Accepted Manuscript

From isonitrile to nitrile via ketenimine intermediate: Palladium-catalyzed 1,1carbocyanation of allyl carbonate by α -isocyanoacetate

Guanyinsheng Qiu, Charlotte Sornay, David Savary, Sheng-Cai Zheng, Qian Wang, Jieping Zhu

PII: S0040-4020(18)31238-9

DOI: 10.1016/j.tet.2018.10.032

Reference: TET 29865

To appear in: Tetrahedron

Received Date: 12 September 2018

Accepted Date: 15 October 2018

Please cite this article as: Qiu G, Sornay C, Savary D, Zheng S-C, Wang Q, Zhu J, From isonitrile to nitrile via ketenimine intermediate: Palladium-catalyzed 1,1-carbocyanation of allyl carbonate by α -isocyanoacetate, *Tetrahedron* (2018), doi: https://doi.org/10.1016/j.tet.2018.10.032.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

From Isonitrile to Nitrile via Ketenimine Intermediate: Palladium-catalyzed 1,1-Carbocyanation of Allyl Carbonate by α-Isocyanoacetate

Guanyinsheng Qiu, Charlotte Sornay, David Savary, Sheng-Cai Zheng, Qian Wang and Jieping Zhu^{*} Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, CH-1015 Lausanne, Switzerland

Tetrahedron journal homepage: www.elsevier.com

From Isonitrile to Nitrile via Ketenimine Intermediate: Palladium-catalyzed 1,1-Carbocyanation of Allyl Carbonate by α-Isocyanoacetate

Guanyinsheng Qiu,[‡] Charlotte Sornay, David Savary, Sheng-Cai Zheng, Qian Wang, and Jieping Zhu^{*}

Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, CH-1015 Lausanne, Switzerland

ABrTelfoldEnghNHOPE-mail: jieping.zhu@epfl.ch ABSTRACT [‡]Present address: College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China A palladium-catalyzed 1,1-carbocyanation of allyl carbonate by α -quaternary α -isocyanoacetate Article history: was developed. Formation of ketenimine followed by homolysis of the C-N bond and Received recombination of the resulting caged radical pair was proposed to account for the formation of Received in revised form Accepted the unusual coupling product, the β -cyano- γ , δ -unsaturated ester. Available online 2009 Elsevier Ltd. All rights reserved. Keywords: palladium allyl carbonate isocyanide isocyanoacetate

1. Introduction

ketenimine nitrile radical

Ketenimines are an important class of reactive species which show very rich chemistry and are well exploited in organic synthesis.¹⁻³ One particular type of reaction is the isomerization of ketenimines to nitriles via a formal 1,3-alkyl migration process. Homolytic cleavage of the C-N bond followed by recombination of the resulting caged radical pair through C-C bond formation accounts for this formal 1,3-rearrangement process (Scheme 1a).⁴

In connection with our interest in exploiting the diverse reactivities of isocyanides,⁵ we recently reported palladiumcatalyzed reactions of isocyanides **1** with allyl carbonates **2** (Scheme 1b),⁶ propargyl carbonates⁷ and α -haloketones.⁸ All these reactions produced ketenimine intermediates **3** that can be isolated or be in situ converted to β , γ -unsaturated amides and diverse heterocycles. Concurrently, the groups of Yang,⁹ Wu and Jian¹⁰ reported similar transformations involving the in situ generated ketenimine intermediates.

Exploring the application scope of the reaction shown in Scheme 1b, we replaced the simple isonitrile by α -quaternary- α -isocyanoacetate. Interestingly, the reaction produced a new product that was identified as β -cyano- γ , δ -unsaturated ester (Scheme 1c). Since such a 1,1-carbocyanation of a C_{sp}^{-3} carbon is,

Scheme 1. Pd-catalyzed synthesis of ketenimine and its subsequent transformations.

to the best of knowledge, unprecedented, we set out to examine this reaction in detail. We report herein that the Pd-catalyzed reaction of α -quaternary- α -isocyanoacetates **1** with allyl carbonates **2** represents indeed a general way to access β -cyano- γ , δ -unsaturated esters **4**. Mechanistic studies suggested that the reaction went through a ketenimine intermediate **3** which underwent homolytic cleavage of the C-N bond followed by recombination of the resulting caged radical pair to afford the observed product.

2

2. Results and discussion

The reaction of ethyl 2-isocyano-2,3-dihydro-1H-indene-2carboxylate $(1a)^{11,12}$ with cinnamyl ethyl carbonate (2a) was chosen as a benchmark reaction (Table 1). Under the conditions optimized previously for the synthesis of ketenimines (1.0 mol% of Pd(OAc)₂, THF, 50 °C),⁶ 4a was isolated in 46% yield (entry 1). Addition of Et₃N (2.0 equiv) decreased yield of 4a to 12% (entry 2), while adding other bases (K₂CO₃, K₃PO₄, KTFA, tBuOK, DBU) or acid (AcOH) led to the complete degradation. Among ligands screened (dppp, DPEPhos, XantPhos, XPhos, DavePhos, PhDavephos, tBuDavePhos, (S)-tBuPHOX, tri-tbutylphosphonium tetrafluoroborate, 1,10-phenanthroline), DavePhos was the most effective to give the desired product 4a in 34% isolated yield (entry 3). Various solvents were next examined (DCE, MeCN, dioxane, toluene, THF, DMF, EtOH) and DCE was found to give a slightly better yield of 4a (entries 3,4). Using DCE as solvent, in the presence of DavePhos or tBuDavePhos, similar yields were obtained (entries 4,5). Increasing (80 °C) or decreasing (rt) the temperature afforded the desired product with lower yields (entries 6,7). With these results in hand, the influence of palladium sources was reinvestigated and Pd(PPh₃)₄ turned out to be the catalyst of choice affording 4a in 60% yield (entry 8). Finally, the influence of the leaving group of the allylic species was examined. Using allyl t-butyl carbonate, acetate, allyl bromide and allyl chloride as reaction partners, the isocyanide 2a was recovered. Finally, the optimum conditions consisted of performing the reaction of 1a with 2a in DCE (0.1 M), in the presence of $Pd(PPh_3)_4$ at 55 °C. Under these conditions, 4a was isolated together with its regioisomer 5a in 60% yield in a ratio of 4:1 (entry 8). The structure of 4a was determined by Xray crystallographic analysis.¹³

