Research Paper

Rhodium(III)-catalyzed one-pot synthesis of flavonoids from salicylaldehydes and sulfoxonium ylides

Journal of Chemical Research 1–7 © The Author(s) 2019 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1747519819867230 journals.sagepub.com/home/chl

(S)SAGE

Kang Cheng, Jinkang Chen, Licheng Jin, Jian Zhou, Xinpeng Jiang and Chuanming Yu 🕞

Abstract

Rh(III)-catalyzed C–H activation of salicylaldehyde followed by an insertion reaction with sulfoxonium ylides and cyclization is applied to the synthesis of flavonoids. This one-pot strategy exhibits good functional group tolerance and gives flavones in moderate-to-good yields.

Keywords

C-H functionalization, rhodium, salicylaldehyde, sulfoxonium ylide

Date received: 8 March 2019; accepted: 11 July 2019

Introduction

Flavonoids are a class of natural products with various biological activities¹⁻⁷ and are widely used in medicines,^{8,9} such as nobiletin,10,11 luteolin,12-15 and flavone-8-acetic acid.16 Therefore, the development of efficient methods to synthesize flavonoid scaffolds remains a topic of interest.¹⁷⁻²⁴ In recent years, transition metal catalyzed C-C bond and C-hetero bond formation are effective methods for the synthesis of flavonoids.^{25,26} Baruah et al.²⁷ developed Ru(II)-catalyzed C-H activation and annulations of salicylaldehydes and alkynes to afford flavonoids (Scheme 1(a)). Sun et al.²⁸ prepared flavonoids via Rh(III)-catalyzed selective cyclization of salicylaldehyde and diazo compounds (Scheme 1(b)). These reactions showed significant advances in building the flavonoid scaffold, but these methods demonstrated some limitations, such as moderate yields and the employment of potentially dangerous diazo compounds. Recently, sulfoxonium ylides have received wide attention²⁹ as safer carbene precursor.^{30–35} Based on our previous research on C-H bond activation^{36,37} and heterocyclic chemistry, herein we report an efficient one-pot synthesis of flavonoids via Rh(III)-catalyzed C-H bond

activation and annulation of salicylaldehydes^{23,27} with sulfoxonium ylides (Scheme 1(c)).

Results and discussion

We envisaged that Rh(III)-catalyzed C–H activation of salicylaldehyde followed by the insertion reaction with the sulfoxonium ylide and cyclization might afford 2-phenyl-4*H*-chromen-4-one (**3aa**).^{38–41} A preliminary attempt with 2.5 mol% of [Cp*RhCl₂]₂ and 1 equiv. of NaOAc in dichloroethane (DCE) was demonstrated to be effective, giving the desired product **3aa** in 56% yield after the acid-promoted

Corresponding authors:

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China

Chuanming Yu, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Rd., Hangzhou 310014, P.R. China. Email: ycm@zjut.edu.cn

Xinpeng Jiang, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 chaowang Rd., Hangzhou 310014, P.R. China. Email: xjiang@zjut.edu.cn

cyclization (Table 1, entry 1). Among a set of representative additives including NaOAc and AgOAc, CsOAc was optimal, promoting the yield of **3aa** to 86% (entries 1–5). Furthermore, decreasing the additive loading to 0.5 equiv. did not diminish the yield (entry 6). Different solvents, such as MeOH, dioxane, toluene, acetonitrile, and acetic acid, were also screened; however, none of them gave higher yields compared to DCE (entries 7–11). After optimizing the reaction time and temperature, the highest yield (89%) was obtained (entries 12–14). Finally, a control experiment revealed that omission of [Cp*RhCl₂]₂ completely inhibited the reaction (entry 15).

Scheme I. Synthesis of flavonoids from salicylaldehydes.

Table 1. Optimization of the reaction conditions^a.

With optimized reaction conditions in hand, we sought to evaluate the scope and generality of the salicylaldehydes in this reaction (Table 2). Salicylaldehydes bearing electron-donating substituents such as methyl and methoxy groups at 5-position gave the corresponding products 3ea and 3ga in 81% and 93% yields, respectively. Halides were also tolerated under the standard conditions, which provided the desired products 3ba-3da in 92%-94% yields. In contrast, a substrate with a strongly electron-withdrawing nitro groups gave a lower yield in this reaction, delivering the corresponding product 3fa in 36% yield. Steric effects were also investigated in this reaction; when the C3 position and C4 position of the salicylaldehydes contained Cl, Br, Me, or methoxy groups, the reactions proceeded well to provide 3ha-3la in 73%-93% yields. To our delight, a hydroxy group substituted piperonal also provided the desired product 3ma in 64% yield.

Subsequently, the scope of the sulfoxonium ylides was explored (Table 3). Sulfoxonium ylides bearing various electron-donating (Me and OMe) and electron-withdrawing groups (F, Cl, Br, and CF₃) on the phenyl ring reacted smoothly with **1a** to afford corresponding products **3ab–3al** in 73%–95% yields. It is worth noting that not only aryl-substituted sulfoxonium ylides, but also alkyl-substituted substrates could be transformed into the desired products, for example, **3am** and **3ap** in high yields (91% and 95%). Furthermore, thiophene- and naphthalene-substituted sulfoxonium ylides afford electron-donating products **3an** and **3ao** in 87% and 93% yield, respectively.

