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Mononuclear copper-active oxygen species play important roles
as reactive intermediates in many biological and industrial catalytic
oxidation processes.1-3 For copper monooxygenases such as
peptidylglycineR-amidating monooxygenase (PAM) and dopamine
â-monooxygenase (DâM), a mononuclear hydroperoxo copper(II)
species LCu(II)-OOH, which is formally generated by the reaction
of LCu(I) and O2 and subsequent addition of H• (or H+ + e-), has
been suggested as the reactive intermediate for the aliphatic
hydroxylation of the substrates.4 More recently, a mononuclear
superoxo copper(II) species LCu(II)-OO•, initially formed inter-
mediate of the reaction between LCu(I) and O2, has also been
proposed as a possible reactive intermediate.5-8 Furthermore, a
recent QM/MM calculation study has suggested that a copper(II)-
oxyl radical species LCu(II)-O•, which can be generated by O-O
bond homolysis of LCu(II)-OOH, is the most reactive species
among the intermediates.9 To gain insight into the dioxygen
activation mechanism at the mononuclear copper active sites, a great
deal of effort has been made in model chemistry to evaluate the
structure, spectroscopic features, and reactivity of the mononuclear
copper-active oxygen species.1-3,10-18

On the other hand, alkylperoxo iron(III) complexes LFe(III)-
OOR have been studied extensively in model systems to provide
significantly important insights into the catalytic mechanism of non-
heme iron monooxygenases.19-21 In this respect, studies of mono-
nuclear alkylperoxo copper(II) complexes LCu(II)-OOR may also
afford important information about the dioxygen activation mech-
anism at the mononuclear copper reaction centers. However, little
is known about the reactivity of LCu(II)-OOR complexes.22-24

We herein report the reactivity study of a new mononuclear
alkylperoxo copper(II) complex2, which is generated by the
reaction of copper(II) starting material124 and cumene hydroper-
oxide (CmOOH) in CH3CN (Scheme 1). The cumylperoxo copper-

(II) complex 2 has been found to undergo homolytic cleavage of
the O-O bond and induce C-H bond activation of exogenous
substrates, providing important insight into the catalytic mechanism
of the copper monooxygenases.

Treatment of1 with cumene hydroperoxide in the presence of
triethylamine in acetonitrile at-40 °C gave cumylperoxo copper-

(II) complex 2, the formation of which was confirmed by the
following experimental data. Thus, complex2 exhibited a relatively
intense absorption band at 465 nm (ε ) 1100 M-1 cm-1) due to
the peroxo-to-copper(II) charge transfer transition (LMCT)
together with a weak d-d band at 725 nm (ε ) 320 M-1 cm-1) as
shown in Figure 1A. Complex2 also gave isotope-sensitive
resonance Raman bands at 885, 841, 608, 529, and 485 cm-1, which
shifted to 855, 808, 597, 524, and 474 cm-1 upon18O-substitution
using Cm18O18OH instead of Cm16O16OH (Figure 1B). Appearance
of the multiple resonance Raman bands and their associated isotope
shifts (∆n ) 30, 33, 11, 5, and 11 cm-1) are similar to those reported
from the resonance Raman studies of the cumylperoxo copper(II)
complex supported by the hydrotrispyrazolylborate ligand and the
cumylperoxo iron(III) complex of 6-Me3-TPA [tris(6-methyl-2-
pyridylmethyl)amine].23,25 By analogy to those detailed Raman
studies, the bands in the 800 cm-1 region of2 can be assigned to
mixed O-O/C-O/C-C vibrations of the cumylperoxo group and
the band at 608 cm-1 to the Cu-O stretching vibration. Then, the
additional 529 and 485 cm-1 bands of2 can be assigned to C-C-C
and C-C-O deformation modes of the alkylperoxo moiety.23

The ESR spectrum of2 (Figure S1,g1 ) 2.250,g2 ) 2.065,g3

) 2.030,A1 ) 160, A2 ) 7, A3 ) 5 G), which is different from
that of the starting material1 (Figure S2), reflected a distorted
tetragonal geometry of2, and its mononuclearity was confirmed
by spin quantification using the ESR spectrum (99% spin remained).
Unfortunately, instability of2 precluded us from getting ESI-MS
data even at the low temperature.

