# Synthesis of methyl 3-deoxy-3-nitroheptoseptanosides

Francisco Santoyo Gonzalez\*, Antonio Vargas Berenguel, and Jose Molina Molina Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain) (Received April 6th, 1990; accepted for publication, July 11th, 1990)

## ABSTRACT

The reaction of the dioxepane 2, obtained by periodate oxidation of methyl 4,6-O-benzylidene- $\alpha$ -D-glucopyranoside, with nitromethane, using potassium fluoride as catalyst, gave methyl 5,7-O-benzylidene-3-deoxy-3-nitro-D-glycero- $\alpha$ -D-ido-heptoseptanoside (2) as the major product. The reaction of 4 with methyl nitroacetate followed by acetylation gave methyl 2,4-di-O-acetyl-5,7-O-benzylidene-3-deoxy-3-C-methoxycarbonyl-3-nitro-D-glycero- $\alpha$ -D-talo- (6) and -D-glycero- $\alpha$ -D-ido-heptoseptanoside (7).

### INTRODUCTION

Few syntheses of septanosides have been described. One method involves the cyclisation of the dialdehydes obtained by periodate oxidation of methyl 4,6-O-ethylidene- or 4.6-O-benzylidene- $\alpha$ -D-glucopyranoside with nitroalkanes. Baschang<sup>1</sup> reported the synthesis of methyl 3-deoxy-5,7-O-ethylidene-3-nitro-D-glycero- $\alpha$ -D-manno-heptoseptanoside (41%) by the reaction of the product of periodate oxidation of methyl 4,6-O-ethylidene- $\alpha$ -D-glucopyranoside with nitromethane in the presence of sodium methoxide. Reduction, N-acetylation, and hydrolysis then afforded 3-acetamido-3deoxy-D-glycero-D-manno-heptose. Wolfrom et al.<sup>2</sup> applied the method to the product of periodate oxidation of methyl 4,6-O-benzylidene-x-D-glucopyranoside and obtained four isomeric 3-deoxy-3-nitroheptoseptanosides, but the configurations were not assigned. Butcher et al.<sup>3</sup> have studied the reactions of the products of periodate oxidation of methyl 4.6-O-benzylidene- $\alpha$ -D-glucopyranoside with nitromethane, nitroethane, 1nitropropane, 1-nitromethylcyclohexene, phenylnitromethane, and ethyl and methyl nitroacetate. The type of product obtained<sup>3</sup> (dioxepane or septanoside) depends on the nature of the active methylene compounds used, the basic catalyst, and the solvent. We have reported<sup>4</sup> the synthesis of 3-cyano-3-deoxyheptoseptanosides by cyclisation of 2with ethyl and *tert*-butyl cyanoacetate and cyanoacetamide. Potassium fluoride is an efficient catalyst in the cyclisation reactions of dialdehydes [thiodiglycolaldehyde, diglycolaldehyde,  $\alpha$ -(S)-(3-ethoxycarbonyl-2-methylfur-5-yl)diglycolaldehyde, and (2R,3R,5S,6S)-3,5-dihydroxy-2-methoxy-6-methyl-1,4-dioxanel with nitro compounds<sup>5</sup>. These results prompted a study of the use of potassium fluoride in the cyclisation of 2 with nitromethane and methyl nitroacetate for the synthesis of 3-nitro-3-deoxyseptanoside derivatives.

<sup>\*</sup> Author for correspondence.

#### **RESULTS AND DISCUSSION**

The reactions were carried out at  $\sim 45^{\circ}$  using potassium fluoride-dibenzo-18crown-6 as catalyst and acetonitrile as solvent. The reaction of 2 with nitromethane gave the 1,4-dioxepane 3 (10%) and the septanoside 4 (68%). The formation of a sole septanoside 4 reflects high stereoselectivity, in contrast to the results when sodium methoxide was used as the catalyst<sup>2</sup>. Treatment of 4 with acetic acid-acetic anhydrideacetyl chloride afforded the 2,4-diacetate 5 (49%). The reaction of 2 with methyl nitroacetate followed by acetylation gave the septanoside diacetates 6 (29%) and 7 (26%). The structures of 3-7 were established on the basis of elemental analyses and spectroscopic data.



The configurations at C-2 and C-4, and the preferred  ${}^{0.3}C_6(D)$  conformation in 4–7, were deduced from the <sup>1</sup>H-n.m.r. data (see Table I), n.O.e. difference experiments (for 5), and molecular mechanics calculations (for 4 and 5). The  $J_{1,2}$  values for 4–7 were in the range 6.3–6.6 Hz, in accord with H-1eq, 2ax. The  $J_{4,5} + J_{5,6}$  value of 18.0 Hz for 4 and the  $J_{4,5}$  values of 8.6–8.7 Hz for 5 and 7 indicated H-4,5 to be *trans*-diaxial. These J values are similar to those reported<sup>4</sup> for methyl 3-alkoxycarbonyl-(or carbamoyl)-5,7– O-benzylidene-3-C-cyano-3-deoxy-D-glycero- $\alpha$ -D-ido-heptoseptanosides. The  $J_{2,3} + J_{3,4}$  values of 21.0 Hz for 4 and 5 reflected an antiperiplanar relationship between H-3 and H-2,4. Confirmation of these assignments was achieved by n.O.e. difference spectroscopy of 5. Irradiation of H-2 and H-3 resulted in positive responses from H-4,6 and H-1,5, respectively.