	$ \begin{array}{c} 0 & 0 & 0 \\ & H \\ 0 & H \\ 1a & 2a \end{array} $	i) [Cp*RhCl ₂] ₂ (2.5 mol% additive, solvent,100°C ii) H ₂ SO ₄ /HOAc (1% v/ 100 °C, 3 h	b), O , time /v) 3aa	
Entry	Additive (equiv.)	Solvent	Time (h)	Yield ^ь (%)
1	NaOAc (I)	DCE	12	56
2	HOAc (I)	DCE	12	12
3	AgOAc (I)	DCE	12	80
4	CsOAc (I)	DCE	12	86
5	-	DCE	12	<5
6	CsOAc (0.5)	DCE	12	87
7	CsOAc (0.5)	MeOH	12	Trace
8	CsOAc (0.5)	Dioxane	12	67
9	CsOAc (0.5)	Toluene	12	26
10	CsOAc (0.5)	CH ₃ CN	12	71
11	CsOAc (0.5)	HOAc	12	<5
12	CsOAc (0.5)	DCE	6	89
13°	CsOAc (0.5)	DCE	6	71
 4 ^d	CsOAc (0.5)	DCE	6	87
15 ^e	CsOAc (0.5)	DCE	6	-

^aReaction conditions: (1) **Ia** (0.2 mmol), **2a** (0.3 mmol, 1.5 equiv.), base (0.5 equiv.), [Cp*RhCl₂]₂ (2.5 mol%) solvent (2.0 mL), 100 °C, Ar. (2) H₂SO₄/HOAc (1% v/v, I mL), 100 °C, 3 h.

^blsolated yields.

°At 80 °C.

^dAt I20°C

eIn the absence of [Cp*RhCl₂]₂.

The bold-faced values indicated the optimized conditions in this table.

Table 2. Substrate scope of salicylaldehydes^a.

	$R \stackrel{O}{\Vdash} H + I \stackrel{O}{\parallel} S \stackrel{O}{\sqcup} S \stackrel{O}{\parallel} S \stackrel{O}{\sqcup} $	i) $[Cp*RhCl_2]_2(2.5 \text{ mol }\%),$ CsOAc, DCE,100°C , 6 h ii) $H_2SO_4/HOAc (1\% \text{ v/v})$ 100 °C, 3 h	O J J J J J J J J J J J J J J J J J J J
Entry	Product	R	Yield ^b (%)
1	3aa	Н	89
2	3ba	5-F	93
3	3ca	5-CI	94
4	3da	5-Br	92
5	3ea	5-Me	81
6	3fa	5-NO ₂	36
7	3ga	5-MeO	93
8	3ha	4-Cl	88
9	3ia	4-Me	81
10	3ja	3-Br	73
11	3ka	3-Me	89
12	3la	3-MeO	93
13	3ma	1,3-Benzodioxole	64

^aReaction conditions: (1) **1a** (0.2 mmol), **2a** (0.3 mmol, 1.5 equiv.), CsOAc (0.5 equiv.), [Cp*RhCl₂]₂ (2.5 mol%), DCE (2.0 mL), 100 °C, Ar. (2) H₂SO₄/ HOAc (1% v/v, 1 mL), 100 °C, 3 h.

^blsolated yields.

Table 3. Substrate scope of the sulfoxonium ylides^a.

O H H H	0 R 2	i) [Cp*RhCl ₂] ₂ (2.5 mol %), CsOAc, DCE,100°C , 6 h ii) H ₂ SO ₄ /HOAc (1% v/v) 100°C, 3 h	→ → → → → → → → → →
Entry	Product	R	Yield ^₅ (%)
I	3ab	4-F-C ₆ H ₄	88
2	3ac	4-CI-C ₆ H ₄	87
3	3ad	$4-Br-C_6H_4$	89
4	3ae	4-Me-C ₆ H ₄	92
5	3af	4-F ₃ C-C ₆ H ₄	88
6	3ag	4-MeO-C ₆ H ₄	75
7	3ah	2-CI-C ₆ H ₄	74
8	3ai	2-Me-C ₆ H ₄	83
9	3aj	2-MeO-C ₆ H ₄	95
10	3ak	3-Me-C ₆ H₄	77
11	3al	3-Br-C ₆ H ₄	73
12	3am	$C(CH_3)_3$	91
13	3an	2-Thienyl	87
14	3ao	2-Naphthyl	93
15	Зар	I-Adamantyl	95

^aReaction conditions: (1) **1a** (0.2 mmol), **2a** (0.3 mmol, 1.5 equiv.), CsOAc (0.5 equiv.), [Cp*RhCl₂]₂ (2.5 mol%), DCE (2.0 mL), 100 °C, Ar. (2) H₂SO₄/ HOAc (1% v/v, 1 mL), 100 °C, 3 h. ^bIsolated yields.

Based on previous literature reports on related systems, 28,31,34,42,43 a plausible reaction mechanism is proposed in Scheme 2. Initially, salicylaldehyde **1a** was activated by the Rh(III) catalyst to produce a rhodacyclic intermediate **A**. Next sulfoxonium ylide **2a** reacted with **A** to afford

intermediate **B**, which transformed into intermediate **C** by elimination of dimethyl sulfoxide (DMSO). Next, a sixmembered rhodacyclic intermediate **D** formed by migratory insertion of the Rh–C bond into the activated carbene. Protonation of **D** would release the catalyst and afford 4, which is transformed into product **3aa** via an acid-promoted cyclization.

Conclusion

In summary, we have described a Rh(III)-catalyzed one-pot synthesis of flavones via the reaction of salicylaldehydes and sulfoxonium ylides. The reaction exhibits good functional group tolerance with a broad range of substrates, affording with moderate-to-good yields of the products under optimized conditions. Further investigations on the synthetic applications of this method are currently underway in our laboratory.

Experimental section

All commercially available reagents were used as received unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) and visualized under UV light (254 nm). Melting points were determined using a Büchi B-540 capillary melting point apparatus. Nuclear magnetic resonance (NMR) spectra were recorded on Varian spectrometer (400 MHz) with CDCl₃ as the solvent and tetramethylsilane (TMS) as an internal standard. High-resolution mass spectra (HRMS) were recorded on an electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) System ESI spectrometer.

Scheme 2. Proposed reaction mechanism.

