B. Xu et al.

Letter

An Aluminum(III)-Catalyzed Thioamide–Aldehyde–Styrene Condensation: Direct Synthesis of Allylic Thioamide Derivatives

А

Bin Xu^{a,b} Xue Zhong^{a,b} Xi-Cun Wang^{*a,b} Zheng-Jun Quan^{*a,b}

^a Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Gansu 730070, P. R. of China
^b Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu 730070, P. R. of China wangxicun@nwnu.edu.cn

quanzhengjun@hotmail.com

Received: 05.05.2016 Accepted after revision: 31.05.2016 Published online: 27.06.2016 DOI: 10.1055/s-0035-1562507; Art ID: st-2016-w0321-l

Abstract An aluminum(III) triflate catalyzed three-component synthesis of allylic thioamide derivatives by condensation of a thioamide, paraformaldehyde and a styrene is reported.

Key words thioamides, paraformaldehyde, styrenes, allyl thioamides, multicomponent reactions, condensation

Allylamines form a significant class of biologically active nitrogen compounds, and the allylamine skeleton is found in various natural products and drugs.¹⁻⁶ Moreover, allylamines are fundamental building blocks in organic chemistry and have been used as starting materials for the synthesis of numerous compounds, such as amino acids, alkaloids, and carbohydrate derivatives.⁷⁻¹⁰ Consequently, the synthesis of allylamine derivatives has attracted considerable interest among researchers.¹¹⁻²¹

The thioamides and their derivatives are also an important class of biologically and pharmaceutically active compounds.²² Allylic thioamides are particularly important,^{23,24} especially in regio- and stereoselective preparations of 4,5dihydro-1,3-thiazoles.²⁵ Therefore, the development of methods for synthesizing allylic thioamide derivatives is essential in organic chemistry.

N-Allylbenzothioamides can be prepared by the reaction of aromatic compounds, under Friedel–Crafts reaction conditions, with 3-isothiocyanatoprop-1-ene, prepared from allylamine (Scheme 1, a).²⁶ However, few methods have been developed for the synthesis of *N*-(3-substituted)allyl thioamides; the most widely used method is thionation of an allylic amide with phosphorus pentasulfide or Lawesson's reagent (LR; Scheme 1, b).²⁷ To the best of our knowledge, there are no reports in the literature on the direct synthesis of allylic thioamides from thioamide derivatives as substrates. Here, we present a useful method for the preparation of allylic thioamides by direct allylation of thioamides (Scheme 1, c).

Scheme 1 Methods for the synthesis of allylic thioamides

Our group's recent research has been devoted to the development of simple and efficient methods for preparing allylamine derivatives, and we have developed a general protocol for the direct N-allylation of electron-deficient amides by Lewis acid catalyzed amide–aldehyde–alkene condensation reactions.²⁸⁻³¹ On the basis of our previous work, we developed an efficient strategy for the synthesis of allylic thioamide derivatives by an Al(OTf)₃-catalyzed thioamide–aldehyde–alkene reaction. In this reaction, we successfully constructed C–N and C–C bonds in one pot without any additives. Furthermore, the use of an aluminum(III) salt as a cheap and abundant catalyst increases the attractiveness of this method.

Initially, we examined the three-component reaction of azepane-2-thione (**1a**), paraformaldehyde (**2a**) and styrene (**3a**) as a model reaction (Table 1). When we used our previ-

B. Xu et al.

۸

В

ous reaction conditions^{29,31} with I_2 or Bi(OTf)₃ as the catalyst, no reaction occurred (Table 1, entries 1 and 2). When the iron catalysts $Fe(OTf)_3$, $Fe(acac)_3$, and $FeCl_3$ were tested, FeCl₃ promoted the three-component reaction to give the desired product 4a in 10% yield (entries 3-5). In contrast, combinations of I_2 with Fe catalysts $[I_2/Fe(OTf)_3]$ and I₂/FeCl₃/TBAB] promoted the conversion into 4a in 21% and 51% yield, respectively (entries 6 and 7). Interestingly, I₂ combined with TfOH successfully promoted the reaction to deliver an 82% yield of 4a (entry 8), whereas the reaction catalyzed by Al(OTf)₃ gave **4a** in 86% yield (entry 9). When the loading of Al(OTf)₃ was decreased to 10 mol%, a considerably lower yield was obtained (entry 10). Finally, we examined the effect of the solvent on this reaction and found that xylene gave better results than MeNO₂ or 1.4-dioxane (entries 11 and 12). The reaction is therefore best conducted with $Al(OTf)_3$ (20 mol%) as the catalyst and xylene as the solvent at 110 °C for 24 hours.