Table 1. Pd-catalyzed coupling reaction of allyl carbonate and isocyanide: Condition survey^a

8	Pd(PPh ₃) ₄		DCE		60 (4/1)
7	Pd(OAc) ₂	<i>t</i> BuDavePhos	DCE	-	40 ^e
6	Pd(OAc) ₂	<i>t</i> BuDavePhos	DCE	-	41 ^d
5	Pd(OAc) ₂	<i>t</i> BuDavePhos	DCE	-	48
4	Pd(OAc) ₂	DavePhos	DCE	- (47

^a Reaction conditions: **1a** (0.11 mmol), **2a** (0.10 mmol), Pd catalyst (10 mol%), ligand (20 mol%), solvent (1.0 mL, c 0.1 M), 55 °C. ^b Isolated yield. ^c 1 mol% of catalyst. ^d Reaction was performed at 80 °C. ^e Reaction was performed at rt.

The scope of this novel 1,1-carbocyanation protocol was next examined varying firstly the structure of allyl carbonates 2 (Scheme 2). Reaction of isocyanide 1a with cinnamyl ethyl carbonates 2 bearing an electron-withdrawing or donating substituent at different positions of the benzene ring participated in the reaction to give the desired products (4a-4g, 4i-4j) in good yields. (*E*)-Ethyl (3-(naphthalen-2-yl)allyl) carbonate was converted to the corresponding coupling product 4h without

bromide was compatible to this Pd(0) catalyzed process.

Scheme 2. Pd-catalyzed coupling reaction of allyl carbonate and isocyanide. ^a Reaction conditions: allyl carbonate 2 (0.10 mmol), isocyanide 1a (0.11 mmol), Pd(PPh₃)₄ (10 mol%) in DCE (1.0 mL, c 0.1 M), 55 °C. ^b The ratio of 4/5.

Scheme 3. Pd-catalyzed coupling reaction of allyl carbonate and isocyanide.^a Reaction conditions: allyl carbonate **2a** (0.10 mmol), isocyanide **1** (0.11 mmol), Pd(PPh₃)₄ (10 mol%) in DCE (1.0 mL, *c* 0.1 M), 100 °C.^b The ratio of **4/5**.^c Reaction was performed at 55 °C.

The scope of the isocyanides was then examined. As shown in Scheme 3, the reaction of **2a** with ethyl 1-isocyanocyclopentane-1-carboxylate, ethyl 1-isocyanocyclobutane-1-carboxylate, or ethyl 1-isocyanocyclohexane-1-carboxylate proceeded smoothly providing the desired products **4k-4m**, respectively, in good yields. Ethyl 1-isocyanocyclopent-3-ene-1-carboxylate worked well, affording the desired product **4n**. Ethyl 4-cyanotetrahydro-2*H*-pyran-4-carboxylate product **4o** in lower yield (20%).

To get the mechanistic insight, following control experiments MA Based Con these results, a possible reaction pathway were carried out (Scheme 4). Performing the reaction of 1a with 2a at 30 °C for 20-30 min under otherwise standard conditions afforded the ketenimine 3a in 72% NMR yield. Stirring a slurry of the crude mixture of 3a in water in the presence of silica gel gave the corresponding carboxamide 8a.6 On the other hand, increasing the temperature of the above reaction mixture gradually to 60 °C, ketenimine 3a was consumed with concurrent formation of 4a and 5a, indicating that 3a could well be the intermediate of the present reaction. Two other products **6a**¹⁴ and $7a^{15}$ were also isolated (See Supporting Information). Under standard conditions in the presence of TEMPO or BHT, the yield of the product 4a was not significantly affected, and products resulting from the radical recombination with nitroxyl radical were not detected.

Scheme 4. Control experiments.

is depicted in Scheme 5. Oxidative addition of allyl carbonate 2 to Pd(0) followed by decarboxylation would generate the π -allyl Pd complex **B** which is in equilibrium with the $(\eta^1$ -allyl) Pd species B'. Migratory insertion from B' would generate the imidoylpalladium intermediate C.¹⁶ β -Hydride elimination would furnish ketenimine 3 and HPd^{II}L(OEt) species. The latter would, upon reductive elimination, regenerate the Pd(0) species A. On the other hand, C-N bond homolysis of ketenimine 3 would afford radical pairs **D** and **E**. The radical recombination of **D** and E via C-C bond formation afforded 4 and its regioisomer 5. The fact that the products resulting from the dimerization of **D** and **E** and the minimum impact of TEMPO on the reaction outcome were also in line with the fact that the D and E were formed as a caged radical pair. The reverse ene reaction of ketenimine 3 via a six-membered transition state could account for the formation of minor products 6 and 7.¹⁷

Conclusion

In conclusion, we developed a novel palladium-catalyzed 1,1carbocyanation of allyl carbonate 2 by α, α -disubstituted α isocyanoacetate 1. Formation of ketenimine 3 followed by homolysis of the C-N bond and recombination of the resulting caged radical pair was proposed to account for the formation of the β -cyano- γ , δ -unsaturated ester 4.