General procedure for the synthesis of 3

A sealed tube was charged with **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), $[Cp*RhCl_2]_2$ (0.005 mmol, 2.5 mol%), and CsOAc (0.1 mmol, 0.5 equiv.) in DCE (2 mL). After the reaction mixture had been stirred at 100 °C under Ar for 6 h, 1 mL of H₂SO₄/HOAc (10 µL of H₂SO₄ dissolved in 0.99 mL of HOAc) was added at room temperature. After completion of the addition, the reaction mixture was then stirred at 100 °C for 3 h before being cooled to room temperature. The mixture was diluted with EtOAc (20 mL), washed with brine, and dried over anhydrous Na₂SO₄. After removal of the EtOAc, the residue was purified by chromatography on basic silica gel (PE/ EtOAc=8/1) to afford **3aa** (40 mg, 89%) as a white solid.

2-Phenyl-4H-chromen-4-one (**3aa**): Product **3aa** was obtained as a white solid (40 mg, 89%); m.p.: 96–98 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.24 (1H, d, *J*=8.0 Hz, CH), 7.97–7.89 (2H, m, 2CH), 7.71 (1H, t, *J*=7.8 Hz, CH), 7.61–7.49 (4H, m, 4CH), 7.43 (1H, t, *J*=7.6 Hz, CH), 6.84 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =178.48 (C_q), 163.40 (C_q), 156.24 (C_q), 133.77 (CH), 131.75 (C_q), 131.59 (CH), 129.03 (CH), 126.28 (CH), 125.69 (CH), 125.22 (CH), 123.95 (C_q), 118.07 (CH), 107.58 (CH). HRMS (ESI): *m/z* calcd for C₁₅H₁₁O₂ [M + H]⁺: 223.0754; found: 223.0743.

6-Fluoro-2-phenyl-4H-chromen-4-one (**3ba**): Product **3ba** was obtained as a yellow solid (45 mg, 93%); m.p.: 105– 107 °C. ¹H NMR (400 MHz, CDCl₃): δ =7.96–7.83 (3H, m, 3CH), 7.63–7.50 (4H, m, 4CH), 7.43 (1H, t, *J*=8.0 Hz, CH), 6.82 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =177.63 (C_q), 163.69 (C_q), 160.81 (C_q), 158.35 (C_q), 152.45 (CH), 131.65 (d, ²*J*_{C-F}=28.2 Hz, C_q), 129.09 (CH), 126.31 (CH), 125.16 (d, ${}^{3}J_{C-F}$ =7.2 Hz, C_q), 121.91 (d, ${}^{2}J_{C-F}$ =25.6 Hz, CH), 120.16 (d, ${}^{3}J_{C-F}$ =8.0 Hz, CH), 110.64 (d, ${}^{2}J_{C-F}$ =23.8 Hz, CH), 106.90 (CH). HRMS (ESI): *m*/*z* calcd for C₁₅H₉FNaO₂ [M + Na]⁺: 263.0479; found: 263.0473.

6-Chloro-2-phenyl-4H-chromen-4-one (**3ca**): Product **3ca** was obtained as a yellow solid (48 mg, 94%); m.p.: 178–180 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.19 (1H, d, J=2.4Hz, CH), 7.97–7.84 (2H, m, 2CH), 7.64 (1H, dd, J=9.0, 2.4 Hz, CH), 7.58–7.50 (4H, m, 4CH), 6.83 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =177.19 (C_q), 163.65 (C_q), 154.53 (C_q), 133.93 (CH), 131.84 (C_q), 131.36 (CH), 131.17 (C_q), 129.09 (CH), 126.29 (CH), 125.15 (C_q), 124.91 (CH), 119.79 (CH), 107.46 (CH). HRMS (ESI): *m/z* calcd for C₁₅H₉ClNaO₂ [M+Na]⁺: 279.0183; found: 279.0175.

6-Bromo-2-phenyl-4H-chromen-4-one (**3da**): Product **3da** was obtained as a yellow solid (55 mg, 92%); m.p.: 192 –194 °C. ¹H NMR (400 MHz, CDCl₃): δ= 8.35 (1H, d, J = 2.4 Hz, CH), 7.91 (2H, dd, J = 8.0, 1.8 Hz, 2CH), 7.78 (1H, dd, J = 9.0, 2.6 Hz, CH), 7.58–7.50 (3H, m, 3CH), 7.47 (1H, d, J = 9.0 Hz, CH), 6.83 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): $\delta = 177.04$ (Cq), 163.65 (Cq), 154.96 (Cq), 136.69 (CH), 131.85 (CH), 131.32 (Cq), 129.08 (CH), 128.33 (CH), 126.29 (CH), 125.27 (Cq), 120.01 (CH), 118.64 (Cq), 107.52 (CH). HRMS (ESI): m/z calcd for C₁₅H₉BrNaO₂ [M + Na]⁺: 322.9678; found: 322.9686.

6-Methyl-2-phenyl-4H-chromen-4-one (3ea): Product 3ea was obtained as a yellow solid (38 mg, 81%); m.p.: 124– 126 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.02 (1H, s, CH), 7.97–7.89 (2H, m, 2CH), 7.59–7.43 (5H, m, 5CH), 6.82 (1H, s, CH), 2.47 (3H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =178.62 (C_q), 163.24 (C_q), 154.53 (C_q), 135.19 (CH), 134.98 (C_q), 131.88 (CH), 131.48 (C_q), 128.99 (CH), 126.25 (CH), 125.03 (CH), 123.62 (C_q), 117.82 (CH), 107.44 (CH), 20.94 (CH₃). HRMS (ESI): m/z calcd for C₁₆H₁₂O₂ [M + H]⁺: 237.0910; found: 237.0903.