 Table 1
 Optimization of Conditions for the Three-Component Reaction^a

1a 2a 3a 4a Entry Catalyst (mol%) Solvent Yield ^b (%) 1 I ₂ (200) xylene 0 2 Bi(OTf) ₃ (20) xylene 0 3 Fe(OTf) ₃ (20) xylene 0 4 Fe(acac) ₃ (20) xylene 0 5 Fec(L (20)) xylene 10	S NH	H + (CH ₂ O) _n + Ph <u>catal</u> 11	yst, solvent	Ph
Entry Catalyst (mol%) Solvent Yield ^b (%) 1 l_2 (200) xylene 0 2 Bi(OTf)_3 (20) xylene 0 3 Fe(OTf)_3 (20) xylene 0 4 Fe(acac)_3 (20) xylene 0 5 Fec(L (20)) xylene 10	1a	2a 3a		4a
1 I_2 (200) xylene 0 2 Bi(OTf)_3 (20) xylene 0 3 Fe(OTf)_3 (20) xylene 0 4 Fe(acac)_3 (20) xylene 0 5 Fe(L (20) xylene 10	Entry	Catalyst (mol%)	Solvent	Yield ^b (%)
2 Bi(OTf) ₃ (20) xylene 0 3 Fe(OTf) ₃ (20) xylene 0 4 Fe(acac) ₃ (20) xylene 0 5 Fe(L (20) xylene 10	1	I ₂ (200)	xylene	0
3 $Fe(OTf)_3$ (20) xylene 0 4 $Fe(acac)_3$ (20) xylene 0 5 $Fe(1/20)$ xylene 10	2	Bi(OTf) ₃ (20)	xylene	0
4 Fe(acac) ₃ (20) xylene 0	3	Fe(OTf) ₃ (20)	xylene	0
5 EoCl (20) vulono 10	4	$Fe(acac)_3$ (20)	xylene	0
5 rec ₁₃ (20) Xylene 10	5	FeCl ₃ (20)	xylene	10
6 I ₂ (30)/Fe(OTf) ₃ (5) xylene 21	6	I ₂ (30)/Fe(OTf) ₃ (5)	xylene	21
7 I ₂ (20)/FeCl ₃ (20)/TBAB (20) xylene 52	7	I ₂ (20)/FeCl ₃ (20)/TBAB (20)	xylene	52
8 I ₂ (20)/TfOH (10) xylene 82	8	I ₂ (20)/TfOH (10)	xylene	82
9 Al(OTf) ₃ (20) xylene 86	9	Al(OTf) ₃ (20)	xylene	86
10 Al(OTf) ₃ (10) xylene 76	10	Al(OTf) ₃ (10)	xylene	76
11 Al(OTf) ₃ (20) MeNO ₂ 57	11	Al(OTf) ₃ (20)	MeNO ₂	57
12 Al(OTf) ₃ (20) 1,4-dioxane 68	12	Al(OTf) ₃ (20)	1,4-dioxane	68

^a Reaction conditions: **1a** (1 mmol), **2a** (4 mmol), **3a** (1.2 mmol), solvent (3 mL), 110 °C, 24 h.

^b Isolated yield after column chromatography.