3. Experimental section

Scheme

General procedure for the synthesis of 4

In a dry sealed tube was added the allyl carbonate 2 (0.1 mmol) and the isocyanide 1 (0.11 mmol) in dry DCE (1 mL) and the reaction mixture was stirred for 1 min before the addition of $Pd(PPh_3)_4$ (10 mol%). The reaction mixture was allowed to stir at 55 °C until complete consumption of the allyl carbonate (about 1 hour). Then, the reaction was cooled down to room temperature and the solvent was evaporated under reduced pressure. The residue was purified by flash column chromatography (eluent:

(yellow oil). Compound 4 can be isolated by multiple elution on preparative TLC (eluent: PE:EtOAc 50:1).

hypothesis.

4.1. Ethyl (E)-2-(1-cyano-3-phenylallyl)-2,3-dihydro-1H-indene-2-carboxylate (4a)

19.6 mg, 60% yield (from (E)-ethyl(3-phenylallyl) carbonate and ethyl 2-isocyano-2,3-dihydro-1*H*-indene-2-carboxylate), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.34 - 7.24 (m, 3H), 7.23 - 7.17 (m, 6H), 6.73 (d, J = 15.7 Hz, 1H), 5.95 (dd, J = 15.7, 7.3 Hz, 1H), 4.32 - 4.19 (m, 2H), 3.92 (dd, J = 7.2, 1.2 Hz, 1H), 3.67 (d, J = 16.8 Hz, 1H), 3.63 (d, J = 16.7 Hz, 1H), 3.32 (d, J = 16.6, 1H), 3.28 (d, J = 16.8, 1H), 1.28 (t, J = 7.2 Hz, 3H). ¹³C

NMR (100 MHz, CDCl₃) δ 173.6, 140.0, 139.95, **(36.1, 135.6, M** 128.8, 128.6, 127.4, 126.8, 124.5, 119.6, 118.4, 62.1, 56.3, 42.0, 40.9, 40.9, 14.3. IR v (cm⁻¹): 2934 (br), 2357 (w), 2340 (w), 1729 (s), 1487 (w), 1461 (w), 1448 (w), 1302 (w), 1259 (w), 1201 (s), 1095 (w), 1073 (w), 1048 (w), 967 (m), 744 (s), 693 (m). HRMS (APPI) calcd for C₂₂H₂₂NO₂⁺ [M+H⁺] 332.1645; found 332.1637.

4.2. *Ethyl* (*E*)-2-(1-cyano-3-(o-tolyl)allyl)-2,3-dihydro-1*H*-indene-2-carboxylate (**4b**)

15.9 mg, 46 % yield (from (*E*)-ethyl (3-(*o*-tolyl)allyl) carbonate and ethyl 2-isocyano-2,3-dihydro-1*H*-indene-2-carboxylate), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.20 (s, 4H), 7.18 - 7.07 (m, 3H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 15.6 Hz, 1H), 5.81 (dd, *J* = 15.6, 7.4 Hz, 1H), 4.31 - 4.18 (m, 2H), 3.94 (dd, *J* = 7.4, 1.3 Hz, 1H), 3.65 (d, *J* = 16.8 Hz, 1H), 3.58 (d, *J* = 16.4 Hz, 1H) 3.28 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 140.1, 140.0, 135.9, 135.0, 134.3, 130.4, 128.5, 127.4, 126.3, 126.3, 124.5, 121.0, 118.5, 62.1, 56.2, 42.3, 41.1, 40.8, 19.9, 14.3. IR υ (cm⁻¹): 2978 (br), 2358 (m), 2343 (m), 1730 (s), 1484 (w), 1460 (w), 1303 (w), 1258 (w), 1203 (m), 1048 (w), 967 (w), 744 (m), 636 (m), 628 (m), 615 (s). HRMS (ESI) calcd for $C_{23}H_{23}NO_2Na^+$ [M+Na⁺] 368.1621; found 368.1626.

4.3. Ethyl (*E*)-2-(1-cyano-3-(*p*-tolyl)but-2-en-1-yl)-2,3-dihydro-1H-indene-2-carboxylate (*4c*)

22.0 mg, 61% yield (from (*E*)-ethyl (3-(*p*-tolyl)but-2-en-1-yl) carbonate and ethyl 2-isocyano-2,3-dihydro-1*H*-indene-2-carboxylate), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.21 (s, 4H), 7.12-7.05 (m, 4H), 5.56 (dq, *J* = 9.9, 1.6 Hz, 1H), 4.28 - 4.18 (m, 2H), 4.00 (d, *J* = 9.9 Hz, 1H), 3.60 (d, *J* = 16.5 Hz, 1H), 3.59 (d, *J* = 16.0 Hz, 1H), 3.25 (d, *J* = 16.0 Hz, 1H), 3.22 (d, *J* = 16.8 Hz, 1H), 2.33 (s, 3H), 2.03 (d, *J* = 1.6 Hz, 3H), 1.27 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 142.5, 140.2, 140.0, 139.3, 138.0, 129.2, 127.4, 127.3, 126.0, 124.7, 124.5, 119.0, 117.3, 62.0, 56.6, 41.0, 40.7, 37.4, 21.2, 16.9, 14.3. IR υ (cm⁻¹) : 2927 (br), 2364 (m), 2341 (w), 2330 (w), 1731 (s), 1513 (w), 1461 (m), 1305 (w), 1259 (m), 1196 (s), 1047 (w), 1023 (w), 814 (m), 742 (m), 652 (m). HRMS (ESI) calcd for C₂₄H₂₅NO₂Na⁺ [M+Na⁺] 382.1778; found 382.1768.