6-Nitro-2-phenyl-4H-chromen-4-one (**3fa**): Product **3fa** was obtained as a yellow solid (19 mg, 36%); m.p.: 195– 197 °C. ¹H NMR (400 MHz, CDCl₃): δ =9.11 (1H, d, J=2.8 Hz, CH), 8.55 (1H, dd, J=9.0, 2.8 Hz, CH), 7.94 (2H, dd, J=8.0, 1.4 Hz, 2CH), 7.74 (1H, d, J=9.0 Hz, CH), 7.67–7.51 (3H, m, 3CH), 6.90 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =176.64 (C_q), 164.10 (C_q), 159.03 (C_q), 144.80 (C_q), 132.35 (CH), 130.72 (C_q), 129.26 (CH), 128.11 (CH), 126.41 (CH), 124.05 (CH), 122.48 (C_q), 119.81 (CH), 107.83 (CH). HRMS (ESI): *m/z* calcd for C₁₅H₁₀NO₄ [M + H]⁺: 268.0604; found: 268.0608.

6-Methoxy-2-phenyl-4H-chromen-4-one (**3ga**): Product **3ga** was obtained as a yellow solid (47 mg, 93%); m.p.: 161–163 °C. ¹H NMR (400 MHz, CDCl₃): δ=7.97–7.85 (2H, m, 2CH), 7.60 (1H, d, *J*=3.0 Hz, CH), 7.55–7.48 (4H, m, 4CH), 7.30 (1H, dd, *J*=9.0, 3.0 Hz, CH), 6.83 (1H, s, CH), 3.91 (3H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =178.41 (C_q), 163.12 (C_q), 156.97 (C_q), 151.06 (C_q), 131.84 (C_q), 131.46 (CH), 128.99 (CH), 126.21 (CH), 124.64 (C_q), 123.80 (CH), 119.49 (CH), 106.86 (CH), 104.78 (CH), 55.92 (CH₃). HRMS (ESI): *m/z* calcd for C₁₆H₁₃O₃ [M + H]⁺: 253.0859; found: 253.0849.

7-*Chloro-2-phenyl-4*H-*chromen-4-one* (**3ha**): Product **3ha** was obtained as a yellow solid (45 mg, 88%); m.p.: 159–161 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.17 (1H, d, *J*=8.6Hz, CH), 7.90 (2H, d, *J*=6.6Hz, 2CH), 7.61 (1H, s, CH), 7.54 (3H, d, *J*=6.8Hz, 3CH), 7.39 (1H, d, *J*=8.2Hz, CH), 6.82 (1H, s, CH).¹³C NMR (101 MHz, CDCl₃): δ =177.94 (C_q), 163.51 (C_q), 156.34 (C_q), 139.75 (C_q), 131.82 (C_q), 131.32 (CH), 129.09 (CH), 127.06 (CH), 126.26 (CH), 126.06 (CH), 122.83 (C_q), 118.17 (CH), 107.87 (CH). HRMS (ESI): *m/z* calcd for C₁₅H₉ClNaO₂ [M + Na]⁺: 279.0183; found: 279.0174.

7-*Methyl-2-phenyl-4*H-*chromen-4-one* (**3ia**): Product **3ia** was obtained as a yellow solid (38 mg, 81%); m.p.: 124–126 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.11 (1H, d, *J*=8.0Hz, CH), 7.96–7.87 (2H, m, 2CH), 7.52 (3H, d, *J*=4.0Hz, 3CH), 7.38 (1H, s, CH), 7.23 (1H, d, *J*=8.0Hz, CH), 6.80 (1H, s, CH), 2.51 (3H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =178.42 (C_q), 163.10 (C_q), 156.37 (C_q), 145.10 (C_q), 131.87 (C_q), 131.46 (CH), 128.99 (CH), 126.70 (CH), 126.21 (CH), 125.41 (CH), 121.68 (CH), 117.83 (C_q), 107.50 (CH), 21.84 (CH₃). HRMS (ESI): *m/z* calcd for C₁₆H₁₂NaO₂ [M + Na]⁺: 259.0730; found: 259.0724.

8-Bromo-2-phenyl-4H-chromen-4-one (**3ja**): Product **3ja** was obtained as a yellow solid (44 mg, 73%); m.p.: 174–176 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.18 (1H, d, J=8.8Hz, CH), 8.05–8.00 (2H, m, 2CH), 7.92 (1H, d, J=8.4Hz, CH), 7.60–7.51 (3H, m, 3CH), 7.30 (1H, t, J=7.8Hz, CH), 6.88 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =177.84 (C_q), 163.34 (C_q), 152.73 (C_q), 137.14 (CH), 131.95 (C_q), 131.20 (CH), 129.16 (CH), 126.46 (CH), 125.82 (CH), 125.32 (CH), 125.07 (C_q), 111.98 (C_q), 107.19 (CH). HRMS (ESI): *m/z* calcd for C₁₅H₉BrNaO₂ [M + Na]⁺: 322.9678; found: 322.9669.

8-Methyl-2-phenyl-4H-chromen-4-one (3ka): Product 3ka was obtained as a yellow solid (42 mg, 89%); m.p.:

164–166 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.07 (1H, d, J=7.8 Hz, CH), 7.98–7.90 (2H, m, 2CH), 7.57–7.49 (4H, m, 4CH), 7.30 (1H, t, J=7.6 Hz, CH), 6.84 (1H, s, CH), 2.61 (3H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =178.85 (C_q), 162.86 (C_q), 154.66 (C_q), 134.69 (C_q), 132.01 (C_q), 131.53 (CH), 129.07 (CH), 127.49 (CH), 126.16 (CH), 124.73 (CH), 123.82 (CH), 123.28 (C_q), 107.29 (CH), 15.83 (CH₃). HRMS (ESI): *m*/*z* calcd for C₁₆H₁₂NaO₂ [M + Na]⁺: 259.0730; found: 259.0720.

