Cite this: Chem. Commun., 2011, 47, 9456-9458

COMMUNICATION

Catalytic intermolecular allyl-allyl cross-couplings between alcohols and boronates[†]

Agustín Jiménez-Aquino,‡ Emmanuel Ferrer Flegeau,‡ Uwe Schneider and Shū Kobayashi*

Received 6th June 2011, Accepted 7th July 2011 DOI: 10.1039/c1cc13348a

We developed catalytic intermolecular $C(sp^3)-C(sp^3)$ crosscouplings between various allyl alcohols and allyl boronates, which proceeded smoothly in the presence of nickel(0) under mild conditions to form 1,5-dienes with excellent *linear*- and γ -selectivity; the use of boronates proved to be crucial in terms of reactivity.

Catalytic C-C bond formation with both high efficiency and selectivity is important in organic synthesis.¹ C(sp³)–C(sp³) cross-couplings are challenging, but useful reactions.² Allylallyl couplings provide straightforward access to 1,5-dienes, which are abundant in naturally occurring terpenes.³ In addition, these compounds have proved to be important substrates in organic synthesis.⁴ Intermolecular unsymmetrical C(sp³)-C(sp³) allyl-allyl couplings are significantly more challenging than intramolecular cyclizations;5,6 only sporadic examples have been reported. These include allyl-allyl cross-couplings with stoichiometric palladium complexes,⁷ halides, acetates, carbonates,⁸ and ethers.⁹ With few exceptions an excess of toxic reagents is required or harsh conditions are necessary. Another problem is the propensity of η^1 -allyl–Pd intermediates to undergo β-hydride elimination. In addition, these reactions involve homo-coupling and moderate regioselectivities, leading to low yields and a limited scope.

To address these problems we recently developed crosscouplings between primary or secondary allyl carbonates and allyl *boronates* [Scheme 1; B(pin) = pinacolatoboron].¹⁰ These reactions provided efficient access to various 1,5dienes¹¹ with *linear*: *branched* ratios ranging in most cases from 4:1 to >99:1. Allyl boronates are typically used for addition to $C(sp^2)$ centers.¹² Thus, our earlier report¹⁰ represents the first use of these nontoxic reagents in $C(sp^3)$ – $C(sp^3)$ crosscouplings.^{11,13} More recently, Morken *et al.* developed a palladium-catalysed asymmetric version with *linear*: *branched* ratios ranging from 1:3 to 1: >20 (Scheme 1).¹⁴ However, both methods^{10,14} rely on the use of *carbonates*, which is a drawback in relation to step and atom economy. The direct

E-mail: shu_kobayashi@chem.s.u-tokyo.ac.jp; Fax: +81 3 5684 0634 † Electronic supplementary information (ESI) available. See DOI: 10.1039/c1cc13348a

Published on 22 July 2011. Downloaded by Otto von Guericke Universitaet Magdeburg on 27/10/2014 10:18:00.

use of allyl *alcohols* is more desirable. We hypothesized that we could address this issue by taking advantage of the *Lewis acidity of the trivalent boron atom* in allyl boronates. Lewis basic allyl alcohols may be activated by coordination to the intrinsically Lewis acidic boron atom, thereby transforming the hydroxyl moiety into a better leaving group (Scheme 1).¹⁵ We report here catalytic intermolecular allyl–allyl cross-couplings between alcohols and boronates that proceed under remarkably mild conditions with excellent *linear-* and γ -selectivity.

We initially conducted a catalyst screening (10 mol%) for the reaction between the primary allyl alcohol **1a** and allyl boronate **2a** in toluene at room temperature for 12 h (Table 1). The use of Pd(PPh₃)₄¹⁰ provided only traces of cross-coupled products in addition to the recovery of starting materials (Table 1, entry 1).

However, the use of Ni(PPh₃)₄ gave a particularly clean reaction with full conversion of **1a**. The *linear* 1,5-diene **3a** was formed in 94% yield, while the *branched* isomer **4a** was not detected (¹H NMR spectroscopy; entry 2). The central importance of phosphine ligation was confirmed by the use of Ni(cod)₂, which did not lead to any reaction (entry 3). We also examined the activity of main group 13 Lewis acids including indium(1) triflate,¹³ but the desired cross-coupling did not occur (entries 4–7). No other catalyst used gave a reaction with **1a**.¹⁶ Next, we screened allyl reagents other than **2a**. Somewhat unexpectedly, the use of the more Lewis acidic allyl borane **2b** under nickel(0) or indium(1)¹⁷ catalysis provided only undesired reaction pathways (entries 8 and 9). Interestingly, the nickel(0)-catalysed reaction of allyl trifluoroborate **2c**

Scheme 1 Earlier studies with boronates and concept of the present work.

Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

[‡] Both authors contributed equally to this work.

Table 1 Screening of catalysts and allyl reagents¹⁶

	0	· · · · · · · · · · · · · · · · · · ·	5	
Ph 🔨 1a	Catalys OH toluene ((2a (tt (10 mol%) 0.1 M), rt, 12 h B(pin) 1.2 equiv)	Ph 3a: linear	+ Ph 4a: branched
Entry	Allyl reagent	Catalyst	$\operatorname{Yield}^{a}(\%)$	Ratio 3a : 4a ^b
1	2a	Pd(PPh ₃) ₄	Trace	_
2	2a	Ni(PPh ₃) ₄	94	> 99 : 1
3	2a	$Ni(cod)_2$	NR^{c}	_
4	2a	$BF_3 \cdot OEt_2$	ND^d	
5	2a	GaCl ₃	ND^d	_
6	2a	$ln(OTf)_3$	ND^d	_
7	2a	lnOTf	NR^{c}	_
8	2b	Ni(PPh ₃) ₄	ND^{e}	_
9	2b	lnOTf	ND^{e}	_
10	2c	Ni(PPh ₃) ₄	41	9:1
11	2d	Ni(PPh ₃) ₄	NR^{c}	_
12	2e	Ni(PPh ₃) ₄	NR^{c}	_
13	2f	Ni(PPh ₃) ₄	NR^{c}	_

^{*a*} Isolated yields of 1,5-dienes after purification by PTLC. ^{*b*} Ratios **3a** : **4a** were determined for both crude mixtures and isolated products (¹H NMR spectroscopy). ^{*c*} NR = no reaction (¹H NMR spectroscopy). ^{*d*} ND = 1,5-dienes were not detected (¹H NMR spectroscopy); partial decomposition of **1a** and partial formation of Friedel–Crafts by-products. ^{*e*} ND = 1,5-dienes were not detected (¹H NMR spectroscopy); substantial decomposition of **1a** and **2b** as well as formation of Friedel–Crafts by-products (reactions in hexane, instead of toluene, provided mostly decomposition of **2b**).

afforded the linear 1,5-diene 3a as the major product, albeit in lower yield and with lower regioselectivity compared with the use of 2a (entry 10). No other allyl reagent reacted under the mild experimental conditions (entries 11-13). Thus, we have identified a mild C-O bond activation for allyl alcohols that relies on the combined use of the moderately Lewis acidic allyl boronate reagent 2a and an appropriate nickel(0) catalyst.^{18,19} Two characteristic features are noteworthy. (1) This transformation displays an opposite reactivity profile for allyl boron-based reagents 2a and 2b as compared with our earlier related study.¹⁷ (2) Control experiments with a mixture of 1.5-dienes **3a** and **4a** (ratio \sim 1:19) confirmed that a potential isomerization $4a \rightarrow 3a$ via a Cope-type rearrangement²⁰ did not occur under the mild Ni(0) catalysis conditions; thus, the cross-coupling between 1a and 2a must have proceeded itself with exclusive *linear*-selectivity (formation of 3a).

Next, we investigated the scope for primary and secondary allyl alcohols 1 and 5 under the optimized conditions (Table 2). A wide range of aromatic allyl alcohols were converted into the corresponding 1,5-dienes 3a-f (entries 1–7). These reactions proceeded with high yields and exclusive *linear*-selectivity. This selectivity was observed in cases of both primary and secondary substrates (entry 1 *vs.* entry 2). While similar results were obtained with the heteroaromatic alcohols 5g-i (entries 8–10),²¹ the use of the aliphatic allyl alcohol 1j gave lower selectivity (entry 11). The new protocol proved to

Table 2Scope for allyl alcohols

ŎН	ŎН	Ni(PPh ₃) ₄ (5–10 mol%)		
R	or R	toluene or MeCN	R	⁺ _R
1	5	2a (1.2 equiv)	3: linear	4: branched