The cumylperoxo copper(II) complex2 gradually decomposed,
obeying first-order kinetics even at-40 °C (kdec ) 2.2 × 10-3

s-1, Figure S3) to give bis(µ-hydroxo)dicopper(II) complex4 in a
64% isolated yield, where no ligand hydroxylation took place (see
Supporting Information). Notably, acetophenone (PhC(O)CH3) was
obtained in a 92% yield from the final reaction mixture. This clearly

† Osaka City University.
‡ University of Hyogo.

Scheme 1

Figure 1. (A) Spectral change for the reaction of1 (0.6 mM) with CmOOH
(1.2 mM) in the presence of NEt3 (0.6 mM) in CH3CN at -40 °C. (B)
Resonance Raman spectra of2 generated by using Cm16O16OH (solid line,
below) and Cm18O18OH (dotted line, above) obtained withλex ) 488.0 nm
in CH3CN at -40 °C; s denotes the solvent bands.
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demonstrates that O-O bond homolysis of the peroxo moiety of2
occurred since it is well-known that cumyloxyl radical quickly
undergoesâ-scission to give acetophenone (k ) 6.3 × 105 s-1 at
30 °C).26 In fact, LCu(II)-O• species3, generated by the O-O
bond homolysis of2, was trapped by the reaction with 5,5-dimethyl-
1-pyrroline-N-oxide (DMPO), a well-known radical trap re-
agent,16,17,27 where formation of a 1:1 adduct5 between3 and
DMPO was confirmed by the ESI-MS and ESR measurements (a
possible structure of5 is indicated in Scheme 2).28

Addition of AcrH2 (10-methyl-9,10-dihydroacridine) into the
acetonitrile solution of2 at -40 °C resulted in formation of AcrH+

(N-methylacridinium ion) as an oxidation product. Figure S7 shows
the spectral change for the reaction, where the characteristic
absorption band at 465 nm due to2 decreases with a concomitant
increase in the absorption bands at 358, 395, 415, and 440 nm due
to AcrH+. From the absorption intensity at 440 nm (ε ) 2150 M-1

cm-1),29 the yield of AcrH+ was determined as 49% based on2.30

The reaction obeyed first-order kinetics in the presence of a large
excess of AcrH2 as shown in the inset of Figure S7. Plot of the
first-order rate constantkobsagainst the substrate concentration gave
a linear line, from which the second-order rate constantk2 () koxKeq)
was determined as 6.7 M-1 s-1 (Figure S8).31 In addition, a
significantly large kinetic deuterium isotope effect ofk2

H/k2
D ) 19.2

was obtained at-40 °C when AcrD2 (AcrD2/9,9-dideuterated
derivative) was used in place of AcrH2 (Figure S8). Existence of
such a large kinetic deuterium isotope effect clearly indicates that
a hydrogen transfer process is involved in the rate-determining step
of the C-H bond activation of AcrH2 by 2. Similarly, oxidation of
1,4-cyclohexadiene (CHD) proceeded smoothly (kox ) 0.25 M-1

s-1, Figures S9 and S10), and the formation of benzene product
was confirmed by GC-MS.

Apparently, the oxidation of exogenous substrates (AcrH2 and
CHD) by 2 proceeds via the O-O bond homolysis since acetophe-
none was also produced in these reactions as in the case of the
self-decomposition of2 (Scheme 2). Although the mechanism
involving stepwise O-O bond cleavage and C-H bond activation
of the substrate (rate) koxKeq[2][substrate]) and its concerted variant
could not be distinguished by the kinetic data, the present results
suggest a possible contribution of a mononuclear copper(II)-oxyl
radical species LCu(II)-O• (3) to the C-H bond activation
process.32 In summary, the reactivity (the O-O bond homolysis
and the C-H bond activation of the exogenous substrates) of the
alkylperoxo copper(II) complex has been explored for the first time
to provide important insights into the catalytic mechanism of copper
monooxygenases.
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