8-Methoxy-2-phenyl-4H-chromen-4-one (**3la**): Product **3la** was obtained as a yellow solid (46 mg, 93%); m.p.: 197–199 °C. ¹H NMR (400 MHz, CDCl₃): δ =7.99–7.95 (2H, m, 2CH), 7.78 (1H, dd, *J*=8.0, 1.0 Hz, CH), 7.54– 7.50 (3H, m, 3CH), 7.33 (1H, t, *J*=8.0 Hz, CH), 7.22–7.15 (1H, m, CH), 6.85 (1H, s, CH), 4.03 (3H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =178.46 (C_q), 163.01 (C_q), 149.09 (C_q), 146.62 (C_q), 131.79 (C_q), 131.54 (CH), 129.00 (CH), 126.33 (CH), 124.91 (CH), 124.81 (C_q), 116.39 (CH), 114.40 (CH), 107.31 (CH), 56.35 (CH₃). HRMS (ESI): *m/z* calcd for C₁₆H₁₂NaO₃ [M + Na]⁺: 275.0679; found: 275.0672.

6-Phenyl-8H-[1,3]dioxolo[4,5-g]chromen-8-one (**3ma**): Product **3ma** was obtained as a yellow solid (34 mg, 64%); m.p.: 207–209 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.90–7.86 (2H, m, 2CH), 7.60–7.46 (4H, m, 4CH), 6.97 (1H, s, CH), 6.77 (1H, s, CH), 6.12 (2H, s, CH₂). ¹³C NMR (101 MHz, CDCl₃): δ =177.41 (C_q), 162.70 (C_q), 153.49 (C_q), 152.76 (C_q), 146.18 (C_q), 131.71 (C_q), 131.34 (CH), 128.99 (CH), 126.04 (CH), 118.98 (C_q), 106.98 (CH), 102.42 (CH), 102.31 (CH₂), 98.04 (CH). HRMS (ESI): *m/z* calcd for C₁₆H₁₁O₄ [M + H]⁺: 267.0652; found: 267.0655.

2-(4-Fluorophenyl)-4H-chromen-4-one (**3ab**): Product **3ab** was obtained as a yellow solid (42 mg, 88%); m.p.: 145–147 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.31–8.16 (1H, m, CH), 7.97–7.91 (2H, m, 2CH), 7.78–7.67 (1H, m, CH), 7.57 (1H, d, *J*=8.4 Hz, CH), 7.43 (1H, t, *J*=7.6 Hz, CH), 7.22 (2H, t, *J*=8.6 Hz, 2CH), 6.78 (1H, s, CH).¹³C NMR (101 MHz, CDCl₃): δ =178.30 (C_q), 164.73 (d, ¹*J*_{C-F}=253.2 Hz, C_q), 162.37 (C_q), 156.15 (C_q), 133.82 (CH), 128.48 (d, ³*J*_{C-F}=9.0 Hz, CH), 127.96 (d, ⁴*J*_{C-F}=3.2 Hz, C_q), 125.72 (CH), 125.30 (CH), 123.87 (C_q), 117.99 (CH), 116.28 (d, ²*J*_{C-F}=22.0 Hz, CH), 107.36 (CH). HRMS (ESI): *m*/z calcd for C₁₃H₁₀FO₂ [M+H]+: 241.0659; found: 241.0662.

2-(4-Chlorophenyl)-4H-chromen-4-one (**3ac**): Product **3ac** was obtained as a yellow solid (45 mg, 87%); m.p.: 185–187 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.23 (1H, dd, *J*=8.0, 1.4 Hz, CH), 7.87 (2H, d, *J*=8.6 Hz, 2CH), 7.75–7.67 (1H, m, CH), 7.56 (1H, d, *J*=8.4 Hz, CH), 7.50 (2H, d, *J*=8.6 Hz, 2CH), 7.43 (1H, t, *J*=7.6 Hz, CH), 6.80 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =178.23 (C_q), 162.17 (C_q), 156.12 (C_q), 137.85 (C_q), 133.89 (CH), 130.20 (CH), 129.35 (CH), 127.51 (C_q), 125.71 (CH), 125.35 (CH), 123.87 (C_q), 118.01 (CH), 107.66 (CH). HRMS (ESI): *m/z* calcd for C₁₅H₁₀ClO₂ [M + H]⁺: 257.0364; found: 257.0368.

2-(4-Bromophenyl)-4H-chromen-4-one (**3ad**): Product **3ad** was obtained as a yellow solid (54 mg, 89%); m.p.: 176–178 °C. ¹H NMR (400 MHz, CDCl₃): δ=8.29–8.18 (1H, m, CH), 7.80 (2H, d, J=8.6 Hz, 2CH), 7.74–7.69 (1H, m, CH), 7.67 (2H, d, J=8.6 Hz, 2CH), 7.57 (1H, d, J=8.2 Hz, CH), 7.43 (1H, t, J=7.6 Hz, CH), 6.81 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =178.28 (C_q), 162.25 (C_q), 156.13 (C_q), 133.91 (CH), 132.33 (CH), 130.67 (CH), 127.68 (C_q), 126.29 (C_q), 125.72 (CH), 125.37 (CH), 123.94 (C_q), 118.03 (CH), 107.70 (CH). HRMS (ESI): *m/z* calcd for C₁₅H₁₀BrO₂ [M+H]⁺: 300.9859; found: 300.9867.

2-(*p*-Tolyl)-4H-chromen-4-one (**3ae**): Product **3ae** was obtained as a yellow solid (43 mg, 92%); m.p.: 109–111 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.23 (1H, d, *J*=8.0 Hz, CH), 7.82 (2H, d, *J*=8.0 Hz, 2CH), 7.69 (1H, t, *J*=7.8 Hz, CH), 7.56 (1H, d, *J*=8.4 Hz, CH), 7.41 (1H, t, *J*=7.6 Hz, CH), 7.32 (2H, d, *J*=8.0 Hz, 2CH), 6.80 (1H, s, CH), 2.43 (3H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =178.44 (C_q), 163.57 (C_q), 156.20 (C_q), 142.22 (C_q), 133.62 (CH), 129.73 (CH), 128.90 (CH), 126.19 (C_q), 125.63 (CH), 125.09 (CH), 123.94 (C_q), 118.02 (CH), 106.93 (CH), 21.52 (CH₃). HRMS (ESI): *m*/z calcd for C₁₆H₁₃O₂ [M + H]⁺: 237.0910; found: 237.0914.

