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SAR of psilocybin analogs: Discovery of a selective 5-HT2C agonist
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Abstract—An SAR study of psilocybin and psilocin derivatives reveals that 1-methylpsilocin is a selective agonist at the h5-HT2C

receptor. The corresponding phosphate derivative, 1-methylpsilocybin, shows efficacy in an animal model for obsessive–compulsive
disorder, as does 4-fluoro-N,N-dimethyltryptamine. These results suggest a new area for development of novel 5-HT2C agonists with
applications for drug discovery.
� 2005 Elsevier Ltd. All rights reserved.
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Figure 1.
Psilocybin (1), a hallucinogenic component of the sacred
Mexican mushroom Psilocybe mexicana, and its metabo-
lite, psilocin (2), are both potent agonists at the 5-HT2a

and 5-HT2c receptors (Fig. 1). In recent years, several case
reports of the efficacy of psilocybin in the treatment of
obsessive–compulsive disorder (OCD) have been pub-
lished.1As a result, anFDA-approved clinical trial for pa-
tients suffering from OCD is now underway.2 The
hallucinogenic activity of psilocybin and psilocin is be-
lieved to be largely due to activation of 5-HT2A receptors,
while the anti-OCD activity is associated with agonist
activity at 5-HT2C. Thus, it is believed that a selective
5-HT2C agonist would have considerable potential for
treatment ofOCDandother indications, suchasobesity.3,4

We recently began an initial structure–activity relation-
ship (SAR) study of some psilocin and psilocybin deriv-
atives with the goal of obtaining selectivity for the
5-HT2C receptor. Only very limited analog work has
been reported in the psilocybin area,5 and to our knowl-
edge, no pharmacological testing of psilocybin or psilo-
cin derivatives has been published since the discovery of
5-HT2 receptor subtypes.6,7 Although the amino acid
sequence of the 5HT2C receptor has been determined,
little data are available regarding its three-dimensional
structure3 and therefore, our program has initially
relied on an empirical approach.
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We examined the influence of structural modification at
a number of sites in the psilocybin structure. The com-
pounds prepared (3–17)8 are shown in Figure 2. Known
N-methylated derivatives 3 and 4 were synthesized
following published procedures.5,9,10 Treatment of 4-
benzyloxyindole with oxalyl chloride and then with dim-
ethylamine gave the 3-substituted oxamide. Amide
reduction (LAH), N-methylation (NaH, MeI), and
hydrogenation (H2, Pd(OH)2) afforded N-methylpsilo-
cin, 3. Phosphorylation followed by debenzylation gave
N-methylpsilocybin, 4. Targets 5, 6, 7,9 8, and 911 were
prepared following the same general route (Scheme 1).
Analogs 10,12 11, and 1213 were obtained similarly upon
treatment of the intermediates formed from 4-ben-
zyloxyindole and oxalyl chloride with the appropriate
secondary amines, followed by LAH reduction and de-
benzylation. The synthesis of 13 followed the reported
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Scheme 1. Reagents: (a) (COCl)2, (CH3)2NH (71%); (b) LAH (73%); (c) NaH, CH3I (73%), CH3CH2CH2CH2I (48%); (d) H2, Pd/C (3: 78%, 5: 67%);

(e) LDA (PhCH2O)2P(O)OH; (f) H2, Pd/C (4: 12%, 6: 26%).
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route14 using aMannich reaction of formaldehyde and 4-
benzyloxyindole to give the intermediate, 4-benzyloxy-3-
dimethylaminomethylindole, followed by debenzylation.
N-Methylation of 4-benzyloxy-3-dimethylaminomethy-
lindole and debenzylation afforded target 14 (Scheme 2).
Compound 159 was obtained from 4-benzyloxyindole
upon treatment of the magnesium salt with 3-chloropro-
N
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Scheme 2. Reagents: (a) (CH3)2NH, H2CO (82%); (b) H2, Pd/C (13:

74%, 14: 73%); (c) NaH, CH3I (34%).
pionyl chloride, to give an intermediate chloroketone.
After reaction with dimethylamine, an intermediate de-
benzylated ketone was the major product isolated. LAH
reduction provided 15 (Scheme 3). A similar sequence
using 2-chloropropionyl chloride afforded 16;9 however,
in this case debenzylation required a separate step
(Scheme 4). Alkylation of 4-benzyloxyindole with N,N-
dimethyl-2-chloroethylamine and debenzylation gave 17.9

The receptor binding of these 15 analogs to the seroto-
nin receptor subtypes 5-HT2A, 5-HT2B, and 5-HT2C

was then determined (Table 1).15 Functional assays of
selected compounds were also carried out (Table 2).16

1-Methylpsilocin, 3, displays selective binding at both
the INI and VGI isoforms of the h5-HT2C receptor
(7.0 and 33 nM, respectively) as compared to the h5-
HT2A receptor (900 nM). Functional assays reveal
that 3 is an agonist at both receptor subtypes with



N
H

OCH2Ph

N
H

OH COCH2CH2N(CH3)2

N
H

OH CH2CH2CH2N(CH3)2a

15

b

Scheme 3. Reagents: (a) MeMgI, ClCH2CH2COCl, (CH3)2NH (46%); (b) LAH (12%).
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Scheme 4. Reagents: (a) MeMgI, CH3CHClCOCl, (CH3)2NH (16%); (b) LAH (27%); (c) H2, Pd/C (55%).

Table 1. Receptor binding (Ki) in nM of psilocybin analogs

Compound r5-HT2A h5-HT2A h5-HT2B r5-HT2C h5-HT2C INI h5-HT2C VGI

3 590 ± 80 900 ± 17 38 ± 1.7 48 ± 5.7 7.0 ± 1.6 33 ± 6

4 >10,000 >10,000 5500 ± 3000 >10,000 >10,000 540 ± 320

5 200 ± 16 310 ± 30 5.8 ± 0.5 15.7 ± 0.5 4.4 ± 1.1 14 ± 4

6 >10,000 3000 ± 800 170 ± 40 5700 ± 880 73 ± 21 210 ± 70

7 >10,000 7600 ± 1500 6300 ± 3500 19,000 ± 5600 >10,000 6800 ± 3000

8 1683 ± 486 122 ± 37 ND 1276 ± 177 ND 539 ± 277

9 1008 ± 114 335 ± 66 8.39 ± 0.85 359 ± 125 82 ± 34 84 ± 12

10 6903 ± 1692 9753 ± 4089 116 ± 95 >10,000 103 ± 63 ND

11 8367 ± 1676 ND 5566 ± 3440 1446 ± 312 468 ± 450 ND

12 ND 429 ± 137 423 ND 275 ± 72 1772 ± 1079

13 834 ± 257 923 ± 224 1242 ± 295 49 ± 11 24 ± 0.8 12.6 ± 1.8

14 ND 498 ± 185 1242 ND 87 ± 22 125 ± 74

15 ND 588 ± 219 98 ± 66 ND 1114 ± 41 84 ± 64

16 ND 982 ± 169 745 ± 316 ND 126 ± 19 ND

17 >10,000 ND ND 9351 ± 5551 2182 ± 848 4200 ± 788

Data represent means ± SD of computer-derived affinities from three or more separate experiments; ND, not determined.

Table 2. Functional assay (EC50) in nM of psilocybin and analogs

Compound 5-HT2A 5-HT2B 5-HT2C

1 3475 ± 2904 (31 ± 8%) 74 (24%) 506 ± 164 (51 ± 3%)

2 24 ± 2 (43 ± 17%) 58 (45%) 30 ± 18 (51 ± 37%)

3 633 ± 1.14 (31 ± 2.9%) Inverse agonist 12 ± 1.5 (45 ± 5.5%)

5 32 ± 29.7 (0.12 ± 0.065%) Inverse agonist 595 ± 42.5 (83 ± 12.9%)

6 Antagonist Antagonist Antagonist

9 949 ± 1.04 (49 ± 2%) 1180 ± 316 (38 ± 1.82%) 99 ± 168 (93 ± 49%)