Entry	Allyl alcohol	1,5-diene	Yield ^a (%)	Ratio 3 : 4 ^b
1	1a: R = Ph	3a: R = Ph	94	> 99 : 1
2	5a: R = Ph	3a: R = Ph	85	>99:1
3	5b : $\mathbf{R} = 2$ -Naphthyl	3b : $\mathbf{R} = 2$ -Naphthyl	75	>99:1
4	1c: $R = 4 - MeOC_6H_4$	$3c: R = 4-MeOC_6H_4$	89	>99:1
5	5d : $R = 4 - Me_2NC_6H_4$	3d : $R = 4 - Me_2 NC_6 H_4$	86	>99:1
6	5e : $R = 4 - NCC_6H_4$	3e : $R = 4-NCC_6H_4$	87	>99:1
7	5f : $R = 2 - FC_6H_4$	3f : $R = 2 - FC_6 H_4$	86	>99:1
8	5g: R = 2-Furyl	3g: R = 2-Furyl	89	>99:1
9	5h : $\mathbf{R} = 2$ -Thienyl	3h : $R = 2$ -Thienyl	88	>99:1
10	5i : $\mathbf{R} = 3$ -Pyridyl	3i : $\mathbf{R} = 3$ -Pyridyl	91	>99:1
11^{c}	$1j: R = CH_2CH_2Ph$	$3\mathbf{j}: \mathbf{R} = \mathbf{C}\mathbf{H}_2\mathbf{C}\mathbf{H}_2\mathbf{P}\mathbf{h}$	78	4:1
	OH R Me	R		
12	5k: R = Ph	$3\mathbf{k}$: $\mathbf{R} = \mathbf{P}\mathbf{h}$	86	>99:1
13	5I : $R = 4 - F_3 CC_6 H_4$	3I : $R = 4 - F_3 CC_6 H_4$	87	>99:1
14 ^d	5m OH Ph Ph	3m Ph	83	_
15 ^d	5n OH Ph	3n Ph	79	>99:1

^{*a*} Isolated yields of 1,5-dienes after purification by PTLC. ^{*b*} Ratios **3**:**4** were determined for both crude mixtures and isolated products (¹H NMR spectroscopy). ^{*c*} Solvent: hexane. ^{*d*} Temperature: 60 °C.

be also effective for the β - and γ -substituted secondary allyl alcohols **5k-m** and the tertiary allyl alcohol **5n** (entries 12–15).

This new method was applicable to the selective formation of vinyl silanes (Scheme 2). The cross-coupling between allyl alcohol **1a** and α -silylallyl boronate **6** afforded almost exclusively the *linear*- γ -adduct **7**^{10,22} in 88% yield. Only traces of the *linear*- α -adduct **8**^{10,22} were detected, and neither *branched* cross-coupled or boron-containing products were found (¹H and ¹¹B NMR spectroscopy). This result underscores the significantly greater reactivity of boron relative to silicon, and highlights the synthetic potential²³ of this new allyl–allyl cross-coupling protocol.

Based on the observed *linear*-selectivity for both primary and secondary substrates (Table 1, entry 1 vs. entry 2) we propose

Scheme 2 Boron vs. silicon: linear-y-selective cross-coupling with 6.

Scheme 3 Proposed mechanism for *linear-γ*-selective cross-coupling.

dual activation of allyl alcohols with the nickel catalyst and the boronate reagent to generate π -allyl–nickel species as common reaction intermediates (oxidative addition; Scheme 3). Allyl–allyl cross-coupling would subsequently occur between the two sterically least congested carbon atoms of the electrophilic π -allyl–nickel and the nucleophilic allyl borate reagents. Thus, we favor a nontransmetalative pathway based on the observed excellent *linear*- γ -selectivity with **6**. However, we cannot exclude a 1,1'-reductive elimination of a generated bis(η ¹-allyl)–nickel intermediate,¹⁴ or similar transmetalative pathways.²²

In summary, we have demonstrated nickel-catalysed intermolecular allyl–allyl cross-couplings between alcohols and boronates, and report here the first general use of allyl alcohols in this context.²¹ The key to this facile C–O bond activation is the use of moderately Lewis acidic boron-based reagents combined with an appropriate nickel(0)–phosphine catalyst (dual activation).¹⁹ The reactions proceeded under mild conditions with excellent *linear*- and γ -selectivity. This new protocol is applicable to the selective preparation of vinyl silanes,²³ and should therefore find great interest in organic chemistry. Further synthetic and mechanistic investigations are currently underway in our laboratories.