4.4. Ethyl (E)-2-(1-cyano-3-(2-methoxyphenyl)allyl)-2,3-dihydro-1H-indene-2-carboxylate (**4d**)

yield 19.5 mg, 54 % (from (*E*)-ethyl (3-(2methoxyphenyl)allyl) carbonate and ethyl 2-isocyano-2,3dihydro-1H-indene-2-carboxylate), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.26 - 7.17 (m, 5H), 7.07 (dd, J = 7.6, 1.7 Hz, 1H), 7.00 (d, J = 15.8 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 5.97 (dd, J = 15.8, 7.7 Hz, 1H), 4.27 - 4.21 (m, 2H), 3.91 (dd, J = 7.7, 1.3 Hz, 1H), 3.81 (s, 3H), 3.62 (d, J = 16.8, 1H), 3.57 (d, J = 16.8, 1H), 3.28 (d, J = 16.8 Hz, 1H), 3.25 (d, J = 16.4 Hz, 1H),1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) § 173.7, 157.0, 140.2, 140.1, 131.5, 129.7, 127.5, 127.3, 127.3, 124.7, 124.5, 124.5, 120.7, 120.0, 118.7, 110.9, 62.0, 56.4, 55.5, 42.5, 40.9, 40.8, 14.3. IR v (cm⁻¹): 2942 (br), 2358 (w), 2340 (w), 1730 (s), 1598 (w), 1579 (w), 1488 (m), 1462 (m), 1437 (w), 1299 (m), 1202 (m), 1113 (w), 1095 (w), 1050 (m), 1026 (m), 970 (m), 861 (w), 750 (s), 758 (s), 784 (w), 794 (w), 802 (w), 672 (w), 686 (w). HRMS (ESI) calcd for $C_{23}H_{23}NO_3Na^+$ [M+Na⁺] 384.1570; found 384.1580.

4.5. Ethyl (E)-2-(1-cyano-3-(3-methoxyphenyl)allyl)-2,3-dihydro-1H-indene-2-carboxylate (**4e**)

16.2 mg, 45% yield (from (*E*)-ethyl (3-(3-methoxyphenyl)allyl) carbonate and ethyl 2-isocyano-2,3-dihydro-1*H*-indene-2-carboxylate), colorless oil. ¹H NMR (400

MHz, CDCl₃) δ 7.24 - 7.20 (m, 4H), 6.86 - 6.82 (m, 2H), 6.74 - 6.70 (m, 2H), 5.95 (dd, *J* = 15.6, 8.4 Hz, 1H), 4.29 - 4.24 (m, 2H), 3.94 (dd, *J* = 7.5, 1.4 Hz, 1H), 3.81 (s, 3H), 3.65 (d, *J* = 16.8 Hz, 1H), 3.60 (d, *J* = 16.8 Hz, 1H), 3.28 (d, *J* = 16.8 Hz, 2H), 3.26 (d, *J* = 16.4 Hz, 2H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 159.9, 140.0, 140.0, 137.0, 136.0, 129.8, 127.4, 124.5, 124.5, 119.9, 119.4, 118.4, 114.4, 112.0, 62.1, 56.3, 55.4, 42.0, 41.0, 40.9, 14.3. IR v (cm⁻¹): 2933 (w), 2023 (w), 1732 (s), 1599 (m), 1580 (m), 1488 (m), 1458 (m), 1434 (m), 1367 (w), 1292 (m), 1264 (s), 1200 (m), 1158 (m), 1169 (m), 1097 (w), 1046 (m), 969 (m), 864 (w), 799 (w), 778 (m), 759 (m), 749 (m), 690 (w), 680 (w), 654 (w). HRMS (ESI) calcd for C₂₃H₂₃NO₃Na⁺ [M+Na⁺] 384.1570; found 384.1577.

4.6. Ethyl (E)-2-(1-cyano-3-(4-methoxyphenyl)allyl)-2,3-dihydro-1H-indene-2-carboxylate (**4f**)

21.2 mg, 59% yield (from (*E*)-ethyl (3-(4methoxyphenyl)allyl) carbonate and ethyl 2-isocyano-2,3dihydro-1H-indene-2-carboxylate), yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 4H), 7.15 (d, J = 8.7 Hz, 2H), 6.82 (d, J= 8.7 Hz, 2H), 6.65 (d, J = 15.7 Hz, 1H), 5.80 (dd, J = 15.6, 8.4 Hz, 1H), 4.26 - 4.20 (m, 2H), 3.88 (dd, J = 7.5, 1.4 Hz, 1H), 3.80 (s, 3H), 3.61 (d, *J* = 16.4 Hz, 1H), 3.57 (d, *J* = 16.0 Hz, 1H), 3.25 (d, J = 16.4 Hz, 1H), 3.24 (d, J = 16.4 Hz, 1H), 1.28 (t, J = 7.2Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 160.0, 140.1, 140.0, 135.6, 128.4, 128.1, 127.3, 124.5, 118.6, 117.2, 114.2, 114.2, 62.0, 56.4, 55.5, 42.1, 40.9, 14.3. IR v (cm⁻¹): 2938 (br), 2363 (w), 2335 (w), 1730 (s), 1606 (m), 1511 (s), 1250 (s), 1176 (s), 1199 (m), 1302 (m), 1034 (m), 969 (m), 848 (w), 745 (m), 666 (w), 776 (w), 1094 (w), 1113 (w), 1367 (w), 1441 (w), 1462 (m), 1486 (w). HRMS (ESI) calcd for $C_{23}H_{24}NO_3^+$ [M+H⁺] 362.1751; found 362.1758.