Next, we applied the optimized protocol to the allylation of the cyclic thioamide **1a** with paraformaldehyde (**2a**) and various styrenes **3** (Scheme 2).³² The reaction proved to be relatively broad in scope, tolerating a variety of steric and electronic changes in the styrene reaction partner to give products **4a–j** in good yields. Reactions of styrenes bearing electron-donating groups (Me, OMe, or *t*-Bu) on the phenyl ring gave the corresponding products **4b–e** in higher yields than those of products **4g–i** from styrenes containing electron-withdrawing groups (Cl, Br, or OAc). Note that both *ortho-* and *para*-substituted styrenes as substrates gave the desired products **4d** and **4e** in good yields, indicating that the steric effects of the methyl and *tert*-butyl group are negligible. α -Methylstyrene as a substrate also reacted smoothly to give the corresponding allylic thioamide derivative **4f** in 72% yield. Furthermore, electron-deficient 2-vinylnaphthalene also reacted successfully to give the corresponding product **4j** in 70% yield.

Scheme 2 Three-component reactions of azepane-2-thione (1a), paraformaldehyde (2a), and various styrenes

To further expand the range of thioamide products, we explored the three-component reactions of acyclic thioamides **1b–e**, paraformaldehyde (**2a**), and styrenes **3** (Scheme 3).³³ The reactions proceeded smoothly to give the corresponding products in good yields. Acyclic thioamides bearing *N*-benzyl, *N*-butyl, or *N*-methyl substituents gave the corresponding allylic thioamide derivatives **5a–i** in good yields. The existence of thioamide **5h** as a mixture of isomers due to restricted rotation around the thioamide bond was confirmed by ¹H NMR and ¹³C NMR spectroscopy; however, the two isomers could not be separated by simple column chromatography.

We also examined the reactions of ethyl oxoacetate, as well as those of other aryl aldehydes such as 4-nitro-, 4-fluoro-, 4-bromo-, and 4-methylbenzaldehydes; however, no reactions were observed, and further optimization of the conditions might be needed. B. Xu et al.

Scheme 3 Three-component reactions of acyclic thioamides, paraformaldehyde (2a), and styrenes

The mechanism of the reaction might be as follows: First, the reaction of the aldehyde with the thioamide **1a** in the presence of Al(III) generates the corresponding iminium ion I (Scheme 4). Subsequently, I is attacked by the styrene **3** to generate the carbocationic intermediate II. Finally, the carbocation II undergoes selective β -proton elimination, accompanied by loss of Al(III), to give the allylic thioamide derivative **4**.

Scheme 4 Proposed mechanism for the Al-catalyzed direct allylation through thioamide–aldehyde–alkene condensation

In summary, we have developed an Al(OTf)₃-catalyzed three-component reaction of thioamides with paraformaldehyde and styrenes to give a series of allylic thioamide derivatives. Both cyclic and acyclic thioamides participate in the reaction, and we successfully achieved the construction of a C–N and a C–C bond in one pot by using a simple catalyst system without any additives. Furthermore, the reaction tolerates a wide range of thioamides and styrenes as reaction partners and it gives good to excellent yields. The present method should prove to be a useful tool in the synthetic chemistry of allylic thioamides.

Acknowledgment

We are grateful for financial support from the National Natural Science Foundation of China (Nos. 21362032, 21362031, and 21562036).

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1562507.