13 Antagonist Antagonist Antagonist

Data represent mean EC50 values for activation of phosphoinositide hydrolysis in cells expressing human 5-HT2A, 5-HT2B or 5-HT2C-INI receptors,

relative to serotonin at 100%. When SD is given NP 3.
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considerable selectivity (EC50 at 5-HT2C = 12 nM, EC50

at 5-HT2A = 633 nM). Evaluation of the affinity of 3 for
the 5-HT2B receptor was also carried out, as agonist
activity at 5-HT2B is strongly associated with heart valve
toxicity.17,20 It was gratifying to find that although high
affinity for the 5-HT2B receptor was found (38 nM), a
functional assay revealed that 3 is an inverse agonist
at this receptor subtype. The observed selectivity of
compound 3 for the 5-HT2C receptor proved to be
remarkably sensitive to structural variation. An increase
in the size of the 1-substituent of 3 to n-butyl (5) affor-
ded a compound that was a much weaker agonist at
the 5-HT2C receptor in the functional assay used.21

Modification of the 4-hydroxy group (7), the 2-position
(8), and the diethylamino substituent (10, 11, and 12) all
resulted in much less potent binding at the 5-HT2C

receptor and less selectivity over the 5-HT2A receptor.
However, the 4-fluoro analog 9 showed modest
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functional activity as an agonist at the 5-HT2C receptor
with some selectivity over the 5-HT2A and 5-HT2B

receptors (about 10-fold each). A shortening in the
length of the linker at the 3-position of the indole ring
to a methylene group (13) gave an antagonist at the
5-HT2A and 5-HT2C receptors, while 14 (N-methyl,
methylene linker), 15 (propylene linker), and 16 (a-
methyl) all showed reduced affinity and selectivity for
the 5-HT2C receptor. Finally, 17 (side chain moved to
the 1-position) was also quite inactive in binding at the
5-HT2C receptor. The psilocybin analogs (4, 6) gave very
low binding as compared to their psilocin analogs (3, 5).
However, metabolic dephosphorylation of psilocybin to
psilocin is known to readily occur in vivo22 and thus,
these psilocybin derivatives could act as prodrugs for
their psilocin analogs. In fact, 4 shows improved in vivo
activity as compared to 3 (vide infra, Fig. 3).

We next examined selected analogs in a mouse model for
OCD. Serotonin produces an itching sensation when
applied to the human skin and has been suggested to
be involved in pruritic diseases. Further research dem-
onstrated that an ip injection of 5-HT into the rostral
back of the mouse elicits scratching with the hind paws,
which is itch-associated rather than a pain response.23

The 5-HT action is at least partly mediated by 5-HT2

receptors in the skin, as shown by blocking with specific
antagonists.24 Psilocin and its analogs� effect on itch-as-
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Figure 3. Inhibition of serotonin-induced scratching by psilocybin and ana
#P < 0.01, *P < 0.05.
sociated scratching in the mice was thought to indicate
their action on 5-HT receptors, and a study was devised
as an animal model for OCD.25 Selected results are
shown in Figure 3. Psilocybin strongly inhibits scratch-
ing in this model, and more so than psilocin; however,
psilocin shows much greater functional activity at the
5-HT2C receptor. This difference may be due to active
transport of psilocybin across the blood–brain barrier
prior to dephosphorylation. N-Methyl derivatives 3
and 4 show comparable activity, but only at higher con-
centrations. Compound 4, like psilocybin, dramatically
inhibits scratching. N-Butylpsilocin, 5, however, is near-
ly inactive, in contrast to 3. Thus, positive effects seen in
this mouse model are consistent with 5-HT2C agonist
activity. Finally, 4-fluoro-N,N-dimethyltryptamine, 9,
also exhibits strong activity, which is comparable to that
of psilocybin and compound 4, despite displaying only
modest agonist activity at the 5-HT2C receptor
(99 nM).26 One possible explanation for these results is
that relatively lipophilic 9 may more readily penetrate
the blood–brain barrier, and thus affording the observed
in vivo activity.

Potent and selective 5-HT2C agonists may have applica-
tion in other therapeutic areas besides OCD, including
appetite suppression,7 Alzheimer�s disease,27 and epilep-
sy.28 Further studies are underway to more fully develop
this class of compounds.29
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