the selectivity increased up to ca. 90% at $450^{\circ} \mathrm{C}$.

Fig. 5. Changes in the formation rate of 4 -penten-1-amine at $425^{\circ} \mathrm{C}$ with different ionic radius of rare earth cations of REO catalysts. Calcination temperature, $800^{\circ} \mathrm{C}$. Crystal phases: (open square) A-type hexagonal, (open triangle) B-type monoclinic, (closed circle) C-type cubic bixbyite, (double circle) cubic fluorite, and (closed diamond) unknown phase.

4. Discussion

4.1. Dehydration of 5-amino-1-pentanol over various rare earth oxides

In our previous work, we have reported that the dehydration of alkanediol is affected by crystal structures [5-9]. In a similar manner as the dehydration of alkanediol, we suppose that crystal structures contribute to the dehydration of 5-amino-1-pentanol. In Table 1, it is clear that REOs with the C-type bixbyite structure efficiently catalyze the dehydration of 5-amino-1-pentanol to produce 4-penten-1-amine. Among the cubic bixbyite REOs, $\mathrm{Sc}_{2} \mathrm{O}_{3}$ is the exception: piperidine is mainly formed over $\mathrm{Sc}_{2} \mathrm{O}_{3}$. It is speculated that either the weakest basicity or the smallest distance between the surface cations of $\mathrm{Sc}_{2} \mathrm{O}_{3}$ among the REOs [22] could be the cause of the distinctive behavior of $\mathrm{Sc}_{2} \mathrm{O}_{3}$. In the dehydration of 1,5-pentanediol, however, $\mathrm{Sc}_{2} \mathrm{O}_{3}$ produces mainly 4-penten-1-ol with a minor product of tetrahydropyran [4].

We have investigated the amount of basic sites of REOs in the previous section (Fig. 2). No acidic sites are observed in the adsorption of NH_{3} on REOs even at $25^{\circ} \mathrm{C}$ [22]. In the CO_{2}-TPD on the REOs, CO_{2} desorption peaks that depend on the strength of the basic sites are observed. Light REOs, such as $\mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{Pr}_{6} \mathrm{O}_{11}, \mathrm{Nd}_{2} \mathrm{O}_{3}$, and $\mathrm{Sm}_{2} \mathrm{O}_{3}$, have strong basic sites. In contrast, heavy REOs, such as $\mathrm{Dy}_{2} \mathrm{O}_{3}, \mathrm{Ho}_{2} \mathrm{O}_{3}, \mathrm{Y}_{2} \mathrm{O}_{3}, \mathrm{Er}_{2} \mathrm{O}_{3}, \mathrm{Tm}_{2} \mathrm{O}_{3}, \mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{Lu}_{2} \mathrm{O}_{3}$, and $\mathrm{Sc}_{2} \mathrm{O}_{3}$, have weak basic sites. It is probable that the dehydration of 5-amino-1pentanol is influenced by weak basic sites. Actually, $\mathrm{Nd}_{2} \mathrm{O}_{3}$ owes strong basic sites as well as weak basic sites at around $100^{\circ} \mathrm{C}$ and showed high selectivity to 4 -penten-1-amine (Table 1). As a pioneering work, it has been reported that the strength of the basic sites of $\mathrm{La}_{2} \mathrm{O}_{3}, \mathrm{Sm}_{2} \mathrm{O}_{3}, \mathrm{Eu}_{2} \mathrm{O}_{3}$, and $\mathrm{Yb}_{2} \mathrm{O}_{3}$ measured with thermal desorption of CO_{2} decreases with increasing the atomic number of lanthanide metals [22,25]. The strength of the basic sites of REOs could be correlated with lanthanide contraction which decreases with decreasing radius of the rare earth cation.