4.7. Ethyl (E)-2-(3-(benzo[d][1,3]dioxol-5-yl)-1-cyanoallyl)-2,3dihydro-1H-indene-2-carboxylate (**4g**)

19.2 mg, 51% yield (from (E)-3-(benzo[d][1,3]dioxol-5yl)allyl ethyl carbonate and ethyl 2-isocyano-2,3-dihydro-1Hindene-2-carboxylate), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.19 (s, 4H), 6.73 (d, J = 8.4 Hz, 1H), 6.69 - 6.66 (m, 2H), 6.61 (d, *J* = 15.4 Hz, 1H), 5.95 (s, 2H), 5.76 (dd, *J* = 15.6, 8.0 Hz, 1H), 4.27 - 4.19 (m, 2H), 3.88 (dd, J = 7.3, 1.2 Hz, 1H), 3.61 (d, J = 17.6 Hz, 1H), 3.56 (d, J = 17.2 Hz, 1H), 3.24 (d, J = 16.4, 1H), 3.22 (d, J = 16.4, 1H), 1.28 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 148.2, 148.1, 140.1, 140.0, 135.7, 130.0, 127.4, 124.5, 121.8, 118.5, 117.7, 108.5, 106.0, 101.4, 62.0, 56.3, 42.0, 41.0, 40.9, 14.3. IR v (cm⁻¹): 3031 (m), 2340 (m), 2162 (s), 2153 (m), 1802 (m), 1729 (s), 1504 (s), 1489 (s), 1446 (s), 1253 (s), 1204 (s), 1040 (s), 971 (s), 962 (m), 938 (s), 929 (s), 808 (s), 799 (m), 776 (s), 745 (s), 725 (s), 715 (m), 695 (s), 671 (m), 657 (s). HRMS (ESI) calcd for $C_{23}H_{22}NO_4^+[M+H^+]$ 376.1543 ; found 376.1556.

4.8. Ethyl (E)-2-(1-cyano-3-(naphthalen-2-yl)allyl)-2,3-dihydro-1H-indene-2-carboxylate (4h)

16.0 mg, 42% yield (from (*E*)-ethyl (3-(naphthalen-2-yl)allyl) carbonate and ethyl 2-isocyano-2,3-dihydro-1*H*-indene-2-carboxylate), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.80 - 7.74 (m, 3H), 7.58 (s, 1H), 7.51 - 7.42 (m, 2H), 7.34 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.20 (s, 4H), 6.88 (d, *J* = 15.7 Hz, 1H), 6.05 (dd, *J* = 16.0, 7.6 Hz, 1H), 4.30 - 4.22 (m, 2H), 3.98 (dd, *J* = 7.3, 1.4 Hz, 1H), 3.66 (d, *J* = 16.4 Hz, 1H), 3.60 (d, *J* = 16.8 Hz, 1H), 3.30 (d, *J* = 16.4 Hz, 1H), 3.27 (d, *J* = 16.4 Hz, 1H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 140.1, 136.1, 133.5, 133.4, 133.0, 128.5, 128.3, 127.8, 127.4, 127.2, 126.6, 126.5, 124.5, 124.5, 123.5, 119.9, 118.5, 62.1, 56.4, 42.2, 41.1, 40.9, 14.3. IR ν (cm⁻¹): 3239 (m), 2361 (m), 2314 (br), 2154 (m), 2091

4.9. *Ethyl* (*E*)-2-(3-(4-chlorophenyl)-1-cyanoallyl)-2,3-dihydro-1H-indene-2-carboxylate (**4***i*)

17.1 mg, 47% yield (from (*E*)-3-(4-chlorophenyl)allyl ethyl carbonate and ethyl 2-isocyano-2,3-dihydro-1*H*-indene-2-carboxylate), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.25 (d, *J* = 8.0 Hz, 2H), 7.19 (s, 4H), 7.09 (d, *J* = 8.4 Hz, 2H), 6.67 (d, *J* = 15.7 Hz, 1H), 5.90 (dd, *J* = 15.7, 7.2 Hz, 1H), 4.27 - 4.21 (m, 2H), 3.91 (dd, *J* = 7.2, 0.8 Hz, 1H), 3.63 (d, *J* = 16.8 Hz, 1H), 3.57 (d, *J* = 16.4 Hz, 1H), 3.24 (d, *J* = 16.4 Hz, 1H), 3.22 (d, *J* = 16.4 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 140.0, 134.8, 134.5, 131.9, 128.3, 127.4, 124.5, 124.4, 122.6, 120.4, 118.2, 62.1, 56.2, 42.0, 41.1, 40.8, 14.3. IR v (cm⁻¹): 2927 (br), 2341 (m), 1730 (s), 1490 (m), 1461 (m), 1305 (w), 1259 (w), 1196 (m), 1087 (w), 1047 (w), 1012 (w), 972 (w), 811 (w), 745 (m), 669 (m). HRMS (APPI) calcd for C₂₂H₂₁ClNO₂⁺ [M+H⁺] 366.1255; found 366.1254.