The configuration at C-3 for 6 and 7 (isolated by column chromatography of the materials that remained after the crystallisation of 6) were deduced from COLOC experiments<sup>6</sup> that showed cross-peaks between COOMe and H-2,4 for 7, and indicated<sup>6</sup> an ax,ax,ax disposition. No cross-peaks were observed for 6. The  $J_{1,2}$  and  $J_{4,5}$  values of 6 and 7 were similar, suggesting the same configuration at C-2 and C-4, which means that they are C-3 epimers.

| <sup>1</sup> H-N.m.r. data f                              | or <b>4</b> -7                               |                                         |                                         |                                         |                                                        |                                                     |                           |              |             |                                                                                                                                                         |
|-----------------------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------|-----------------------------------------------------|---------------------------|--------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Compound                                                  | І-Н                                          | Н-2                                     | H-4                                     | Н-5                                     | 9-H                                                    | H-7eq                                               | Н-7ах                     | оМе          | РАСН        | Otherse                                                                                                                                                 |
| <b>4</b> <sup>a</sup>                                     | 4.42d                                        |                                         | 3.95m                                   | 3.58°                                   | 3.73°                                                  | 4.15–<br>3.95m                                      | 3.56"                     | 3.31s        | 5.55s       | 6.28 (d, 1 H, J 7.1 Hz, OH)', 6.11 (d, 1<br>H, J 6.3 Hz, OH)', and 4.67 (pseudo-t,                                                                      |
| ۲<br>کړ                                                   | 4.60d                                        | 5.66dd                                  | 5.86dd                                  | 3.77dd                                  | 3.98"                                                  | 4.22dd                                              | 3.62 <sup>d</sup>         | 3.47s        | 5.43s       | 1 H, $J_{2,3} + J_{3,4} \ge 1.0$ HZ, H-3)<br>5.05 (pseudo-t, $J_{2,3} + J_{3,4} \ge 1.1$ HZ,<br>11 2) $z = 1.0$ A 20, $2.0$ A 2, $J_{2,4} \ge 1.2$ A 2) |
| ę                                                         | 4.71d                                        | 5.87d                                   | 5.93d                                   |                                         | 4.20-4.05m                                             |                                                     | 3.62dd                    | <b>3.36s</b> | 5.45s       | (1-2), and $2.04$ , $2.01$ ( $2.5$ , $0.11$ , $2.05$ ) $3.72$ ( $s$ , $3$ H, COOMe), and $2.09$ , $2.05$                                                |
| Ĩ,                                                        | 4.70d                                        | 5.90d                                   | 6.03d                                   | 4.10 <sup>d</sup>                       | 4.094                                                  | 4.15dd                                              | 3.61dd                    | 3.36s        | 5.44s       | (2 s, 6 H, 2 Ac)<br>3.98 (s, 3 H, COOMe), and 2.04, 2.01<br>(2 s, 6 H, 2 Ac)                                                                            |
|                                                           | Coupling .                                   | constants (1                            | Hz)                                     |                                         |                                                        |                                                     |                           |              |             |                                                                                                                                                         |
|                                                           | $\mathbf{J}_{l,2}$                           | J4.5                                    | $J_{2,3} + J_{3,4}$                     | Others                                  |                                                        |                                                     |                           |              |             |                                                                                                                                                         |
| 4                                                         | 6.3                                          | 18.0%                                   | 21.0                                    | $J_{5,6} + J_{6,7_6}$                   | <sub>x</sub> 19.6, J <sub>7ax7</sub>                   | $_{a} + J_{6,7ax} 2$                                | 0.5, and $J_{6.7}$        | 1ea 5.3      |             |                                                                                                                                                         |
| <b>4</b> <sup>h</sup>                                     | 6.1                                          | 9.3                                     | 19.8                                    | J <sub>5,6</sub> 9.5, J <sub>6</sub>    | 7 <sub>ax</sub> 9.5, and .                             | J <sub>6.7ey</sub> 4.8                              |                           | -            |             |                                                                                                                                                         |
| v)                                                        | 6.5                                          | 8.7                                     | 21.1                                    | $J_{5.6} \approx J_{6.76}$              | " ≈ 9.8, J <sub>67</sub>                               | er 5.5, and .                                       | J <sub>7ax.7eq</sub> 10.8 |              |             |                                                                                                                                                         |
| Ĵ,                                                        | 6.0                                          | 9.1                                     | 20.2                                    | J <sub>5,6</sub> 9.0, J <sub>6</sub>    | 7 <sub>ax</sub> 9.1, and .                             | J <sub>6,7eq</sub> 5.7                              | •                         |              |             |                                                                                                                                                         |
| 9                                                         | 6.5                                          | 8.6                                     | ,                                       | $J_{\gamma_{ax,\gamma_{ed}}} 10.0$      | ) and $J_{6,7ax}$ 8                                    | .5                                                  |                           |              |             |                                                                                                                                                         |
| 7                                                         | 6.6                                          | 8.6                                     |                                         | J <sub>6.7eq</sub> 5.1, J               | <sub>7ах.7е4</sub> 10.5, а                             | $J_{56} \approx J$                                  | $_{6,7ax} \approx 10.0$   |              |             |                                                                                                                                                         |
| " Phenyl proton 1<br>Me <sub>4</sub> Si). " $J_{4,5} + J$ | multiplets at $\int_{S_0} J_{2,3} + J_{3,4}$ | t § 7.50–7.2<br>. <sup>4</sup> Obtained | 0 in 4–7. <sup>b</sup> F<br>d from mole | <sup>7</sup> or solution<br>scular mech | in (CD <sub>3</sub> ) <sub>2</sub> S(<br>anics calcula | <ol> <li><sup>c</sup> dpseud<br/>ations.</li> </ol> | o-t. <sup>d</sup> pseud   | o-t. ' Exch  | angeable wi | ith $D_2O$ . <sup>J</sup> For solution in CDCl <sub>3</sub> (internal                                                                                   |