Fig. 5 summarizes the intrinsic catalytic activity of REOs and $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}$ catalysts with ionic radius of rare earth cation. The formation rate of 4 -penten-1-amine per unit surface area increased with decreasing ionic radius of rare earth cation from La to Yb and decreased from Yb to Sc : the formation rate over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ was the largest among those over the REOs and $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}$ catalysts. These results indicate that the dehydration of 5-amino-1-pentanol is affected by the crystal structure, the strength of basic sites, and ionic radius of rare earth cations. These factors of the dehydration of 5-amino-1-pentanol are similar to those of the dehydration of 1,5-
pentanediol [4], 1,4-butanediol [7], and 1,3-butanediol [9]. In the dehydration of 1,5-pentanediol and 1,4-butanediol, cubic $\mathrm{Yb}_{2} \mathrm{O}_{3}$ is active and selective (the formation rate of 4-penten-1-ol over $\mathrm{Yb}_{2} \mathrm{O}_{3}=0.75 \mathrm{mmol} \mathrm{h}^{-1} \mathrm{~m}^{-2}$ at $400^{\circ} \mathrm{C}$ in Table 2 of Ref. [18] and the formation rate of 3-buten-1-ol over $\mathrm{Yb}_{2} \mathrm{O}_{3}=1.6 \mathrm{mmol} \mathrm{h}^{-1} \mathrm{~m}^{-2}$ at $350^{\circ} \mathrm{C}$ in Table 3 of Ref. [18]). However, in the dehydration of 1,3 -butanediol, fluorite CeO_{2} is exceptionally active [5,8].

It is known that the radius of rare earth cation is correlated with the lattice parameter of the REO crystal structure. In other words, a distance between the adsorption sites depending on the lattice parameter could influence the catalytic nature of REOs. We have previously reported that REOs with hexagonal and monoclinic structures show lower activity than those with a cubic bixbyite structure. For example, the distance between La^{3+} cations in a hexagonal $\mathrm{La}_{2} \mathrm{O}_{3}$ [26] is calculated to be 0.394 nm , which is longer than those between other rare earth cations: $\mathrm{Lu}^{3+}, 0.367 \mathrm{~nm}$; $\mathrm{Yb}^{3+}, 0.369 \mathrm{~nm} ; \mathrm{Tm}^{3+}, 0.371 \mathrm{~nm}$ in the cubic structure. The distance between rare earth cations is too long to dehydrate efficiently over REOs with the hexagonal structure. As another example of monoclinic $\mathrm{Sm}_{2} \mathrm{O}_{3}$ [27], a distance between Sm^{3+} cations is 0.363 nm , which is as long as that of Lu^{3+} cations in cubic bixbyite $\mathrm{Lu}_{2} \mathrm{O}_{3}$ with high activity. Thus, the catalytic activity of REOs with the monoclinic structure could be affected by other factors rather than only the distance between cations. We speculate that the main factor is the distance between the metal cation and the oxygen anion. However, we cannot conclude why catalytic activity of REOs with monoclinic structure was lower than that of REOs with the cubic bixbyite structure because the surface structure of REOs with monoclinic structure is insufficiently analyzed.

4.2. Proposed mechanism of 5-amino-1-pentanol dehydration

In the Section 3.4, we performed the dehydration of 5-amino-1pentanol over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ with different calcination temperatures. Over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ with cubic bixbyite phase in Table 3 (XRD figure not shown), the formation rate per unit surface area is maximized at $800^{\circ} \mathrm{C}$. In contrast to the cubic bixbyite structure, over monoclinic $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $500^{\circ} \mathrm{C}$ for 3 h , both the selectivity to 4 -penten- 1 -amine and the formation rate per unit surface area are lower than those over cubic $\mathrm{Yb}_{2} \mathrm{O}_{3}$. These results indicate that cubic bixbyite $\mathrm{Yb}_{2} \mathrm{O}_{3}$ provides suitable surface in the dehydration of 5 -amino-1-pentanol. In the dehydration of 5-amino-1-pentanol, the reaction would probably proceed over the oxygen defect sites $\{222\}$ facet of bixbyite $\mathrm{Yb}_{2} \mathrm{O}_{3}$ in a similar way to the dehydration of 1,5-pentanediol [4] and 1,4-butanediol [7].