2-[4-(Trifluoromethyl)phenyl]-4H-chromen-4-one (**3af**): Product **3af** was obtained as a yellow solid (51 mg, 88%); m.p.: 139–141 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.24 (1H, d, J=8.0 Hz, CH), 8.05 (2H, d, J=8.2 Hz, 2CH), 7.80 (2H, d, J=8.2 Hz, 2CH), 7.74 (1H, t, J=7.8 Hz, CH), 7.60 (1H, d, J=8.4 Hz, CH), 7.45 (1H, t, J=7.6 Hz, CH), 6.88 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =178.17 (C_q), 161.58 (C_q), 156.17 (C_q), 135.16 (d, ⁴J_{C-F}= 1.0 Hz, C_q), 134.10 (C_q), 133.12 (d, ²J_{C-F}=33.0 Hz, CH), 126.62 (CH), 126.03 (q, ³J_{C-F}=3.8 Hz, CH), 125.78 (CH), 125.54 (CH), 123.92 (C_q), 123.58 (d, ¹J_{C-F}=272.6 Hz, C_q), 118.10 (CH), 108.73 (CH). HRMS (ESI): *m/z* calcd for C₁₆H₁₀F₃O₂ [M + H]⁺: 291.0627; found: 291.0632. The NMR data agree with those in a literature report.⁴⁴

2-(4-Methoxyphenyl)-4H-chromen-4-one (**3ag**): Product **3ag** was obtained as a yellow solid (38 mg, 75%); m.p.: 151–153 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.23 (1H, d, J=8.0 Hz, CH), 7.89 (2H, d, J=8.8 Hz, 2CH), 7.69 (1H, t, J=7.8 Hz, CH), 7.55 (1H, d, J=8.4 Hz, CH), 7.41 (1H, t, J=7.6 Hz, CH), 7.03 (2H, d, J=8.8 Hz, 2CH), 6.76 (1H, s, CH), 3.89 (3H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =178.34 (C_q), 163.40 (C_q), 162.38 (C_q), 156.15 (C_q), 133.54 (CH), 127.98 (CH), 125.63 (CH), 125.05 (CH), 123.98 (C_q), 123.88 (C_q), 117.93 (CH), 114.43 (CH), 106.14 (CH), 55.48 (CH₃). HRMS (ESI): *m*/z calcd for C₁₆H₁₂NaO₃ [M + Na]⁺: 275.0679; found: 275.0685.

2-(2-Chlorophenyl)-4H-chromen-4-one (**3ah**): Product **3ah** was obtained as a yellow solid (38 mg, 74%); m.p.: 113–115 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.26 (1H, d, J=7.8Hz, CH), 7.71 (1H, t, J=7.6Hz, CH), 7.64 (1H, d, J=7.0Hz, CH), 7.53 (2H, t, J=8.2Hz, 2CH), 7.49–7.38 (3H, m, 3CH), 6.66 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =178.13 (C_q), 162.63 (C_q), 156.57 (C_q), 133.91 (CH), 132.91 (C_q), 131.90 (C_q), 131.76 (CH), 130.79 (CH), 130.63 (CH), 127.07 (CH), 125.74 (CH), 125.33 (CH), 123.83 (C_q), 118.18 (CH), 112.99 (CH). HRMS (ESI): *m/z* calcd for C₁₅H₉ClNaO₂ [M + Na]⁺: 279.0183; found: 279.0184.

2-(o-Tolyl)-4H-chromen-4-one (**3ai**): Product **3ai** was obtained as a yellow oil (39 mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ =8.26 (1H, d, J=8.0 Hz, CH), 7.70 (1H, t,

J=7.8 Hz, CH), 7.51 (2H, dd, J=13.8, 8.0 Hz, 2CH), 7.46– 7.39 (2H, m, 2CH), 7.33 (2H, d, J=7.2 Hz, 2CH), 6.50 (1H, s, CH), 2.49 (3H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =178.29 (C_q), 166.08 (C_q), 156.42 (C_q), 136.75 (C_q), 133.74 (C_q), 132.56 (CH), 131.22 (CH), 130.68 (CH), 129.16 (CH), 126.17 (CH), 125.70 (CH), 125.20 (CH), 123.74 (C_q), 118.01 (CH), 111.90 (CH), 20.52 (CH₃). HRMS (ESI): *m/z* calcd for C₁₆H₁₂NaO₂ [M+Na]⁺: 259.0730; found: 259.0720.

2-(2-Methoxyphenyl)-4H-chromen-4-one (**3aj**): Product **3aj** was obtained as a yellow solid (48 mg, 95%); m.p.: 101–102 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.23 (1H, dd, J=8.0, 1.6 Hz, CH), 7.91 (1H, dd, J=7.8, 1.6 Hz, CH), 7.70–7.65 (1H, m, CH), 7.53 (1H, d, J=8.2 Hz, CH), 7.51– 7.45 (1H, m, CH), 7.40 (1H, t, J=7.6 Hz, CH), 7.15 (1H, s, CH), 7.11 (1H, t, J=7.2 Hz, CH), 7.05 (1H, d, J=8.4 Hz, CH), 3.94 (3H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =178.89 (C_q), 160.84 (C_q), 157.96 (C_q), 156.46 (C_q), 133.50 (CH), 132.38 (CH), 129.25 (CH), 125.58 (CH), 124.87 (CH), 123.79 (C_q), 120.80 (C_q), 120.69 (CH), 118.00 (CH), 112.63 (CH), 111.72 (CH), 55.65 (CH₃). HRMS (ESI): *m/z* calcd for C₁₆H₁₂NaO₃ [M+Na]⁺: 275.0679; found: 275.0668.