**TABLE I** 



Fig. 1. Lowest energy conformations, predicted by molecular mechanics calculations, of **3–5** (see Appendices I–III).

|                                                            | Theoretical    | Experimental             |  |
|------------------------------------------------------------|----------------|--------------------------|--|
| $J_{3,4} \\ \phi_{3,4}$                                    | 5.3<br>- 156.7 | 5.9                      |  |
| $J_{6,7} \\ \phi_{6,7}$                                    | 8.6<br>179.2   | 9.3                      |  |
| $J_{1,7} = \phi_{1,7}$                                     | 9.5<br>170.8   | 18.7 <sup><i>b</i></sup> |  |
| $J_{1,11eq} \ \phi_{1,11eq}$                               | 6.1<br>- 52.5  | 5.3                      |  |
| $\begin{array}{c} J_{1,11ax} \\ \phi_{1,11ax} \end{array}$ | 10.5<br>170.8  | 19.0 <sup>c</sup>        |  |

## TABLE II

Theoretical<sup>a</sup> and experimental coupling constants (Hz) and theoretical<sup>a</sup> dihedral angles ( $\phi^{\circ}$ ) for 3

<sup>*a*</sup> Obtained from molecular mechanics calculations (D = 1.5). <sup>*b*</sup>  $J_{1,7} + J_{6,7}$ . <sup>*c*</sup>  $J_{1,7} + J_{1,11ax}$ .

The geometries of 4 and 5 were obtained from molecular mechanics calculations, using an implementation of the Allinger algorithm<sup>7</sup>. The optimised structures of lowest energy (Fig. 1), based on the configuration established by the <sup>1</sup>H-n.m.r. data and n.O.e. difference experiments, were predicted with the seven- and six-membered rings in the  ${}^{0.3}C_6$  and  ${}^7C_0$  conformations, respectively. Using the generalised Karplus equation<sup>8</sup> (see Table II),  $J_{1,2}$  values of 6.0 and 6.1 Hz were calculated for the predicted H-1–C–C–H-2 dihedral angles of  $-155^\circ$  and  $-156^\circ$ , respectively,  $J_{4,5}$  values of 9.1 and 9.3 Hz for the predicted H-4–C–C–H-5 dihedral angles of 172° and 175°, respectively, and  $J_{2,3} + J_{3,4}$  values of 19.8 and 20.2 Hz for the predicted H-2–C–C–H-3 and H-3–C–C–H-4 dihedral angles of  $-147^\circ$  and 158°, and  $-161^\circ$  and 175°, respectively.

Compound 3 showed i.r. bands at 3424 (OH) and 1546 (NO<sub>2</sub>) cm<sup>-1</sup>. The 1,4dioxepane structure was established on the basis of a signal at  $\delta$  7.12 (d, J 6.4 Hz) for OH and signals at  $\delta$  104.2, 99.6, and 98.6 (C-3,4, C<sub>6</sub>H<sub>5</sub>CH), and 77.0 (CH<sub>2</sub>NO<sub>2</sub>). The configurations at C-4,6 and the preferred conformation <sup>0,0</sup>C<sub>1</sub> for the seven-membered ring were established by the  $J_{6,7}$  and  $J_{6,7} + J_{7,1}$  values of 9.3 and 18.7 Hz, respectively, which indicated H-1,6,7 to be axial. The  $J_{3,4}$  value of 5.9 Hz accords with an *eq,ax* relationship of H-3,4.

The geometry of 3 (Fig. 1) was obtained from molecular mechanics calculations that gave  ${}^{3}J$  values consistent with the Experimental data (see Table II).

## EXPERIMENTAL

General methods. — Melting points were determined with an electrothermal apparatus and are uncorrected. Spectra were recorded with Perkin–Elmer 983G (i.r.), Perkin–Elmer 141 ( $[\alpha]_D$ , room temperature), and Bruker AM 300 (n.m.r.) instruments. Column chromatography was performed on silica gel (Merck 70–230 mesh, ASTM).

Molecular mechanics and coupling constant calculations were carried out on a Mitac 386 microcomputer, using the programs PCMODEL (Serena Software, Bloomington, IN, U.S.A.), MMX<sup>7</sup>, and 3JHH<sup>8</sup>. The <sup>3</sup>J values for the appropriate low-energy geometries were calculated with 3JHH<sup>8</sup> which uses the parameters of Hasnoot *et al.*<sup>9</sup>. The program PCDISPLAY (Serena Software) was used for molecular graphics display. Calculations were performed using an effective dielectric constant (*D*) of 1.5. The nitro group was modeled using N + (41 MMX type), O - (42 MMX type), and O (7 MMX type) (see Appendices I–III).