We have reported a model structure of the active center in the dehydration of 1,4 -butanediol (Fig. 7 of Ref. [7]). We have also calculated the adsorption energy of 1,4-butanediol on $\{222\}$ facet of bixbyite REO surface [28]. In the similar manner as the dehydration of 1,4 -butanediol, we depicts an adsorption model of 5-amino-1pentanol on acid-base center (Fig. 6). The active center is composed of one basic site and two acidic sites. The basic site is an oxygen anion, and the acidic sites are Yb^{3+} cations. They are located on the $\{222\}$ facet of bixbyite crystal [29]. In Fig. 6, we speculate the dehydration mechanism of 5-amino-1-pentanol in the following route. Firstly, the OH and NH_{2} group of the reactant adsorb on either of acidic sites, and a hydrogen atom of position 2 of CH_{2} group is activated by the basic site to form tridentate coordination. Secondly, the hydrogen atom is abstracted by the basic site as a form of proton, and then the OH group is abstracted by the acidic site, which completes the formation of $\mathrm{C}=\mathrm{C}$ bond. Finally, the NH_{2} group is desorbed, whereby 4 -penten- 1 -amine and $\mathrm{H}_{2} \mathrm{O}$ are generated.

In Table 4, we have performed the poisoning experiment of $\mathrm{Yb}_{2} \mathrm{O}_{3}$ that the formation rate of 4-penten-1-amine is markedly suppressed over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ poisoned by $\mathrm{H}_{3} \mathrm{PO}_{4}$. This signifies that the basic sites poisoned by $\mathrm{H}_{3} \mathrm{PO}_{4}$ play an important role in the acti-

Fig. 6. Probable reaction mechanism of the dehydration of 5 -amino-1-pentanol to produce 4-penten-1-amine over $\mathrm{Yb}_{2} \mathrm{O}_{3}$. A and B in the figure indicate acidic and basic sites, respectively.

Fig. 7. Changes in the dehydration ability of $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$ in the dehydration of amino alcohols into corresponding unsaturated amines with reaction temperature. (a) 3-amino-1-propanol, the formation rate of allylamine; (b) 4-amino-1-butanol, the formation rate of 3-buten-1-amine; (c) 5-amino-1-pentanol, the formation rate of 4 -penten-1-amine; (d) 6-amino-1-hexanol, the formation rate of 5-hexen-1-amine over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ in this work; and (e) 1,5-pentanediol over $\mathrm{Yb}_{2} \mathrm{O}_{3}$, the formation rate of 4-penten-1-ol which is calculated from the data of $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$ in Ref. [4].
vation of 5-amino-1-pentanol to produce 4-penten-1-amine. On the other hand, in NH_{3} flow, the formation rate is also suppressed. Although NH_{3} is not adsorbed on REOs at $25^{\circ} \mathrm{C}$ [7], we speculate that abundant NH_{3} could be able to block the adsorption sites of $\mathrm{Yb}_{2} \mathrm{O}_{3}$ at $425^{\circ} \mathrm{C}$, and that NH_{3} would adsorb on the acidic sites competing with the amino group of the reactant. It is reasonable that very weak acidic sites of $\mathrm{Yb}_{2} \mathrm{O}_{3}$ work as anchoring sites of the amino group, and that they cooperate with basic sites to form active sites. Thus, both basic and acidic sites would participate in the formation of 4 -penten- 1 -amine via an acid-base concerted tridentate coordination mechanism (Fig. 6).

4.3. Reactivity of amino alcohols into unsaturated amines over $\mathrm{Yb}_{2} \mathrm{O}_{3}$

In the dehydration of 5-amino-1-pentanol, 3-amino-1propanol, 4-amino-1-butanol, and 6-amino-1-hexanol, $\mathrm{Yb}_{2} \mathrm{O}_{3}$ catalyzes the formation of unsaturated amines. As shown in Table 5, the conversion of amino alcohols generally increased with increasing reaction temperature. In order to compare the reactivity of amino alcohols, Fig. 7 illustrates the formation rate of the corresponding unsaturated amines over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$ as a function of reaction temperature. The formation rate of unsaturated amines in these reactions clearly indicates the difference in the reactivity of these amino alcohols. At $425^{\circ} \mathrm{C}$, it is found that the reactivity of amino alcohols over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ is the following order: $\quad 5$-amino-1-pentanol >3-amino-1-propanol >4-amino-1butanol $\gg 6$-amino-1-hexanol. Although 3-amino-1-propanol is reactive in the dehydration over $\mathrm{Yb}_{2} \mathrm{O}_{3}$, the selectivity to allylamine is quite low at $375-425^{\circ} \mathrm{C}$ (Table 5). Similarly, 4-amino-1-butanol
is actively converted over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ at $425^{\circ} \mathrm{C}$ but the selectivity is low. On the contrary, the dehydration of 6 -amino-1-hexanol is much less reactive than the other amino alcohols at $425^{\circ} \mathrm{C}$. However, it is attractive that the dehydration of 6 -amino-1-hexanol is selective since the selectivity to 5 -hexen- 1 -amine is 88.1% at $450^{\circ} \mathrm{C}$.

