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Abstract Direct functionalization of alkenes and direct transformation of carboxamides are two exciting areas that have attracted considerable attention 
in recent years. We report herein that secondary amides, the least reactive derivatives of carboxylic acids, upon activated with triflic anhydride, can serve 
as effective hydroacylating reagents in partner with alkenes to yield ketones at ambient temperature. The method was applied to the one-step synthesis 
of racemic dihydro-ar-turmerone. In this method, alkenes serve as surrogates of organometallic reagents, which allows the orthogonal chemoselective 
reactions. The ready availability of many olefins such as camphene and norbornene permits one-step ketone synthesis that would require several steps by 
conventional methods. 

 

Introduction 
In organic chemistry, ketone is one of the most versatile 

functional groups for C–C bond formation. Numerous methods 
have been developed for the synthesis of ketones.1 Among them, 
the conversion of carboxylic acid derivatives into ketones by 
addition of organometallic reagents occupy a central position. 
However, due to the well-known problem of over addition, 
indirect methods consisting of pre-conversion of carboxylic acids 
or esters into specially designed carboxylic derivatives such as 
thioesters2 or chelating amides such as N-methyl-N-methoxy 
amides (Weinreb’s amides), 3 followed by organometallic reagents 
addition, are employed routinely for the synthesis of ketones from 
carboxylic acids and esters (Scheme 1, a). Nevertheless, the 
above-mentioned methods cannot be used for the synthesis of 
ketones from common carboxamides (N-monoacylamines), the 
least reactive carbonyl compounds. Carboxamides are easily 
available4 and bench stable compounds, and amide group is 
widely used as a directing group for both classical metalation – 
functionalization5 and modern C–H functionalization.6 Thus, the 
transformation of common carboxamides into ketones is in high 
demand. 

In recent years, the direct transformations of amides have 
attracted considerable attention,7 which cumulated in a number of 
chemoselective C–C bond forming methods.8 However, the direct 
conversion of amides to ketones remains rare. In 2012, the 
Charette’s group9 and our group10 reported independently the 
chemoselective syntheses of ketones by addition of 
organometallic reagents (RMgX/R2Zn;9 RMgX/RLi-CeCl3

10) to triflic 
anhydride (Tf2O)/2-F-Pyr.-activated secondary amides (Scheme 1, 
b). In 2015, our group also developed a ketone synthesis by 
addition of Grignard reagents to Tf2O/DTBMP-activated tertiary 

amides (Scheme 1, b).11  
In all the above-mentioned methods, organometallic reagents 

are used as the alkylating reagents. In classical organic chemistry, 
reactive organometallic reagents such as organolithium and 
Grignard reagents represent the most versatile carbon 
nucleophiles for C–C bond formation. In the context of developing 
chemoselective and sustainable transformation, the major 
concern in contemporary organic synthesis,12 the use of 
organometallic reagents as alkylating agents presents several 
drawbacks. For example, organometallic reagents need to be 
prepared from a stoichiometric amount of organic halides and a 
stoichiometric amount of metals in an anhydrous organic solvent. 
Moreover, the inherent high reactivity of organometallic reagents 
(highly nucleophilic, highly basic, and highly hygroscopic) make 
them of low functional group tolerance towards both electrophilic 
and nucleophilic partners. 

Olefins are a class of abundant chemical feedstocks. The 
functionalization of alkenes has attracted considerable attention 
in recent years.1a,13 Recently, we have developed mild methods for 
the coupling of alkenes and arenes with N-(2,6-dimethyl) 
secondary amides 1A to give a,b-unsaturated enones 4 and 
aromatic ketones, respectively (Scheme 1, c). In those reactions, 
alkenes/ arenes serve as mild alternates of alkenyl/aryl carbanions 
A.14 During one of those investigations, we discovered that upon 
activating with triflic anhydride (Tf2O), secondary amide 1B can 
couple with styrene (3A) and allyltrimethylsilane (3B) to yield 
saturated ketones 2A and 2B, respectively (Scheme 1, d).10b 
Recognizing the importance and challenging of this reaction, a 
systematic investigation on this reaction was undertaken.15 Very 
recently, Maulide and coworkers have reported a similar 
reaction.16 This prompted us to report our own findings that is 
summarized in Scheme 1, e. Our results show that alkenes can be 
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used as surrogates of highly reactive alkyl metallic reagents (alkyl 
carbanions B) for the direct transformation of secondary amides 1 
into aryl-alkyl ketones and alkyl-alkyl ketones 2. 
 