Reactions of nitromethane and methyl nitroacetate with 2. — To a solution of 2 (ref. 10) [1 g (3.0 mmol) when nitromethane was used or 1.26 g (3.8 mmol) when methyl nitroacetate was used] in acetonitrile (35 mL) was added nitromethane (3.6 equiv.) or methyl nitroacetate (1 equiv.), potassium fluoride (0.1 equiv.), and dibenzo-18-crown-6 ether (0.1 equiv.). The mixture was stirred at ~45° and then concentrated. Water (30 mL) was added to the residue, the mixture was extracted with ethyl acetate ( $3 \times 50 \text{ mL}$ ), and the combined extracts were dried, filtered, and concentrated to give a crude product.

## APPENDIX I

Final atomic co-ordinates and bonded atoms for 3

| Atom             | x        | у        | Z        | Type          | Bound to atoms |
|------------------|----------|----------|----------|---------------|----------------|
| C(1)             | -0.20050 | 1.49117  | 4.33667  | (1)           | 2, 7, 11, 40   |
| O(2)             | -0.44167 | 1.25029  | 5.72837  | (6)           | 1, 3,          |
| C(3)             | 0.18209  | 2.15788  | 6.65183  | (1)           | 2, 4, 22, 43   |
| C(4)             | 1.65596  | 2.41902  | 6.29543  | (1)           | 3, 5, 21, 42   |
| O(5)             | 2.21404  | 1.23028  | 5.77208  | (6)           | 4, 6,          |
| C(6)             | 2.33616  | 1.28208  | 4.36141  | (1)           | 5, 7, 13, 41   |
| C(7)             | 1.02550  | 0.69715  | 3.80348  | (1)           | 1, 6, 8, 39    |
| <b>O</b> (8)     | 1.08019  | 0.76214  | 2.38394  | (6)           | 9, 7,          |
| C(9)             | -0.12377 | 0.27594  | 1.79253  | à             | 8, 10, 15, 38  |
| O(10)            | -1.21956 | 1.11167  | 2.16519  | (6)           | 9, 11,         |
| cìní             | -1.45432 | 1.03599  | 3.56456  | (I)           | 1, 10, 27, 28  |
| C(12)            | -1.76769 | 3.33526  | 7.31127  | (1)           | 22, 25, 29, 30 |
| C(13)            | 3.67511  | 0.58825  | 4.03222  | (1)           | 6, 24, 31, 32  |
| 0 - (14)         | 4.81081  | 2,17302  | 5.43077  | (42)          | 24,            |
| CUS              | -0.01785 | 0.18337  | 0.27736  | (2)           | 9, 16, 20,     |
| C(16)            | -1.12782 | 0.02701  | -0.46937 | $(\tilde{2})$ | 15, 17, 33,    |
| C(17)            | -1.06676 | -0.06431 | -1.80709 | (2)           | 16, 18, 34,    |
| C(18)            | 0.11950  | -0.00379 | -2.42940 | $(2)^{(-)}$   | 17. 19. 35.    |
| C(19)            | 1.23649  | 0.14771  | -1.70253 | (2)           | 18, 20, 36,    |
| $\mathbf{C}(20)$ | 1.16442  | 0.24027  | -0.36476 | (2)           | 15, 19, 37,    |
| O(21)            | 2.49587  | 2.74458  | 7.38881  | (6)           | 4. 26.         |
| O(22)            | -0.48345 | 3.41819  | 6.71215  | ີເຄົ          | 3, 14,         |
| O(23)            | 5.95842  | 0.69285  | 4.57364  | (7)           | 24.            |
| N + (24)         | 4.87114  | 1.18130  | 4.73096  | (41)          | 13, 14, 23,    |
| H(25)            | -2.20808 | 4.35971  | 7.31966  | (5)           | 12.            |
| H(26)            | 3.37098  | 2.63376  | 7.01198  | (21)          | 21.            |
| H(27)            | -1.74367 | -0.00892 | 3.83397  | (5)           | 11.            |
| H(28)            | -2.32162 | 1.70018  | 3,79842  | Ġ             | 11.            |
| H(29)            | -2.43277 | 2.66554  | 6.71723  | (5)           | 12.            |
| H(30)            | -1.68074 | 2.97444  | 8.36322  | (5)           | 12,            |
| H(31)            | 3.58845  | -0.48925 | 4.30944  | (5)           | 13,            |
| H(32)            | 3.83803  | 0.61973  | 2,92833  | (5)           | 13.            |
| H(33)            | -2.11702 | -0.03221 | 0.01518  | (5)           | 16,            |
| H(34)            | -1.99175 | -0.19151 | -2.39637 | (5)           | 17,            |
| H(35)            | 0.17614  | -0.07983 | -3.52931 | (5)           | 18,            |
| H(36)            | 2.21697  | 0.19626  | -2.20798 | (5)           | 19,            |
| H(37)            | 2.10528  | 0.36214  | 0.19692  | (5)           | 20,            |
| H(38)            | -0.31006 | -0.77026 | 2.14444  | (5)           | 9,             |
| H(39)            | 0.94752  | -0.37732 | 4.10410  | (5)           | 7.             |
| H(40)            | -0.07496 | 2.58644  | 4.15555  | (5)           | 1,             |
| H(41)            | 2.44186  | 2.32450  | 3.97299  | (5)           | 6,             |
| H(42)            | 1.73569  | 3.28581  | 5.59380  | (5)           | 4,             |
| H(43)            | 0.14215  | 1.67307  | 7.65957  | (5)           | 3,             |