References and Notes

- (1) (a) Petranyi, G.; Ryder, N. S.; Stütz, A. Science 1984, 224, 1239.
 (b) Stütz, A.; Georgopoulos, A.; Granitzer, W.; Petranyi, G.; Berney, D. J. Med. Chem. 1986, 29, 112. (c) Stütz, A. Angew. Chem. Int. Ed. Engl. 1987, 26, 320; Angew. Chem. 1987, 99, 323.
- (2) Nanavati, S. M.; Silverman, R. B. J. Am. Chem. Soc. 1991, 113, 9341.
- (3) Cheikh, R. B.; Chaabouni, R.; Laurent, A.; Mison, P.; Nafti, A. Synthesis **1983**, 685.
- (4) Johannsen, M.; Jørgensen, K. Chem. Rev. 1998, 98, 1689.
- (5) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
- (6) Burgess, K.; Liu, L. T.; Pal, B. J. Org. Chem. 1993, 58, 4758.
- (7) Paquette, L. A.; Leit, S. M. J. Am. Chem. Soc. 1999, 121, 8126.
- (8) Nagashima, H.; Isono, Y.; Iwamatsu, S. J. Org. Chem. 2001, 66, 315.
- (9) Ghorai, M. K.; Kumar, A.; Das, K. Org. Lett. 2007, 9, 5441.
- (10) Hayashi, S.; Yorimitsu, H.; Oshima, K. Angew. Chem. Int. Ed. 2009, 48, 7224; Angew. Chem. 2009, 121, 7360.
- (11) Farwick, A.; Helmchen, G. Org. Lett. **2010**, *12*, 1108.
- (12) Gärtner, M.; Weihofen, R.; Helmchen, G. Chem. Eur. J. 2011, 17, 7605.
- (13) Tsuji, J.; Takahashi, H.; Morikawa, A. *Tetrahedron Lett.* **1965**, *6*, 4387.
- (14) (a) Trost, B. M.; Fullerton, T. J. J. Am. Chem. Soc. 1973, 95, 292.
 (b) Trillo, P.; Baeza, A.; Nájera, C. Eur. J. Org. Chem. 2012, 2012, 2929.
- (15) Mayr, H.; Patz, M. Angew. Chem. Int. Ed. **1994**, 33, 938; Angew. Chem. **1994**, 106, 990.
- (16) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.
- (17) Li, Y.; Zhang, X.-S.; Zhu, Q.-L.; Shi, Z.-J. Org. Lett. 2012, 14, 4498.
- (18) Xie, Y.; Hu, J.; Wang, Y.; Xia, C.; Huang, H. J. Am. Chem. Soc. **2012**, 134, 20613.
- (19) Hu, J.; Xie, Y.; Huang, H. Angew. Chem. Int. Ed. 2014, 53, 7272; Angew. Chem. 2014, 126, 7400.
- (20) Goldfogel, M. J.; Roberts, C. C.; Meek, S. J. J. Am. Chem. Soc. 2014, 136, 6227.

Synlett

B. Xu et al.

- (21) Banerjee, D.; Junge, K.; Beller, M. Org. Chem. Front. 2014, 1, 368.
- (22) (a) Bauer, W.; Kühlein, K. In Houben–Weyl: Methoden der Organischen Chemie; Vol. E5; Thieme: Stuttgart, 1985, 1218.
 (b) Jagodziński, T. S. Chem. Rev. 2003, 103, 197. (c) Sośnicki, J. G.; Jagodziński, T. S.; Hansen, P. E. Tetrahedron 2001, 57, 8705.
 (d) Matysiak, J.; Mącik-Niewiadomy, G.; Korniłłowicz, T. Eur. J. Med. Chem. 2000, 35, 393. (e) Schwarzer, K.; Wojczewski, C.; Engels, W. Nucleosides Nucleotides Nucleic Acids 2001, 20, 879.
- (23) Tokuyama, H.; Yamashita, T.; Reding, M. T.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. **1999**, *121*, 3791.
- (24) Magedov, I. V.; Kornienko, A. V.; Zotova, T. O.; Drozd, V. N. *Tetrahedron Lett.* **1995**, *36*, 4619.
- (25) (a) Zhou, W.; Ni, S.; Mei, H.; Han, J.; Pan, Y. *Tetrahedron Lett.* 2015, 56, 4128. (b) Morse, P. D.; Nicewicz, D. A. *Chem. Sci.* 2015, 6, 270. (c) Minakata, S.; Morino, Y.; Oderaotoshi, Y.; Komatsu, M. *Org. Lett.* 2006, 8, 3335. (d) Weolowska, A.; Jagodziński, T. S.; Sośnicki, J. G.; Hansen, P. E. *Pol. J. Chem.* 2001, 75, 387. (e) Jagodziński, T. S.; Sośnicki, J. G.; Krolikowska, M. *Heterocycl. Commun.* 1995, 1, 353.
- (26) Jagodziński, T. S.; Sośnicki, J. G.; Nowak-Wydra, B. Pol. J. Chem. 1993, 67, 1043.
- (27) Engman, L. J. Org. Chem. 1991, 56, 3425.
- (28) Quan, Z.-J.; Wang, X.-C. Chem. Rec. 2016, 16, 435.
- (29) Quan, Z.-J.; Hu, W.-H.; Zhang, Z.; Da, Y.-X.; Jia, X.-D.; Wang, X.-C. *Adv. Synth. Catal.* **2013**, 355, 891.
- (30) Zhang, Z.; Zhang, Y.-S.; Quan, Z.-J.; Da, Y.-X.; Wang, X.-C. Tetrahedron 2014, 70, 9093.
- (31) Wang, X.-X.; Quan, Z.-J.; Wang, X.-C. Asian J. Org. Chem. 2015, 4, 54.
- (32) 1-[(2E)-3-Phenylprop-2-en-1-yl]azepane-2-thione (4a); Typical Procedure