Results and Discussion 

To start our investigation, the coupling of amide 1a with styrene 
(3A) was reexamined (Scheme 2). According to our previous 
protocol,10b a 0.25 M solution of amide 1B and 2-fluoropyridine 
(1.2 equiv) in CH2Cl2 was exposed to Tf2O (1.1 equiv) at 0 °C for 15 
min, and the resulted activated intermediated was treated with 
styrene (3.0 equiv) at rt for 3 h. After work-up with 2 M HCl, the 
desired ketone 2A10b was isolated in 62% yield, along with 
a,b-enimine 6a14a,c in 25% yield. Similarly, the reaction of amide 
1a produced ketone 2A in 63% yield and a,b-enimine 6b in 25% 
yield. For the later reaction, if acidic work-up was performed by 
refluxing the reaction mixture in 3 M HCl/ EtOH for 6 h, ketone 2A 
and a,b-enone 4A14a,c were obtained in 64% and 24% yield, 
respectively. To our delight, the reaction of a-methylstyrene (3a) 
with 1a yielded, after work up with an aqueous NH4Cl, ketone 2a 
in 85% yield, and only trace of enone 4a was observed. 

Scheme 1 Reported methods for ketones synthesis from carboxylic acids and 
derivatives and our synthetic plan 
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Scheme 2 Reinvestigation and preliminary investigation of the couplings of 

amides 1B and 1a with styrene 
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Next, we selected N-i-propylbenzamide (1a) as a prototype 

amide substrate, and a-methylstyrene (3a), a bulk chemical used 
in the polymer industry, as a nucleophile for our investigation. In 
view of the successful use of Tf2O as a powerful amide activating 
agent in our previous investigations, we opted for this easily 
available reagent for amide activation, and the effect of base 
partner was first examined. It was encouraging to observe that 
treating a mixture of amide 1a and Tf2O with a-methylstyrene (3a) 
resulted in the clean formation of the desired ketone 2a in 30% 
yield, along with the recovered starting amide in 59% yield (Table 
1, entry 1). Whereas yield of 2a was slightly improved with the use 
of triethylamine, pyridine is detrimental for the reaction. 
Encouragingly, good yields of 2a were obtained by employing 
pyridine derivatives such as 2-chloropyridine (2-Cl-Pyr.), 
2-fluoropyridine (2-F-Pyr.), 2,6-di-tert-butylpyridine (DTBP), and 
2,6-di-tert-butyl-4-methylpyridine (DTBMP), and 2-F-Pyr. turned 
out to be the most efficient base partner examined, affording the 
desired ketone 2a in 88% yield (determined by NMR, 85% isolated 
yield). A survey of amount of nucleophile 3a showed that 1.2 equiv. 
to be optimal, which produced ketone 2a in 88% NMR yield (85% 
isolated yield) (see Table S1 in supporting information). 

 
Table 1. Screening of base. 
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equiv) 
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(0.25 M), 0 ºC, 15 min

3a (1.2
 
equiv)  

Entry Base (1.2 equiv) 2a (% yield)a 1a (% yield)a 
1 None 30 59 
2 Et3N 45 15 
3 Pyr. 10 75 
4 2-Cl-Pyr. 60 trace 
5 2-F-Pyr. 88 (85)b trace 
6 DTBP 75 trace 
7 DTBMP 82 trace 

 
With the optimal reaction conditions in hand, the scope of 

amide substrate was surveyed, and the results are summarized in 
Table 2. The substituent effect on the phenyl ring was first 
examined. The reaction worked smoothly with benzamide 