# APPENDIX II

Final atomic co-ordinates and bonded atoms for 4

| Atom        | X         | у         | Z         | Туре       | Bound to atoms |
|-------------|-----------|-----------|-----------|------------|----------------|
| C(1)        | -2.11669  | -1.27568  | 0.87873   | (1)        | 2, 18, 21, 43  |
| C(2)        | -0.67699  | -0.77276  | 1.11632   | ă          | 1, 3, 20, 42   |
| C(3)        | -0.09882  | -0.01444  | -0.10218  | Ű.         | 2, 4, 23, 41   |
| C(4)        | -0.41684  | 1.48641   | 0.08599   | ů.         | 3, 5, 19, 40   |
| C(5)        | 1.86629   | 1.82547   | -0.29941  | - Ö        | 4, 6, 16, 38   |
| C(6)        | -2.88889  | 0.98581   | 0.50405   | ă          | 5, 7, 18, 39   |
| C(7)        | -4.30570  | 1.54270   | 0.26174   | ă          | 6, 17, 28, 29  |
| C(8)        | -3.39656  | 3.61362   | -0.32225  | ă          | 9, 16, 17, 37  |
| C(9)        | - 3.56479 | 5.11394   | -0.16335  | (2)        | 8, 10, 14,     |
| C(10)       | -4.62573  | 5.72802   | -0.71911  | (2)        | 9, 11, 32.     |
| C(11)       | -4.79987  | 7.05397   | -0.60594  | (2)        | 10, 12, 33,    |
| C(12)       | -3.90752  | 7.79161   | 0.07127   | (2)        | 11, 13, 34,    |
| C(13)       | -2.84722  | 7.19373   | 0.63460   | (2)        | 12, 14, 35,    |
| C(14)       | -2.68111  | 5.86682   | 0.51771   | (2)        | 9, 13, 36,     |
| C(15)       | -3.90760  | -2.33559  | 2.01584   | ă          | 21, 25, 30, 31 |
| O(16)       | -2.06548  | 3.20684   | -0.02266  | (6)        | 5, 8,          |
| O(17)       | -4.33124  | 2.94052   | 0.51674   | 6          | 7, 8,          |
| O(18)       | -2.87730  | -0.37393  | 0.07122   | (6)        | 1, 6,          |
| O(19)       | 0.51330   | 2.20639   | -0.70188  | 6          | 4, 26,         |
| O(20)       | 0.20015   | -1.85251  | 1.38866   | (6)        | 2, 27,         |
| O(21)       | -2.73223  | -1.54673  | 2.13715   | <b>(6)</b> | 1, 15,         |
| O(22)       | 1.88006   | -0.88047  | -1.11842  | (7)        | 23.            |
| N + (23)    | 1.37710   | -0.21924  | -0.25128  | (41)       | 3, 22, 24,     |
| $O_{-(24)}$ | 2.04231   | 0.13480   | 0.69067   | (42)       | 23.            |
| H(25)       | -4.32946  | -2.47998  | 3.03791   | (5)        | 15.            |
| H(26)       | 1.35383   | 2.11467   | -0.26471  | (21)       | 19.            |
| H(27)       | 1.04515   | -1.46319  | 1.60473   | (21)       | 20.            |
| H(28)       | -4.64581  | 1.35382   | -0.78562  | (5)        | 7.             |
| H(29)       | - 5.04029 | 1.05916   | 0.95061   | (5)        | 7.             |
| H(30)       | -4.66520  | -1.81187  | 1.38690   | (5)        | 15.            |
| H(31)       | -3.65931  | - 3.33480 | 1.58647   | (5)        | 15.            |
| H(32)       | - 5.36929 | 5.13646   | -1.28046  | (5)        | 10.            |
| H(33)       | - 5.67626 | 7.53861   | -1.07069  | (5)        | 11,            |
| H(34)       | -4.04595  | 8.88276   | 0.16621   | (5)        | 12,            |
| H(35)       | -2.11071  | 7.79562   | 1.19530   | (5)        | 13,            |
| H(36)       | - 1.79905 | 5.40755   | 0.99397   | (5)        | 14,            |
| H(37)       | -3.61008  | 3.37284   | - 1.39484 | (5)        | 8,             |
| H(38)       | -2.00301  | 1.65842   | - 1.39666 | (5)        | 5,             |
| H(39)       | -2.68092  | 1.05251   | 1.59938   | (5)        | 6,             |
| H(40)       | -0.24107  | 1.82002   | 1.13892   | (5)        | 4,             |
| H(41)       | -0.56764  | -0.38428  | -1.04549  | (5)        | 3,             |
| H(42)       | -0.65382  | -0.14074  | 2.03778   | (5)        | 2,             |
| H(43)       | -2.04851  | -2.23057  | 0.29848   | (5)        | 1,             |

