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Abstract. Orthogonal syntheses of 4-, 5-, 6- and 7-chloro substituted tryptamine derivatives were 

performed under the Grandberg-Zuyanova-modified Fisher indole-synthesis conditions. In the 4- and 6-

substituted tryptamine cases, a bromine atom was utilized as an easily cleavable protecting group, 

which allowed complete regiocontrol. In addition, a chlorine substituent was preserved in the 



  

debromination step and could be utilized as a synthetic handle for late-stage diversification under 

modern Pd(0) catalysis conditions. 
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Tryptamines are of pharmaceutical significance due to their presence in multiple biologically-

active natural products as well as several marketed drugs.
1
 In addition, 4,6-dichloro-2-methyl-3-

aminoethylindole (DCAI), a dichlorinated tryptamine derivative, was recently identified through an 

NMR-based fragment screen as a small-molecule ligand binding to a distinct pocket in oncogenic K-ras 

(G12D) and inhibited SOS-mediated nucleotide exchange activity.
2
 Further exploration of the tryptamine 

scaffold and synthesis of a diversified variety of 4-, 5-, 6- and 7-substituted analogs is therefore of 

interest. 

Following the initial report of the tryptamine synthesis by Ewins,
3
 other classical syntheses 

include the Abramovitch-Shapiro tryptamine synthesis,
4
 and tryptophan decarboxylation.

5
 More 

generally, tryptamine derivatives may be synthesized from a pre-formed indole scaffold, followed by C-3 

functionalization under electrophilic aromatic substitution conditions using oxalyl chloride,
6
 

nitroethylene
7
 or N-acetylaminoacetaldehyde dimethyl acetal

8
 as electrophiles. Alternatively, the 

Grandberg-Zuyanova modification of the Fisher indole synthesis
9
 is an efficient one-step process 

wherein the indole ring and the C-3 aminoethyl substituent are installed in a single step. However, the 

above-mentioned tryptamine synthesis reports do not describe concise and orthogonal syntheses of 4-, 

5-, 6- and 7-substituted tryptamine derivatives that would allow for late-stage diversification at all four 

isomeric benzo- positions. Furthermore, substitution at the 4- and 6-positions cannot be installed on an 



  

arylhydrazine precursor prior to a Fisher indolization
10

 due to the limited regioselectivity typically 

observed at the cyclization step.
11 

Consequently, we decided to harness the intrinsic lability of the carbon-bromine bond under 

reductive conditions
12

 and utilize it as a protecting group
13

 in the Grandberg-Zuyanova modification of 

the Fisher indole synthesis. Positioned appropriately, a bromine atom would enable the indolization step 

to occur with the desired regiochemistry, followed by a debromination step, giving access to 4- and 

6-substituted tryptamines as single isomers with complete regiocontrol. Additionally, due to its lower 

reactivity, a chloro substituent could be used in addition to the bromine as a synthetic handle for further 

diversification of the tryptamine scaffold upon removal of the bromine. 5- And 7-substituted tryptamine 

derivatives would not require such a protecting group, as in each case, cyclization could only afford a 

single product (Scheme 1). 

 

Scheme 1. The traditional syntheses of 4- and 6-chloro-2-methyl-3-aminoethylindole syntheses via 

Fisher indolization are poorly regioselective. Using bromine as a protecting group to block reactivity on 

the aromatic ring, followed by debromination, can overcome this limitation. 

 



  

 

Hence, for the cases in which no protecting group was required, 5-Chlorotryptamine derivative 2 

was synthesized from commercially available (4-chlorophenyl)hydrazine 1 and 5-chloropentan-2-one 

under refluxing ethanol conditions. A one-pot t-butylcarbamate formation on the aminoethyl chain was 

subsequently performed in order to facilitate the purification and further functionalization, and gave 

product 2 in 75% yield over 2 steps (Scheme 2A). Similarly, the 7-chloro substituted analog 4 was 

obtained from commercially available (2-chlorophenyl)hydrazine 3, followed by a Boc-group installation 

on the primary amine substituent, and afforded tryptamine derivative 4 in 69% yield over 2 steps 

(Scheme 2B). 