We have previously investigated the dehydration of $1,5-$ pentanediol over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ [4]: $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$ is preferable in the reaction. In Fig. 7, the formation rate of 4-penten-1-ol at $425^{\circ} \mathrm{C}$, which was calculated from the data presented in Fig. 7 of Ref. [4], was plotted as a reference to those of amino alcohols. Although 1,5-pentanediol has the same number of carbon atoms in the chain as 5-amino-1-pentanol, the formation rate of 4 -penten1 -ol at $425^{\circ} \mathrm{C}$ is at most $1.1 \mathrm{mmol} \mathrm{h}^{-1} \mathrm{~m}^{-2}$ and the value is about a half of that of 5 -amino-1-pentanol. The difference in the reactivity between 5 -amino-1-pentanol and 1,5-pentanediol could be explained by the difference in the adsorption strength between 5-amino-1-pentanol and 1,5-pentanediol: the amino group is more strongly anchored onto the surface than the hydroxyl group.

In the previous section, we discussed the reaction mechanism from adsorption to regeneration that one molecule of 5-amino-1pentanol adsorbed on three sites of the catalyst surface, where two acidic sites and one basic site of bixbyite REO surface. As results of computational molecular modeling, over the active center with triangle shape, 6 -amino-1-hexanol always forms a cis-conformation in the dihedral angle of four methylene chains. In contrast, the other reactive amino alcohols such as 4 -amino-1-butanol and 5-amino-1-pentanol can form only gauche-conformation in the adsorption model. The adsorption structure could be strained by the cisconformation. This could be the cause of the low reactivity of 6 -amino-1-hexanol. Thus, we speculate the adsorption structure of amino alcohols but there still remain questions. We will continue to further study to confirm the above-mentioned speculation.

5. Conclusions

Vapor-phase dehydration of 5-amino-1-pentanol was investigated over REO_{s} and $\mathrm{Sc}_{2-\mathrm{x}} \mathrm{Yb}_{\mathrm{x}} \mathrm{O}_{3}(\mathrm{x}=0.5,1.0$, and 1.5$)$ at $425^{\circ} \mathrm{C}$. In the conversion of 5-amino-1-pentanol over REOs calcined at $800^{\circ} \mathrm{C}$, 4 -penten-1-amine was produced rather than the formation of a cyclic amine, piperidine. $\mathrm{Yb}_{2} \mathrm{O}_{3}, \mathrm{Lu}_{2} \mathrm{O}_{3}$, and $\mathrm{Tm}_{2} \mathrm{O}_{3}$ with the cubic bixbyite structure showed selectivity to 4 -penten-1-amine higher than 80%, while REOs with hexagonal and monoclinic structures showed low selectivity. Especially, $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$ showed high formation rate of 4 -penten-1-amine over $2 \mathrm{mmol} \mathrm{h}^{-1} \mathrm{~m}^{-2}$ at $425^{\circ} \mathrm{C}$. Over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ catalyst, the conversion of 5-amino-1-pentanol was reached up to 85.0% with the selectivity to 4 -penten-1-amine around 76% at $425^{\circ} \mathrm{C}$ and W / F of $93 \mathrm{~g}_{\text {cat. }} \mathrm{h} \mathrm{mol}^{-1}$.

The reactivity of amino alcohols into the corresponding unsaturated amines over $\mathrm{Yb}_{2} \mathrm{O}_{3}$ calcined at $800^{\circ} \mathrm{C}$ was the order of 5 -amino-1-pentanol >3-amino-1-propanol >4-amino-1butanol >6-amino- 1 -hexanol. The results suggest that the dehydration of the amino alcohols is affected by the carbon chain length
of amino alcohols, the crystal structure of REOs, and ionic radius of rare earth cations.