4.10. Ethyl (E)-2-(3-(4-bromophenyl)-1-cyanoallyl)-2,3-dihydro-1H-indene-2-carboxylate (**4***j*)

21.8 mg, 53% yield (from (*E*)-3-(4-bromophenyl)allyl ethyl carbonate and ethyl 2-isocyano-2,3-dihydro-1*H*-indene-2-carboxylate), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 8.4 Hz, 2H), 7.19 (s, 4H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.66 (d, *J* = 16.0 Hz, 1H), 5.92 (dd, *J* = 15.7, 7.2 Hz, 1H), 4.32-4.17 (m, 2H), 3.91 (dd, *J* = 7.2, 0.8 Hz, 1H), 3.63 (d, *J* = 16.8 Hz, 1H), 3.57 (d, *J* = 16.4 Hz, 1H), 3.24 (d, *J* = 16.8 Hz, 1H), 3.21 (d, *J* = 16.4 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.6, 140.0, 134.7, 134.4, 134.1, 129.0, 128.0, 127.4, 124.5, 124.5, 120.3, 118.3, 62.1, 56.3, 42.0, 41.1, 40.8, 14.3. IR v (cm⁻¹): 2924 (br), 2360 (m), 2341 (w), 1732 (s), 1492 (m), 1460 (m), 1445 (w), 1406 (w), 1367 (w), 1302 (m), 1256 (m), 1199 (m), 1090 (m), 1042 (w), 1014 (m), 969 (w), 807 (m), 769 (w), 742 (m), 669 (w). HRMS (APPI) calcd for C₂₂H₂₁⁷⁹BrNO₂⁺ [M+H⁺] 410.0750; found 410.0748.

4.11. Ethyl (*E*)-1-(1-cyano-3-phenylallyl)cyclopentane-1carboxylate (**4k**)

13.0 mg, 46% yield (from (*E*)-ethyl(3-phenylallyl) carbonate and ethyl 1-isocyanocyclopentane-1-carboxylate), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.37 - 7.27 (m, 5H), 6.75 (dd, *J* = 15.8, 1.5 Hz, 1H), 6.00 (dd, *J* = 15.8, 6.9 Hz, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.97 (dd, *J* = 6.9, 1.5 Hz, 1H), 2.27 - 2.14 (m, 2H), 1.90 (m, 1H), 1.85 - 1.68 (m, 5H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 135.7, 135.6, 128.9, 128.6, 126.8, 120.4, 119.0, 61.6, 56.1, 42.4, 36.3, 33.5, 26.0, 25.8, 14.3. IR v (cm⁻¹): 2959 (br), 2023 (m), 1448 (m), 1183 (br), 1032 (m), 969 (m), 756 (s), 696 (m), 667 (m), 1727 (s). HRMS (ESI) calcd for C₁₈H₂₁NO₂Na⁺ [M+Na⁺] 306.1465; found 306.1475.

4.12. Ethyl (E)-1-(1-cyano-3-phenylallyl)cyclobutane-1- carboxylate (4l)

10.0 mg, 34% yield (from (*E*)-ethyl(3-phenylallyl) carbonate and ethyl 1-isocyanocyclobutane-1-carboxylate), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.27 (m, 5H), 6.78 (d, *J* = 15.8 Hz, 1H), 5.98 (dd, *J* = 15.8, 6.8 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 3.95 (d, *J* = 6.7 Hz, 1H), 2.59 - 2.45 (m, 2H), 2.38 - 2.22 (m, 2H), 2.12 - 2.00 (m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 135.7, 135.6, 128.9, 128.6, 126.8, 119.1, 118.5, 61.6, 49.3, 41.5, 29.4, 27.1, 15.6, 14.4. IR v (cm⁻¹): 2952 (br), 2370 (m), 2177 (m), 2017 (m), 1970 (m), 2189 (m), 1730 (s), 1721 (s), 1650 (w), 1558 (w), 1542 (w), 1457 (m), 1206 (s), 1254 (m), 1266 (m), 718 (s), 965 (m), 808 (w), 1013 (m). HRMS (ESI) calcd for $C_{17}H_{19}NO_2Na^+$ [M+Na⁺] 292.1308; found 292.1323.

4.13. Ethyl (E)-1-(1-cyano-3-phenylallyl)cyclohexane-1- carboxylate (4m)

17.4 mg, 59% yield (from (*E*)-ethyl(3-phenylallyl) carbonate and ethyl 1-isocyanocyclohexane-1-carboxylate), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.36 - 7.27 (m, 5H), 6.69 (d, *J* = 15.8 Hz, 1H), 5.98 (dd, *J* = 15.8, 7.4 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.64 (d, *J* = 7.4 Hz, 1H), 2.22 (d, *J* = 9.4 Hz, 2H), 1.75 -1.61 (m, 4H), 1.53 - 1.40 (m, 4H), 1.27 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 135.9, 135.7, 128.9, 128.6, 126.8, 119.2, 118.1, 61.4, 50.3, 44.5, 33.3, 30.7, 25.4, 23.3, 23.0, 14.4. IR ν (cm⁻¹): 2940 (br), 2368 (w), 2329 (w), 2163 (m), 2152 (m), 2065 (w), 2009 (m), 1944 (w), 1733 (s), 1448 (m), 1214 (s), 1134 (s), 739 (m), 681 (s). HRMS (ESI) calcd for C₁₉H₂₃NO₂Na⁺ [M+Na⁺] 320.1621; found 320.1623.