2-(m-Tolyl)-4H-chromen-4-one (**3ak**): Product **3ak** was obtained as a yellow solid (36 mg, 77%); m.p.: 108–110 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.23 (1H, d, J=8.0 Hz, CH), 7.76–7.66 (3H, m, 3CH), 7.58 (1H, d, J=8.4 Hz, CH), 7.45–7.38 (2H, m, 2CH), 7.35 (1H, d, J=7.6 Hz, CH), 6.82 (1H, s, CH), 2.46 (3H, s, CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =178.50 (C_q), 163.60 (C_q), 156.25 (C_q), 138.81 (C_q), 133.69 (CH), 132.38 (CH), 131.70 (CH), 128.91 (C_q), 123.48 (CH), 118.06 (CH), 107.54 (CH), 21.49 (CH₃). HRMS (ESI): *m/z* calcd for C₁₆H₁₂NaO₂ [M+Na]⁺: 259.0730; found: 259.0719.

2-(3-Bromophenyl)-4H-chromen-4-one (3al): Product 3al was obtained as a yellow solid (44 mg, 73%); m.p.: 90–92 °C.¹H NMR (400 MHz, CDCl₃): δ =8.23 (1H, d, J=7.0 Hz, CH), 8.08 (1H, s, CH), 7.83 (1H, d, J=8.0 Hz, CH), 7.75–7.69 (1H, m, CH), 7.67 (1H, d, J=8.0 Hz, CH), 7.59 (1H, d, J=8.4 Hz, CH), 7.47–7.36 (2H, m, 2CH), 6.80 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =178.17 (C_q), 161.64 (C_q), 156.13 (C_q), 134.41 (CH), 133.98 (CH), 133.77 (CH), 130.53 (CH), 129.22 (C_q), 125.73 (CH), 125.42 (CH), 124.81 (C_q), 123.89 (C_q), 123.22 (CH), 118.08 (CH), 108.16 (CH). HRMS (ESI): *m/z* calcd for C₁₅H₁₀BrO₂ [M + H]⁺: 300.9859; found: 300.9869.

2-(tert-Butyl)-4H-chromen-4-one (**3am**): Product **3am** was obtained as a yellow solid (37 mg, 91%); m.p.: 72–74 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.18 (1H, d, *J*=8.0 Hz, CH), 7.66 (1H, t, *J*=7.8 Hz, CH), 7.46 (1H, d, *J*=8.4 Hz, CH), 7.38 (1H, t, *J*=7.6 Hz, CH), 6.29 (1H, s, CH), 1.36 (9H, s, 3CH₃). ¹³C NMR (101 MHz, CDCl₃): δ =178.94 (C_q), 176.04 (C_q), 156.44 (C_q), 133.43 (CH), 125.52 (CH), 124.78 (CH), 123.40 (C_q), 117.80 (CH), 106.65 (CH), 36.47 (C_q), 27.85 (CH₃). HRMS (ESI): *m/z* calcd for C₁₃H₁₄NaO₂ [M + Na]⁺: 225.0886; found: 225.0891.

2-(Thiophen-2-yl)-4H-chromen-4-one (3an): Product 3an was obtained as a yellow solid (40 mg, 87%); m.p.: 93–95 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.21 (1H, dd, J=8.0, 1.6 Hz, CH), 7.73 (1H, d, J=3.0 Hz, CH), 7.71–7.65 (1H, m, CH), 7.58 (1H, d, J=5.0 Hz, CH), 7.53 (1H, d, J=8.4 Hz, CH), 7.41 (1H, t, J=7.6 Hz, CH), 7.21–7.17 (1H, m, CH), 6.71 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =177.89 (C_q), 158.99 (C_q), 155.87 (C_q), 135.11 (C_q), 133.71 (CH), 130.23 (CH), 128.46 (CH), 128.41 (CH), 125.64 (CH), 125.23 (CH), 123.95 (C_q), 117.90 (CH), 106.16 (CH). HRMS (ESI): *m/z* calcd for C₁₃H₉O₂S [M + H]⁺: 229.0318; found: 229.0307.

2-(Naphthalen-2-yl)-4H-chromen-4-one (**3ao**): Product **3ao** was obtained as a yellow solid (51 mg, 93%); m.p.: 157–159 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.47 (1H, s, CH), 8.29–8.22 (1H, m, CH), 8.01–7.86 (4H, m, 4CH), 7.75–7.69 (1H, m, CH), 7.63 (1H, d, *J*=8.0 Hz, CH), 7.60– 7.55 (2H, m, 2CH), 7.43 (1H, t, *J*=7.2 Hz, CH), 6.96 (1H, s, CH). ¹³C NMR (101 MHz, CDCl₃): δ =178.41 (C_q), 163.27 (C_q), 156.29 (C_q), 134.61 (C_q), 133.77 (CH), 132.85 (C_q), 129.01 (CH), 128.90 (CH), 128.85 (CH), 127.98 (CH), 127.79 (CH), 127.04 (C_q), 126.88 (CH), 125.69 (CH), 125.21 (CH), 123.99 (CH), 122.47 (C_q), 118.08 (CH), 107.85 (CH). HRMS (ESI): *m*/*z* calcd for C₁₉H₁₃O₂ [M + H]⁺: 273.091; found: 273.0922.