References

[1] B. Zimmermann, J. Herwig, M. Beller, Angew. Chem. Int. Ed. 38 (1999) 2372-2375.
[2] S. Nicolai, R. Sedigh-Zadeh, J. Waser, J. Org. Chem. 78 (2013) 3783-3801.
[3] S. Sato, R. Takahashi, N. Yamamoto, E. Kaneko, H. Inoue, Appl. Catal. A: Gen. 334 (2008) 84-91.
[4] F. Sato, H. Okazaki, S. Sato, Appl. Catal. A: Gen. 419-420 (2012) 41-48.
[5] S. Sato, F. Sato, H. Gotoh, Y. Yamada, ACS Catal. 3 (2013) 721-734.
[6] F. Sato, Y. Yamada, S. Sato, Chem. Lett. 41 (2012) 593-594.
[7] S. Sato, R. Takahashi, M. Kobune, H. Inoue, Y. Izawa, H. Ohno, K. Takahashi, Appl. Catal. A: Gen. 356 (2009) 64-71.
[8] M. Kobune, S. Sato, R. Takahashi, J. Mol. Catal. A: Chem. 279 (2008) 10-19.
[9] S. Sato, R. Takahashi, T. Sodesawa, A. Igarashi, H. Inoue, Appl. Catal. A: Gen. 328 (2007) 109-116.
[10] T. Nozawa, S. Sato, R. Takahashi, Top. Catal. 52 (2009) 609-617.
[11] H. Gotoh, Y. Yamada, S. Sato, Appl. Catal. A: Gen. 377 (2010) 92-98.
[12] A.J. Lundeen, R.V. Hoozer, J. Org. Chem. 32 (1967) 3386-3389.
[13] S. Bernal, J.M. Trillo, J. Catal. 66 (1980) 184-190.
[14] B.H. Davis, P. Ganesan, Ind. Eng. Chem. Prod. Res. Dev. 18 (1979) 191-198.
[15] S. Chokkaram, B.H. Davis, J. Mol. Catal. A: Chem. 118 (1997) 89-99.
[16] M.A. Aramendía, V. Boráu, C. Jiménez, J.M. Marinas, A. Marinas, A. Porras, F.J. Urbano, J. Catal. 183 (1999) 240-250.
[17] V. Solinas, E. Rombi, I. Ferino, M.G. Cutrufello, G. Colon, J.A. Navio, J. Mol. Catal. A: Chem. 204-205 (2003) 629-635.
[18] F. Sato, S. Sato, Catal. Commun. 27 (2012) 129-133.
[19] N. Yamamoto, S. Sato, R. Takahashi, K. Inui, J. Mol. Catal. A: Chem. 243 (2006) 52-59.
[20] S. Sato, K. Koizumi, F. Nozaki, J. Catal. 178 (1998) 264-274.
[21] G. Adachi, N. Imanaka, Chem. Rev. 98 (1998) 1479-1514.
[22] S. Sato, R. Takahashi, M. Kobune, H. Gotoh, Appl. Catal. A: Gen. 356 (2009) 57-63.
[23] H. Inoue, S. Sato, R. Takahashi, Y. Izawa, H. Ohno, K. Takahashi, Appl. Catal. A: Gen. 352 (2009) 66-73.
[24] S. Sato, J. Igarashi, Y. Yamada, Appl. Catal. A: Gen. 453 (2013) 213-218.
[25] V.R. Choudhary, V.H. Rane, J. Catal. 130 (1991) 411-422.
[26] P. Aldebert, J.P. Traverse, Mater. Res. Bull. 14 (1979) 303-323.
[27] T. Schleid, G. Meyer, J. Less Common Met. 149 (1989) 73-80.
[28] F. Sato, S. Sato, Y. Yamada, M. Nakamura, A. Shiga, Catal. Today 226 (2014) 124-133.
[29] M. Segawa, S. Sato, M. Kobune, T. Sodesawa, T. Kojima, S. Nishiyama, N. Ishizawa, J. Mol. Catal. A: Chem. 310 (2009) 166-173.

[^0]: * Corresponding author.

 E-mail address: satoshi@faculty.chiba-u.jp (S. Sato).