## APPENDIX III

Final atomic co-ordinates and bonded atoms for 5

| Atom            | x                    | у                  | Z         | Type             | Bound to atoms |
|-----------------|----------------------|--------------------|-----------|------------------|----------------|
| C(1)            | 0.18970              | 0.31498            | 6.75959   | (1)              | 2, 22, 25, 53  |
| C(2)            | 1.40869              | 1.25913            | 6.63924   | (1)              | 1, 3, 24, 52   |
| C(3)            | 2.56940              | 0.74655            | 5.74023   | (1)              | 2, 4, 29, 51   |
| C(4)            | 2.30872              | 1.03198            | 4.23452   | (i)              | 3, 5, 23, 50   |
| C(5)            | 1.14709              | 0.22164            | 3.62316   | (I)              | 4, 6, 20, 48   |
| CíÓ             | -0.18493             | 0.39510            | 4.38161   | à                | 5, 7, 22, 49   |
| C(7)            | -1.37716             | -0.12873           | 3.55228   | à                | 6, 21, 34, 35  |
| C(8)            | -0.05478             | -0.10267           | 1.63623   | m                | 9, 20, 21, 47  |
| C(9)            | -0.02353             | 0.03967            | 0.12427   | (2)              | 8, 10, 14,     |
| C(10)           | -1.15313             | 0.01234            | -0.60810  | (2)              | 9, 11, 42,     |
| can             | -1.11956             | 0.11138            | -1.94645  | (2)              | 10, 12, 43,    |
| C(12)           | 0.05440              | 0.23936            | -2.58198  | $(\overline{2})$ | 11. 13. 44.    |
| C(13)           | 1.18975              | 0.26762            | -1.86882  | $(\overline{2})$ | 12. 14. 45.    |
| C(14)           | 1 14615              | 0 16711            | -0.53101  | $(\tilde{2})$    | 9 13 46        |
| C(15)           | -1.96251             | 0 24478            | 7 75865   | (1)              | 25 31 36 37    |
| C(16)           | 4 05132              | 1 59147            | 2 67428   | (3)              | 17 23 27       |
| C(17)           | 5 24951              | 0.97001            | 1 99100   | (1)              | 16 32 38 39    |
| C(18)           | 1 77307              | 2 57303            | 8 62300   | (1)              | 10, 24, 28     |
| C(19)           | 2 38559              | 2.57569            | 10 00143  | (1)              | 18 33 40 41    |
| O(20)           | 0.99821              | 0.62398            | 2 26494   | (1)              | 5 8            |
| O(21)           | -1 29657             | 0.02578            | 2.20494   | (6)              | 7 8            |
| O(21)           | -0.12330             | -0.30112           | 5 56647   | (6)              | 1.6            |
| O(22)           | 3 48800              | 0.59112            | 3 51077   | (6)              | 1, 0,<br>1 16  |
| O(24)           | 1 00666              | 1 30807            | 7 96717   | (6)              | γ, 10,<br>γ 18 |
| O(25)           | -0.91048             | 1.06533            | 7.30717   | (6)              | 2, 18,         |
| O(25)           | 3 95190              | 2 61286            | 6 14910   | (0)              | 1, 15,         |
| O(27)           | 3.55130              | 2.01380            | 2 49909   | (7)              | 47,<br>16      |
| O(28)           | 1 24447              | 2.71720            | 2.40070   | (7)              | 10, 10         |
| $N \perp (20)$  | 3 85606              | 1 /1553            | 6 15220   | (1)              | 10,            |
| $\Omega = (30)$ | J.05090              | 0.70080            | 6 13593   | (41)             | 12, 20, 50,    |
| H(31)           | -2 77187             | 0.79089            | 8 13200   | (42)             | 47,<br>15      |
| H(32)           | 5 79106              | 1 72005            | 1 29203   | (5)              | 13,            |
| H(33)           | 2 21067              | 2 38003            | 10 58/6/  | (5)              | 17,            |
| H(34)           | -1 41718             | -1.74556           | 3 56206   | (5)              | 17,<br>7       |
| H(35)           | -2 34260             | 0.24105            | 3.07552   | (5)              | ',<br>7        |
| H(36)           | -2.34200             | 0.24105            | 6 02900   | (5)              | ',<br>15       |
| H(37)           | -1.60134             | -0.38500           | 8 60530   | (5)              | 15,            |
| H(38)           | - 1.00134<br>5 06066 | -0.36341           | 0.00330   | (5)              | 17             |
| H(30)           | 4 92023              | 0.15026            | 1 21222   | (5)              | 17             |
| H(40)           | 1 92471              | 1.61066            | 10 56225  | (5)              | 17,            |
| H(41)           | 3 48348              | 2 28482            | 0.00147   | (5)              | 19,            |
| H(42)           | -7 13553             | 0.00065            | 0 12022   | (5)              | 17,            |
| H(43)           | -2.15555             | 0.09903            | -0.12032  | (5)              | 10,            |
| H(44)           | 0.08606              | 0.00507            | - 2.52054 | (5)              | 11,            |
| H(45)           | 2 16061              | 0.37102            | 2 29/4/   | (5)              | 12,            |
| H(46)           | 2.10001              | 0.37102            | - 2.30444 | (5)              | 13,            |
| H(47)           | 0.09037              | 1 10060            | 1 20520   | (5)              | 14,<br>o       |
| H(48)           | 1 43604              | - 1.19909          | 3 62806   | (5)              | 0,<br>5        |
| H(40)           | -0 37738             | 1 47012            | 4 61386   | (5)              | 5,<br>6        |
| H(50)           | 2 08649              | 7 11018            | 17127     | (5)              | о,<br>Л        |
| H(51)           | 2.000-19             | 2.11710            | 7.12132   | (5)              | ч,<br>Э        |
| H(52)           | 2.03337              | 2 25402            | 5.00/32   | (5)              | з,<br>Э        |
| H(53)           | 0.45326              | 2.23402<br>0.47440 | 7 50046   | (5)              | ∠,<br>1        |
|                 | 0.73320              | - 0.4 / 440        | /.30940   | (3)              | l,             |