4.14. Ethyl (E)-1-(1-cyano-3-phenylallyl)cyclopent-3-ene-1carboxylate (**4n**)

12.0 mg, 42% yield (from (*E*)-ethyl(3-phenylallyl) carbonate and ethyl 1-isocyanocyclopent-3-ene-1-carboxylate), colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 6.77 (dd, *J* = 15.7, 1.5 Hz, 1H), 5.99 (dd, *J* = 15.8, 7.0 Hz, 1H), 5.66 (s, 2H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.92 (dd, *J* = 7.1, 1.5 Hz, 1H), 3.02 (d, *J* = 17.6 Hz, 1H), 2.97 (d, *J* = 17.2 Hz, 1H), 2.67 (d, *J* = 16.0 Hz, 1H), 2.61 (d, *J* = 15.2 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 136.0, 135.7, 135.6, 128.9, 128.6, 128.5, 128.3, 126.8, 119.6, 118.6, 61.9, 54.3, 42.4, 42.0, 41.0, 14.3. IR ν (cm⁻¹): 2973 (br), 2359 (s), 2326 (br), 2234 (w), 2160 (m), 2147 (m), 1990 (m), 1965 (m), 1955 (m), 1841 (w), 1733 (s), 1541 (m), 1509 (m), 1451 (m), 1264 (m), 1200 (s). HRMS (ESI) calcd for C₁₈H₁₉NO₂Na⁺ [M+Na⁺] 304.1313; found 304.1320.

4.15. Ethyl (E)-4-(1-cyano-3-phenylallyl)tetrahydro-2H-pyran-4-carboxylate (40)

6.0 mg, 20% yield (from (E)-ethyl(3-phenylallyl) carbonate 4-isocyanotetrahydro-2*H*-pyran-4-carboxylate), and ethyl colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.38 - 7.27 (m, 5H), 6.72 (dd, J = 15.7, 1.2 Hz, 1H), 5.96 (dd, J = 15.7, 7.4 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 3.98 - 3.89 (m, 2H), 3.65 (dd, J = 7.4, 1.3 Hz, 1H), 3.52 (dt, J = 12.0, 2.2 Hz, 1H), 3.42 (dt, J = 12.1, 2.1 Hz, 1H), 2.22 - 2.12 (m, 2H), 1.93 - 1.86 (m, 1H), 1.86 - 1.80 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.3, 136.6, 135.4, 128.9, 128.9, 126.9, 118.1, 117.41, 65.2, 65.1, 61.9, 48.2, 44.4, 32.8, 31.0, 14.4. IR υ (cm⁻¹): 2959 (br), 2359 (w), 2341 (w), 2164 (s), 2153 (m), 2028 (w), 1967 (w), 1875 (w), 1804 (w), 1730 (s), 1216 (m), 1200 (m), 1031 (w), 1013 (w), 759 (s), 732 (m), 723 (m), 687 (m). HRMS (ESI) calcd for $C_{18}H_{21}NO_3Na^+[M+Na^+]$ 322.1414; found 322.1417.

Acknowledgments

Financial supports from Swiss National Science Foundation (N° SNSF 20020-155973), EPFL (Switzerland) are gratefully acknowledged. We thank Dr. F.-T. Farzaneh and Dr. R. Scopelliti for X-ray crystallographic analysis of **4a**.

Dedicated with respect to Professor Léon Ghosez for his great contribution to the field of organic chemistry.

References and notes

1 For reviews on ketenimines, see: a) Krow GR. Angew. Chem. Int. Ed. 1971; 10: 435-449; b) Aumann R. Angew. Chem. Int. Ed. 1988; 27:

- 1456-1467; c) Yoo EJ, Chang S. Curr. Org. Chem. 2009; 13: 1766- MANUSCRIP 1776; d) Lu P, Wang Y. Synlett 2010; 165-173; e) Kim SH, Park SH, Choi JH, Chang S. Chem. Asian J. 2011; 6: 2618-2634; f) Alajarin M, Marin-Luna M, Vidal A. Eur. J. Org. Chem. 2012; 5637-5653; g) Lu P, Wang Y. Chem. Soc. Rev. 2012; 41: 5687-5705.
- 2 For related keteniminium chemistry, see: a) Ghosez L, Haveaux B, Viehe HG, Angew. Chem. Int. Ed. 1969; 8: 454-455; b) Falmagne JB, Escudero J, Taleb-Sahraoui S, Ghosez L, Angew. Chem. Int. Ed. 1981; 20: 879-880; For recent reviews, see: c) Madelaine C, Valerio V, Maulide N, Chem. Asian. J. 2011; 6: 2224-2239; d) Evano G, Lecomte M, Thilmany P, Theunissen C. Synthesis 2017; 49: 3183-3214.
- For selected recent examples, see: a) Shao, N, Pang G-X, Yan C-X, Shi G-F, Cheng Y, J. Org. Chem. 2011; 76: 7458; b) Martin D, Canac Y, Lavallo V, Bertrand G. J. Am. Chem. Soc. 2014; 136: 5023-5030; c) Coffinier D, El Kaim L, Grimaud L. Org. Lett. 2009; 11: 1825-1827; d) Zhou F, Ding K, Cai Q. Chem. Eur. J. 2011; 17: 12268-; e) Yan X, Liao J, Lu Y, Liu J, Zeng Y, Cai Q. Org. Lett. 2013; 15: 2478-2481.
- 4 a) Talât-Erben M, Bywater S. J. Am. Chem. Soc. 1955; 77: 3710-3711; b) Talât-Erben M, Bywater S. J. Am. Chem. Soc. 1955; 77: 3712-3714; c) Lee K-W, Horowitz N, Ware J, Singer LA. J. Am. Chem. Soc. 1977; 99: 2622-2627; d) Neuman Jr. RC, Sylwester AP. J. Org. Chem. 1983; 48: 2285-2287; e) Zoghbi M, Warkentin, J. J. Org. Chem. 1991; 56: 3214-3215; f) Clark LF, Hegarty AF, O'Neill P. J. Org. Chem. 1992; 57: 362-366; g) Kim SS, Liu B, Park CH, Lee KH. J. Org. Chem. 1998; 63: 1571-1573; h) Kim SS, Zhu Y, Lee KH. J. Org. Chem. 2000; 65: 2919-2923; i) Alajarin M, Vidal A, Tovar F. Lett. Org. Chem. 2004; 1: 340-342; j) Bendikov M, Duong HM, Bolanos E, Wudl, F. Org. Lett. 2005; 7: 783-786; k) Cheng L, Cheng Y. Tetrahedron, 2007; 63: 9359-9364; 1) Alajarin M, Bonillo B, Ortin MM, Vidal A. Lett. Org. Chem. 2010; 7: 528-532; m) Laouiti A, Couty F, Marrot J, Boubaker T, Rammah MM, Rammah MB, Evano G. Org. Lett. 2014; 16: 2252-2255
- a) Odabachian Y, Tong S, Wang Q, Wang MX, Zhu J, Angew. Chem. Int. Ed. 2013; 52: 10878-10882; b) Buyck T, Wang Q, Zhu J, J. Am. Chem. Soc. 2014; 136: 11524-11528; c) Tong S, Wang Q, Wang MX, Zhu J, Angew. Chem. Int. Ed. 2015; 54: 1293-1297. (d) Buyck T, Wang Q, Zhu J, Chem. Eur. J. 2016; 22: 2278-2281; e) Tong S, Wang Q, Wang MX, Zhu J, Chem. Eur. J. 2016; 22: 8332-8338; f) Kong W, Wang Q, Zhu J, Angew. Chem. Int. Ed. 2016; 55: 9714-9718; g) Tong S, Zhao S, He Q, Wang Q, Wang MX, Zhu J, Angew. Chem. Int. Ed. 2017; 56: 6599-6603; h) Tong S, Piemontesi C, Wang Q, Wang MX, Zhu, J, Angew. Chem. Int. Ed. 2017; 56: 7958-7962; i) Clemenceau A, Wang Q, Zhu J, Org. Lett. 2017; 19: 4872-4875; j) Clemenceau A, Wang Q, Zhu J, Org. Lett. 2018; 20: 126-129. For a short account of our earlier work, see: Zhu J, Eur. J Org. Chem. 2003; 1133-1144.
- 6 Qiu G, Mamboury M, Wang Q, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 15377-15381.
- 7 Qiu G, Wang Q, Zhu J, Org. Lett. 2017; 19: 270-273.
- 8 Mamboury M, Wang Q, Zhu J, *Chem. Eur. J.* 2017; 23: 12744-12748.
- Yang Q, Li C, Cheng MX, Yang SD. ACS Catal. 2016; 6: 4715-4719.
- Peng J, Gao Y, Hu W, Gao Y, Hu M, Wu W, Ren Y, Jiang H. Org. Lett. 2016; 18: 5924-5927.
- 11 Kotha S, Brahmachary E. J. Org. Chem. 2000; 65: 1359-1365.
- 12 For a recent review on the chemistry of functionalized isocyanides, see: Giustiniano M, Basso A, Mercalli V, Massarotti A, Novellino E, Tron GC, Zhu J. Chem. Soc. Rev. 2017; 46: 1295-1357.
- 13 CCDC 1843030 (4a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www. ccdc.cam.ac.uk/data_request/cif.
- 14 The spectroscopic data of 6a were consistent with what reported in the literature: Concellon JM, Rodriguez-Solla H, Simal C, Santos D, Nieves RP. Org. Lett. 2008; 10: 4549 4552.
- 15 The spectroscopic data of **7a** were consistent with what reported in the literature: Seomoon D, Lee K, Kim H, Lee PH. *Chem. Eur. J.* 2007; 13: 5197-5206.
- 16 For recent reviews on metal-catalyzed insertion reactions, see: a) Lygin A. de Meijere AV. Angew. Chem. Int. Ed. 2010; 49: 9094-9124; b) Tobisu M, Chatani N. Chem. Lett. 2011; 40: 330-340; c) Qiu G, Ding Q, Wu J. Chem. Soc. Rev. 2013; 42: 5257-5269; d) Lang S. Chem. Soc. Rev. 2013; 42; 4867-4880; e) Vlaar T, Ruijter E, Maes BUW, Orru RVA. Angew. Chem. Int. Ed. 2013; 52: 7084-7097; f) Chakrabarty S, Choudhary S, Doshi A, Liu FQ, Mohan R, Ravindra MP, Shah D, Yang X, Fleming FF. Adv. Synth. Catal. 2014; 356: 2135-2196; g) Song B, Xu B. Chem. Soc. Rev. 2017; 46: 1103-1123.
- 17 Ciganek E, Tetrahedron Lett. 1969; 10: 5179-5180.

6