2-(Adamantan-1-yl)-4H-chromen-4-one (**3ap**): Product **3ap** was obtained as a white solid (53 mg, 95%); m.p.: 100– 102 °C. ¹H NMR (400 MHz, CDCl₃): δ =8.18 (1H, dd, J=8.0, 1.6 Hz, CH), 7.68–7.62 (1H, m, CH), 7.45 (1H, d, J=8.2 Hz, CH), 7.40–7.33 (1H, m, CH), 6.20 (1H, s, CH), 2.13 (3H, s, 3CH), 2.00–1.96 (6H, m, 3CH₂), 1.86–1.73 (6H, m, 3CH₂). ¹³C NMR (101 MHz, CDCl₃): δ =179.03 (C_q), 175.77 (C_q), 156.45 (C_q), 133.34 (CH), 125.53 (CH), 124.70 (CH), 123.61 (C_q), 117.79 (CH), 106.59 (CH), 39.47 (CH), 38.17 (CH₂), 36.41 (CH₂), 27.94 (CH₂). HRMS (ESI): *m/z* calcd for C₁₉H₂₁O₂ [M + Na]⁺: 281.1536; found: 281.1529.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Natural Science Foundation of China (NSFC; Grant Numbers 21676252 and 21506191).

ORCID iD

Chuanming Yu D https://orcid.org/0000-0002-1345-0778

References

- Yadava RN and Tiwari L. J Asian Nat Prod Res 2005; 7: 185.
- 2. Shankar E, Goel A, Gupta K, et al. *Curr Pharm Rep* 2017; 3: 423.
- 3. Albouchi F, Avola R, Dico GML, et al. *Molecules* 2018; 23: 2526.
- Kowalski K, Koceva-Chyla A, Szczupak L, et al. J Organomet Chem 2013; 741: 153.

- 5. Rocha-Pereira J, Cunha R, Pinto DC, et al. *Bioorg Med Chem* 2010; 18: 4195.
- Mulholland DA, Schwikkard SL and Crouch NR. Nat Prod Rep 2013; 30: 1165.
- Shahinozzaman M, Taira N, Ishii T, et al. *Molecules* 2018; 23: 2479.
- Dyrager C, Mollers LN, Kjall LK, et al. *J Med Chem* 2011; 54: 7427.
- Gaspar A, Matos MJ, Garrido J, et al. *Chem Rev* 2014; 114: 4960.
- 10. Wu X, Song M, Gao Z, et al. J Nutr Biochem 2017; 42: 17.
- 11. Li S, Sang S, Pan M-H, et al. *Bioorg Med Chem Lett* 2007; 17: 5177.
- 12. Wang B, Qu J, Luo S, et al. *Molecules* 2018; 23: 2513.
- 13. Kim HJ, Lee W and Yun J-M. Phytother Res 2014; 28: 1383.
- 14. Meng G, Chai K, Li X, et al. Chem Biol Interact 2016; 257: 26.
- 15. Lu H-e, Chen Y, Sun X-B, et al. RSC Adv 2015; 5: 4898.
- 16. Hida T, Tamiya M, Nishio M, et al. *Cancer Sci* 2011; 102: 845.
- 17. Zhao J, Zhao Y and Fu H. *Angew Chem Int Ed* 2011; 50: 3769.
- Kim D, Ham K and Hong S. Org Biomol Chem 2012; 10: 7305.
- 19. Yang Q and Alper H. J Org Chem 2010; 75: 948.
- 20. Yue Y, Peng J, Wang D, et al. J Org Chem 2017; 82: 5481.
- 21. Mal K, Kaur A, Haque F, et al. J Org Chem 2015; 80: 6400.
- 22. Yang D, Wang Z, Wang X, et al. *J Mol Catal A: Chem* 2017; 426: 24.
- 23. Du Z, Ng H, Zhang K, et al. Org Biomol Chem 2011; 9: 6930.
- 24. Zhu F, Li Y, Wang Z, et al. Catal Sci Technol 2016; 6: 2905.
- 25. An JY, Lee HH, Shin JS, et al. *Bioorg Med Chem Lett* 2017; 27: 2613.
- Yatabe T, Jin X, Yamaguchi K, et al. Angew Chem Int Ed 2015; 54: 13302.
- Baruah S, Kaishap PP and Gogoi S. Chem Commun 2016; 52: 13004.
- 28. Sun P, Gao S, Yang C, et al. Org Lett 2016; 18: 6464.
- Burtoloso ACB, Dias RMP and Leonarczyk IA. Eur J Org Chem 2013; 2013: 5005.
- Shi X, Wang R, Zeng X, et al. Adv Synth Catal 2018; 360: 4049.
- 31. Wu X, Xiong H, Sun S, et al. Org Lett 2018; 20: 1396.
- 32. Xu Y, Yang X, Zhou X, et al. Org Lett 2017; 19: 4307.
- 33. Xu Y, Zheng G, Yang X, et al. *Chem Commun* 2018; 54: 670.
- 34. Liu C-F, Liu M and Dong L. J Org Chem 2019; 84: 409.
- 35. Ji S, Yan K, Li B, et al. Org Lett 2018; 20: 5981.
- 36. Zhang L, Zheng X, Chen J, et al. *Org Chem Front* 2018; 5: 2969.
- 37. Jiang X, Chen J, Zhu W, et al. J Org Chem 2017; 82: 10665.
- Dixit M, Tripathi BK, Tamrakar AK, et al. *Bioorg Med Chem* 2007; 15: 727.
- Kim YS, Keyser SG and Schneekloth JS Jr. *Bioorg Med Chem Lett* 2014; 24: 1094.
- Sagrera G, Bertucci A, Vazquez A, et al. *Bioorg Med Chem* 2011; 19: 3060.
- 41. Goel A and Dixit M. Synlett 2004; 11: 1990.
- 42. Silva A, Pinto D, Rocha D, et al. Synlett 2012; 23: 559.
- 43. Barros AIRNA and Silva AMS. *Monatsh Chem* 2006; 137: 1505.
- 44. Wu X-F, Neumann H and Beller M. *Chem Eur J* 2012; 18: 12595.