derivatives bearing either an electron-donating group (Me, OMe, 
entries 2 and 3) or an electron-withdrawing group at para- and 
meta-positions (Br, 3,4-diCl, entries 4 and 5). Attenuate yields (67% 
and 69%) were obtained from m- and o-bromobenzamides 
(entries 6 and 7), which might due to steric hindrance for the latter 
case. Remarkably, the reaction demonstrated excellent functional 
group tolerance.9 Benzamide derivatives bearing sensitive 
substituents: nitro, cyano, ester, acetate, ketone, and even 
aldehyde (formyl) groups reacted chemoselectively at the least 
reactive secondary amide group to give the corresponding 
functionalized ketones 2h - 2m in respectable 61% to 80% yields 
(entries 8 - 13). Similar chemoselectivity was observed for 
benzamides bearing a p-phenyldiazenyl and acetal groups (entries 
14 and 15). Tertiary and secondary amide groups can also be 
distinguished with the latter being more reactive (entry 16). Good 
yields were obtained from N-isopropyl-2-naphthamide (1q) and 
electron-rich N-isopropylbenzo[b]thiophene-2-carboxamide (1r) 
(entries 17 and 18). 

The reaction could be extended to both a,b–unsaturated 
(entry 19) and aliphatic amides (entries 20 and 21). Moreover, 
secondary amides bearing other N-substituents such as primary 
benzyl and allyl groups (entries 23 and 24) could be used as viable 
substrates. Interestingly, the reaction of amide bearing a 
secondary alkyl group 1y yield, besides the desired ketone 2a in 78% 
yield, another ketone 7a in 65% yield (entry 25). The isolation of 
4-phenylbutan-2-one (7a) is significant for understanding the 
mechanism of the reaction (vide infra). 
Table 2. Amide scopea 
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a 
Isolated yield; b

 
The coupling step run at 40 °C.
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We next examined the scope of alkene (Table 3). Excellent yields 

were obtained from a-methylstyrenes bearing an 
electron-donating group (3b: Me, 90%; 3c: OMe, 92%) at 
para-position of the prop-1-en-yl group, and an 82% yield was 
obtained from a-methyl-(p-chlorostyrene)(3d). Other 
prop-1-en-2-ylarenes such as 2-(prop-1-en-2-yl)naphthalene (3e) 
and 2-(prop-1-en-2-yl)thiophene (3f) reacted with similarly 
efficiency, but 10% of the eliminated side product (4a) was also 
yielded from 3f. The yield (72%) from the reaction of 
ethene-1,1-diyldibenzene (3g) is lower than expected, whereas 
that (71%) from cyclopropylvinyl derivative (4h) is higher than 
expected considering a possible rearrangement. Apart from 
prop-1-en-2-ylarenes, alkenes can be extended to non-styrene 
derivatives such as 2,2-disubstituted terminal alkenes (3i and 3j). 
Significantly, naturally occurring and commercially available 
terpenes camphene (3k) and norbornene (3l), a special 
1,2-dialkylalkene, served as excellent alkene partners furnishing 
the corresponding ketones in excellent yields (2af: 83%; 2ag: 91%) 
as single diastereomer. Although the stereochemistries of the 

products were not determined, in light of our recent results,17 
exo-substituted diastereomers were assume.  

The advantages of using neutral alkenes as surrogates of 
reactive organometallic reagents (alkyl carbanions) is multiple. On 
one hand, not only it allows the use of amides bearing sensitive 
functional groups (e.g. 1h - 1p), but also it permits employing 
functionalized alkenes. The latter feature is showcased by alkenes 
3m – 3p bearing OTBS, OAc, and chloro substituents. On the other 
hand, the ready availability of many olefins such as commercially 
available terpenes camphene (3k) and norbornene (3l), as 
compared with the corresponding carbanions or organohalides 
represents another singular feature of the method. Interestingly, 
depending on the work-up conditions, phenol acetate in 3p could 
either survival from the reaction or cleaved concomitantly to 
deliver directly free phenol group. Such features are not possible 
for the traditional addition reactions employing RM as 
nucleophiles. 
Table 3. Alkene scope 
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Because secondary amides are products of many synthetic 

methodologies,4 the transformation of such products were 
envisioned (Scheme 3). In 2014, Fu reported a mild method for the 
synthesis of secondary amides featuring photoinduced, 
copper-catalyzed alkylation of amides with unactivated secondary 
alkyl halides at room temperature.4a The coupling of one of its 
product  
1z with a-methylstyrene (3a) yielded ketone 2v in 70% yield, along 
with ketone 7a in 35% yield. The hydroacylation of 
a-methylstyrene (3a) with amide 1aa, a Beak’s secondary amide 
directed methylation product,5b afforded ketone 2am in 81% yield. 
The reaction of a-methylstyrene (3a) with o-iodobenzamide 1ab, a 
secondary amide-directed C–H functionalization product 
described by Glorius,6d afforded ketone 2an in 44% yield, along 
with enamine 6c in 46% yield. 