  

 

Scheme 2. Syntheses of Boc-Protected 5-chloro-2-methyl-3-aminoethylindole 2 (A) and 7-chloro-2-

methyl-3-aminoethylindole 4 (B). 
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As discussed previously, the syntheses of 4-chloro-2-methyl-3-aminoethylindole 8 and 6-chloro-

2-methyl-3-aminoethylindole 12 required the use of the bromine atom as a protecting group to ensure 

proper regiochemistry at the cyclization step (Scheme 3). Hence, the synthesis of 8 began with 1-bromo-

4-chloro-2-fluorobenzene 5, which underwent a nucleophilic aromatic substitution of the fluorine atom 

with hydrazine monohydrate, and gave arylhydrazine intermediate 6 in excellent yield. Cyclization of the 

arylhydrazine intermediate under the typical indole cyclization conditions with 5-chloropentan-2-one, 

followed by tert-butylcarbamate formation on the aminoethyl substituent, gave the desired 7-bromo-4-

chlorotryptamine derivative 7 in 36% yield over 2 steps.  An effective de-bromination protocol in the 

presence of a chloride had been reported, using tris(2,4-di-t-butylphenyl)phosphite L1 as the ligand.
14

 

Subjection of intermediate 7 to these catalytic reductive conditions successfully provided the 4-



  

chlorotryptamine product 8 in 56% yield. Of note, standard catalytic hydrogenation conditions were also 

attempted to remove the bromine selectively, but led to unsatisfactory conversions or poor selectivity.
15 

 

Scheme 3. Synthesis of Boc-protecting 4-chloro-2-methyl-3-aminoethylindole 8. 

 

 

Analogously, the synthesis of 6-chloro-2-methyl-3-aminoethylindole 12 also necessitated the 

use of the bromine atom as a protecting group (Scheme 4). (2-Bromo-3-chlorophenyl)hydrazine 10 was 

first obtained from 2-bromo-1-chloro-3-fluorobenzene 9 under nucleophilic aromatic substitution 

conditions with hydrazine monohydrate in 99% yield. In the next step, the hydrazine intermediate 10 

underwent Fisher-indole cyclization, followed by aminoethyl Boc-protection, to afford the desired 7-

bromo-6-chloro intermediate 11 in 49% yield over 2 steps. Finally, treatment of compound 11 with 

cyclohexanol under established Pd(0)-catalysis de-bromination conditions led to the desired 6-

chlorotryptamine derivative 12 in 70% yield. 

 



  

Scheme 4. Synthesis of Boc-protected 6-chloro-2-methyl-3-aminoethylindole 12. 

 

 

 Having completed the orthogonal syntheses of Boc-protected 4-, 5-, 6- and 7-chloro-2-methyl-3-

aminoethylindole (compounds 8, 2, 12 and 4, respectively), we had set the stage for a divergent 

derivatization to transform the chlorine atom to other functional groups.
16

 Under Pd(0)-catalyzed 

conditions,
17

 the chloride successfully underwent arylation, cyanation, etherification, alkylation and 

amination reactions (Scheme 5). For example, aminopyrimidine 13 was uneventfully obtained via a 

Suzuki-Miyaura coupling
18

 in 71% yield. The reaction proceeded smoothly and efficiently in the presence 

of four unprotected hydrogen-bond donors and two heterocyclic rings. Also, the carbon-chlorine bond 

could undergo a facile cyanation with potassium ferrocyanide trihydrate
19

 under Pd(0) catalysis 

conditions to afford 4-cyanotryptamine compound 14 in 72% yield. Additionally, we demonstrated the 

possibility of performing etherification chemistry
20

 with n-butanol, giving rise to ether product 15, albeit 

in low yield (10% yield) under un-optimized conditions.
21

 Moreover, the use of potassium 

cyclopentyltetrafluoroborate
22

 under Pd(0) catalysis successfully gave cyclopentyl-tryptamine product 



  

16 in a synthetically useful yield of 37%. Finally, a Buchwald-Hartwig coupling
23

 was also performed with 

N-acetylpiperazine and afforded the desired amine product 17 in 35% yield. 

 

Scheme 5. Late-stage diversification of 6-chloro-2-methyl-3-aminoethylindole 
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 In conclusion, we have shown that a bromine atom can be used as an easily cleavable protecting 

group in the presence of a chlorine substituent, allowing for the orthogonal syntheses of 4-, 5-, 6- and 7-

chloro substituted tryptamine derivatives under the Grandberg-Zuyanova-modified Fisher indole-



  

synthesis conditions. In addition, the chlorine atom can be utilized as a versatile synthetic handle for 

late-stage diversification under Pd(0) catalysis conditions. 
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