| Η  |  |
|----|--|
| ш  |  |
| Ξ. |  |
| 7  |  |
| È  |  |

| <sup>3</sup> C-N.m.r. chei | mical shifts (r | o.p.m.) for 4 | 7    |      |            |      |      |                                                                                 |
|----------------------------|-----------------|---------------|------|------|------------|------|------|---------------------------------------------------------------------------------|
| Compound                   | C-1             | C-2           | C-4  | C-3  | <i>C-S</i> | C-6  | C-7  | Others <sup>a</sup>                                                             |
| <b>4</b> °                 | 103.9           | 9.69          | 72.4 | 92.0 | 81.6       | 60.1 | 68.2 | 55.2 (MeO)                                                                      |
| <b>2</b> c.d               | 101.9           | 69.69         | 72.6 | 86.3 | 80.1       | 60.8 | 0.69 | 168.3, 167.7 (2 CO), 56.2 (MeO), and 20.6 ( <i>Me</i> -CO)                      |
| Q                          | 101.6           | 72.2          | 73.3 | 97.6 | 78.4       | 61.8 | 68.9 | 168.1 (2 CO), 162.7 (COOMe), 56.4 (MeO), 54.0<br>(COOMe), and 20.6 (2 MeCO)     |
| 7                          | 101.5           | 72.5          | 74.4 | 95.2 | 78.5       | 61.5 | 68.9 | 168.4, 167.8 (2 CO), 162.2 (COOMe), 56.3 (McO), 53.7 (COOMe), and 20.5 (2 MeCO) |

<sup>*a*</sup> All benzylidene derivatives showed 4 signals (Ph) in the range  $\delta$  137.5–125.9, and a signal for Ph*C*H at  $\delta$  10.10–100.0. <sup>*b*</sup> For solution in (CD<sub>3</sub>)<sub>2</sub>SO.<sup>*c*</sup> For solution in CDCl<sub>3</sub> (internal Me<sub>4</sub>Si). <sup>*a*</sup> The assignment was confirmed with 2D-n.m.r. carbon–proton correlation.

(a) With nitromethane. Column chromatography (1:3 ether-hexane) of the crude product (32-h reaction) gave, first, (1R,3S,4S,6S,7S,9R)-4-hydroxy-3-methoxy-6-ni-tromethyl-9-phenyl-2,5,8,10-tetra-oxabicyclo[5,4,O<sup>1,7</sup>]undecane (3; 0.10 g, 10%), m.p. 185–186°,  $[\alpha]_{D}^{25}$  + 77° (c 1, acetone);  $v_{max}^{KBr}$  3424, 1546, 1383, 1144, 1105, 970, and 748 cm<sup>-1</sup>. N.m.r. data [(CD<sub>3</sub>)<sub>2</sub>SO]: <sup>1</sup>H,  $\delta$  7.50–7.35 (m, 5 H, Ph), 7.02 (d, 1 H, J 6.4 Hz, exchangeable with D<sub>2</sub>O, OH), 5.57 (s, 1 H, PhCH), 4.90 (dd, 1 H, J 13.4 and 2.3 Hz, CH<sub>2</sub>NO<sub>2</sub>), 4.75 (pseudo-t, 1 H,  $J_{4.OH}$  +  $J_{3.4}$  12.3 Hz, H-4), 4.67 (dd, 1 H, J 13.4 and 9.4 Hz, CH<sub>2</sub>NO<sub>2</sub>), 4.34 (dpseudo-t, 1 H,  $J_{6.7} \approx J_{6.CHN} \approx 9.3, J_{6.CH'N} 2.3$  Hz, H-6), 4.27 (d, 1 H,  $J_{3.4}$  5.9 Hz, H-3), 4.17 (dd, 1 H,  $J_{11ax,11eq}$  10.6,  $J_{1.11eq}$  5.3 Hz, H-11eq), 3.91 (dpseudo-t, 1 H,  $J_{1.7}$  +  $J_{1.11ax}$  19.0,  $J_{1.11eq}$  5.3 Hz, H-1), 3.68 (pseudo-t, 1 H,  $J_{6.7}$  +  $J_{1.7}$  18.7 Hz, H-7), 3.64 (pseudo-t, 1 H,  $J_{1.1ax,11eq}$  +  $J_{1.11ax}$  20.7 Hz, H-11ax), and 3.30 (s, 3 H, MeO); <sup>13</sup>C,  $\delta$  137.2, 128.7, 127.9, 126.0 (C<sub>6</sub>H<sub>5</sub>), 104.2, 99.6, 98.6 (C-3,4, Ph), 77.8, 77.9 (C-6,7), 77.0 (CH<sub>2</sub>NO<sub>2</sub>), 68.2 (C-11), 63.4 (C-1), and 55.1 (MeO) (Found: C, 52.50; H, 5.55; N, 3.89. C<sub>15</sub>H<sub>19</sub>NO<sub>8</sub> calc.: C, 52.77; H, 5.61; N, 4.12%).

Eluted second was methyl 5,7-*O*-benzylidene-3-deoxy-3-nitro-D-glycero- $\alpha$ -D-ido-heptoseptanoside (**4**; 0.70 g, 68%), m.p. 233–234° (from ether–hexane),  $[\alpha]_D^{25} + 52°$  (*c* 1, methanol);  $\nu_{\text{max}}^{\text{KBr}}$  3386, 1562, 1381, 1282, 1234, 1188, 1140, 1100, 1060, 978, 921, and 771 cm<sup>-1</sup>. For <sup>1</sup>H- and <sup>13</sup>C-n.m.r. data, see Tables I and III (Found: C, 53.00; H, 5.42; N, 4.30. C<sub>15</sub>H<sub>19</sub>NO<sub>8</sub> calc.: C, 52.77; H, 5.61; N, 4.12%).