(+)-(S)-ar-turmerone (8) and (+)-(S)-dihydro-ar-turmerone (9) 
belong to bisabolane-type sesquiterpenoids.18 These 
sesquiterpenoids possess a variety of biological activities including 
acetylcholinesterase inhibitory activity.18b To further demonstrate 
the synthetic potential of our method, the synthesis of 
dihydro-ar-turmerone (9) was undertaken. Simply by subjecting 
amide 1ac to the standard hydroacylation with a-methylstyrene 
derivative (3b), the desired racemic dihydro-ar-turmerone (9) was 
synthesized in 73% yield. 

 
Scheme 3. The transformation of amides available by modern synthetic 
methodologies 
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A plausible mechanism for the hydroacylation reaction is 
depicted in Scheme 5. Central to the mechanism is the generation 
of a highly reactive nitrilium intermediate B upon treatment of a 
secondary amide with Tf2O, which has been detected in our 
previous work by both in situ IR and 2D NMR techniques.14a,19 
Another key point resides in the 1,5-hydride transfer that has been 
suggested when this reaction was discovered for the first time.10b 
The easy release of a ketone from the reaction just by work up 
with a sat. aqueous NH4Cl is in support of the reactive 
intermediate D. The observation of the formation of 6 and 7 in 
some cases provides supports for the suggested mechanism. 
Moreover, the formation of enimine 6c (Scheme 3) as the major 
product can be understood in terms of an intramolecular I⋅⋅⋅⋅H 
interaction (cf. G in Scheme 5), which favors the b-elimination, and 
yields 6c as the major product.  
 
Scheme 4. One-step synthesis of racemic dihydro-ar-turmerone 
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Conclusions 
Starting from our recent finding, we have established an 

expedient and sustainable method for the synthesis of ketones 
from alkenes and amides. Running at room temperature, and 
employing neutral alkenes to replace conventionally used highly 
basic organometallic reagents as nucleophiles, the reactions 
conditions are quite mild. As a result, several sensitive functional 
groups on either nucleophilic partner (alkenes) or nucleophilic 
partner (amides) are tolerated. Moreover, the use of abundant 
and stable chemical feedstocks such as bulk chemicals 
a-methylstyrene, naturally occurring camphene and norbornene, 
permits one-step ketone synthesis that would require several 
steps by conventional methods. A detailed mechanism featuring a 
1,5-hydride transfer is suggested, which is supported by the 
isolation of several side-products. Further exploration of this 
method is ongoing in our laboratories, and the results will be 
reported in due course. 

Experimental 
General procedure for the direct hydroacylation of alkenes 

with secondary amides to give ketones. 

Tf2O (185 μL, 1.1 mmol, 1.1 equiv) was added dropwise to a 
cooled (0 °C) solution of a secondary amide (1.0 mmol, 1.0 equiv) 
and 2-fluoropyridine (103 μL, 1.2 mmol, 1.2 equiv) in 
dichloromethane (4 mL, 0.25 M). The reaction was stirred for 15 
min at 0 °C. To the resulting mixture, an alkene (1.2 mmol, 1.2 
equiv) was added dropwise at 0 °C. The mixture was allowed to 
warm-up to room temperature (or 40 °C) and stirred for 3 h. The 
reaction was quenched with a saturated aqueous NH4Cl solution 
(3 mL), and the mixture was extracted with CH2Cl2 (3 × 10 mL). The 
combined organic layers were washed with a saturated aqueous 
solution of sodium carbonate (5 mL) and brine (5 mL), dried over 
anhydrous Na2SO4, filtered, and concentrated under reduced 
pressure. The residue was purified by column chromatography on 
silica gel eluting with ether/petroleum ether to afford the desired 
ketone. 
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We report the Tf2O-mediated hydroacylation of alkenes with secondary amides, which constitutes 
a mild and versatile method for ketone synthesis. The use of cheap feedstock alkenes as surrogates 
of organometallic reagents for selective addition to secondary amides, the least reactive carboxylic 
acid derivatives, presents several advantages. 
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