An oven-dried tube was charged with a mixture of cyclic thioamide **1a** (1 mmol, 0.129 g), paraformaldehyde (**2a**; 4 mmol, 0.120 g), styrene (**3a**; 1.2 mmol, 0.125 g), and Al(OTf)₃ (20 mol%, 0.191 g). Anhydrous xylene (3 mL) was added from a straw, and the mixture was stirred at 110 °C for 24 h while the reaction was monitored by TLC. The mixture was cooled to r.t., and the reaction was quenched with sat. aq NH₄Cl (3 mL). The mixture was extracted with EtOAc (3 × 15 mL) and the organic layers were combined, washed with brine, and dried (MgSO₄). The crude product was purified by column chromatography [silica gel, PE–EtOAc (1:6)] to give a yellow oil; yield: 211 mg (0.86 mmol, 86%). ¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.23 (m, 5 H), 6.49 (d, *J* = 15.6 Hz, 1 H), 6.18–6.11 (m, 1 H), 4.16 (d, *J* = 5.2 Hz, 2 H), 3.34 (s, 2 H), 2.57 (d, *J* = 5.2 Hz, 2 H), 1.66 (d, *J* = 38.4 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ = 175.6, 136.6, 132.5, 128.5, 127.5, 126.3, 125.1, 49.8, 48.6, 37.1, 29.9, 28.4, 23.4. HRMS (ESI⁺): *m/z* [M + H]⁺ calcd for C₁₅H₂₀NS: 246.1311; found: 246.1316.

(33) N-Benzyl-N-[(2E)-3-Phenylprop-2-en-1-yl]ethanethioamide (5a); Typical Procedure

An oven-dried tube was charged with a mixture of acyclic thioamide 1b (1 mmol, 0.165 g), paraformaldehyde (2a; 4 mmol, 0.120 g), styrene (**3a**; 1.2 mmol, 0.125 g), and Al(OTf)₃ (20 mol%, 0.191 g). Anhydrous xylene (3 mL) was added from a straw, and the mixture was stirred at 110 °C for 24 h while the reaction was monitored by TLC. The mixture was cooled to r.t., and the reaction was quenched with sat. aq NH₄Cl (3 mL). The mixture was extracted with EtOAc (3 × 15 mL) and the organic layers were combined, washed with brine, and dried (MgSO₄). The crude product was purified by column chromatography [silica gel, PE-EtOAc (1:6)] to give a yellow oil; yield: 202 mg (0.72 mmol, 72%). ¹H NMR (600 MHz, CDCl₃): δ = 7.36–7.22 (m, 10 H), 6.43 (t, J = 16.2 Hz, 1 H), 6.19-6.05 (m, 1 H), 4.65 (s, 1 H), 4.54 (s, 1 H), 4.16 (d, J = 6.6 Hz, 1 H), 3.99 (d, J = 5.4 Hz, 1 H), 2.20 (d, J = 27.0 Hz, 3 H). ¹³C NMR (150 MHz, CDCl₃): δ = 170.9, 133.1, 131.9, 128.9, 128.7, 128.6, 128.5, 128.2, 127.9, 127.7, 127.6, 127.4, 126.4, 124.5, 123.8, 50.9, 49.5, 48.1, 47.3, 21.7, 21.6. HRMS (ESI⁺): *m*/*z* [M + H]⁺ calcd for C₁₈H₂₀NS: 282.1311; found: 282.1314.