Conventional treatment of **4** (0.43 g, 1.2 mmol) with acetic anhydride–acetic acid–acetyl chloride (1:1:2 mL) gave, after column chromatography (1:1 ether–hexane), the 2,4-diacetate **5** (0.25 g, 49%), m.p. 185–186°,  $[\alpha]_{D}^{25}$ +66°(*c* 1, chloroform);  $\nu_{max}^{KBr}$  1750, 1565, 1371, 1337, 1310, 1289, 1214, 1136, 1101, 1082, 1068, 1050, 1029, 992, 977, 920, and 885 cm<sup>-1</sup>. For <sup>1</sup>H- and <sup>13</sup>C-n.m.r. data, see Tables I and III) (Found: C, 53.78; H, 5.40; N, 3.18. C<sub>19</sub>H<sub>23</sub>NO<sub>10</sub> calc.: C, 53.64; H, 5.45; N, 3.31%).

(b) With methyl nitroacetate. Conventional treatment of the crude product (6-h reaction) with acetic anhydride–acetic acid–acetyl chloride (4:4:8 mL) at room temperature (16 h) and crystallisation from ether gave methyl 2,4-di-O-acetyl-5,7-O-benzyl-idene-3-deoxy-3-C-methoxycarbonyl-3-nitro-D-glycero- $\alpha$ -D-talo-heptoseptanoside (6; 0.49 g, 26%), m.p. > 260°,  $[\alpha]_D^{25} + 66^\circ$  (c 1, chloroform),  $\nu_{max}^{KBr}$  1783, 1566, 1374, and 1332 cm<sup>-1</sup>. For <sup>1</sup>H- and <sup>13</sup>C-n.m.r. data, see Tables I and III (Found: C, 52.30; H, 5.10; N, 3.15. C<sub>21</sub>H<sub>25</sub>NO<sub>12</sub> calc.: C, 52.17; H, 5.21; N, 2.90%).

Column chromatography (2:1 ether–hexane) of the material in the mother liquor gave 2,4-di-O-acetyl-5,7-O-benzylidene-3-deoxy-3-C-methoxycarbonyl-3-nitro-D-glycero- $\alpha$ -D-ido-heptoseptanoside (7; 0.54 g, 29%), m.p. 190–191°,  $[\alpha]_D^{25} + 53°$  (c 1, chloro-form);  $\nu_{max}^{KBr}$  1758, 1568, 1368, and 1351 cm<sup>-1</sup>. For <sup>1</sup>H- and <sup>13</sup>C-n.m.r. data, see Tables I and III (Found: C, 52.25; H, 5.18; N, 2.75. C<sub>21</sub>H<sub>25</sub>NO<sub>12</sub> calc.: C, 52.17; H, 5.21; N, 2.90%).

## ACKNOWLEDGMENTS

This work was supported by the CAICYT (Grant No PB85-0390) and the Consejería de Educación y Ciencia of the Junta de Andalucía.

## REFERENCES

- 1 G. Baschang, Justus Liebigs Ann. Chem., 663 (1963) 167-173.
- 2 M. L. Wolfrom, U. G. Nayak, and T. Radford, Proc. Natl. Acad. Sci. U.S.A., 58 (1967) 1848-1851.
- 3 M. E. Butcher and J. B. Lee, J. Chem. Soc., Chem. Commun., (1974) 1010–1011; M. E. Butcher and J. B. Lee, Tetrahedron Lett., (1974) 2663–2664; M. E. Butcher, J. C. Ireson, J. B. Lee, and M. J. Tyler, Tetrahedron, 33 (1977) 1501–1507.
- 4 F. Santoyo Gonzalez, A. Vargas Berenguel, J. Molina Molina, and P. Garcia Mendoza, J. Chem. Res. 91 (S) (1990) 272–273; (M) (1990) 2032–2049.
- 5 F. Santoyo Gonzalez and A. Vargas Berenguel, Tetrahedron, 46 (1990) 4083-4090.
- 6 (a) H. Kessler, C. Griesinger, J. Zarbock, and H. R. Loosli, J. Magn. Reson. Chem., 57 (1984) 331-336;
  (b) G. E. Martin and A. S. Zektzer, Magn. Reson. Chem., 26 (1988) 631-652; (c) J. L. Marshall, Methods Stereochem. Anal., 2 (1983) 11-33.
- 7 N. L. Allinger and J. T. Sprague, J. Am. Chem. Soc., 95 (1973) 3893–3907; J. Kao and N. L. Allinger, ibid., 99 (1977) 975–986.
- 8 E. Osawa and C. Jaime, QCPE, 19 (1985) Program N° 461; P. A. Petillo, 3JHHPC (QCMP025), QCPE, 7 (1987) 50.
- 9 C. A. G. Hasnoot, F. A. M. M. De Leeuw, and C. Altona, Tetrahedron, 36 (1980) 2783-2792.
- 10 R. D. Guthrie and J. Honeyman, J. Chem. Soc., (1959) 2441–2448; A. S. Perlin, Can. J. Chem., 44 (1966) 539–550.