Notes and references

- 1 (a) Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis, ed. J. Tsuji, Wiley, Chichester, 2000; (b) Catalytic Asymmetric Catalysis, ed. I. Ojima, Wiley-VCH, Weinheim, 2000.
- 2 Review: D. J. Cárdenas, Angew. Chem., Int. Ed., 2003, 42, 384.
- 3 (a) Terpenes—Flavors, Fragrances, Pharmaca, Pheromones, ed. E. Breitmaier, Wiley-VCH, Weinheim, 2006; (b) K. C. Nicolaou and T. Montagnon, in *Molecules that Changed the World*, Wiley-VCH, Weinheim, 2008.
- 4 Selected examples for the use of 1,5-dienes in organic synthesis: (a) L. E. Overman and F. M. Knoll, J. Am. Chem. Soc., 1980, 102, 865; (b) R. C. D. Brown and J. F. Keily, Angew. Chem., Int. Ed., 2001, 40, 4496; (c) H. Nakamura and Y. Yamamoto, in Handbook of Organopalladium Chemistry for Organic Synthesis, ed. E.-i. Negishi and A. de Meijere, Wiley-Interscience, West Lafayette, 2002, vol. 2, p. 2919; (d) T. J. Donohoe and S. Butterworth, Angew. Chem., Int. Ed., 2003, 42, 948; (e) Y.-J. Zhao, S.-S. Chng and T.-P. Loh, J. Am. Chem. Soc., 2007, 129, 492; (f) J. A. Feducia and M. R. Gagné, J. Am. Chem. Soc., 2008, 130, 592.
- 5 E.-i. Negishi and B. Liao, in *Handbook of Organopalladium Chemistry for Organic Synthesis*, ed. E.-i. Negishi and A. de Meijere, Wiley-Interscience, West Lafayette, 2002, vol. 1, p. 591.
- 6 Intramolecular allyl-allyl cross-couplings with acetates: Sn:
 (a) B. M. Trost and K. M. Pietrusiewicz, Tetrahedron Lett., 1985, 26, 4039; (b) M. Méndez, J. M. Cuerva, E. Gómez-Bengoa, D. J. Cárdenas and A. M. Echavarren, Chem.-Eur. J., 2002, 8, 3620; (c) S. Porcel, V. López-Carrillo, C. García-Yebra and A. M. Echavarren, Angew. Chem., Int. Ed., 2008, 47, 1883; Si:
 (d) J. M. Cuerva, E. Gómez-Bengoa, M. Méndez and A. M. Echavarren, J. Org. Chem., 1997, 62, 7540.

- 7 Intermolecular allyl–allyl cross-couplings with stoichiometric Pd complexes: Mg: (a) A. Goliaszewski and J. Schwartz, J. Am. Chem. Soc., 1984, 106, 5028; (b) A. Goliaszewski and J. Schwartz, Tetrahedron, 1985, 41, 5779; Si: (c) A. Goliaszewski and J. Schwartz, Organometallics, 1985, 4, 417.
- 8 Intermolecular allyl–allyl cross-couplings with halides, acetates, and carbonates: Sn: (a) B. M. Trost and E. Keinan, Tetrahedron Lett., 1980, 21, 2595; (b) J. Godschalx and J. K. Stille, Tetrahedron Lett., 1980, 21, 2599; (c) H. Nakamura, M. Bao and Y. Yamamoto, Angew. Chem., Int. Ed., 2001, 40, 3208; In: (d) P. H. Lee, S.-y. Sung, K. Lee and S. Chang, Synlett, 2002, 146; (e) P. H. Lee, E. Shim, K. Lee, D. Seomoon and S. Kim, Bull. Korean Chem. Soc., 2005, 26, 157.
- 9 Intermolecular allyl-allyl cross-couplings with ethers: Si: M. Murakami, T. Kato and T. Mukaiyama, Chem. Lett., 1987, 1167.
- 10 E. Ferrer Flegeau, U. Schneider and S. Kobayashi, Chem.-Eur. J., 2009, 15, 12247.
- 11 Observation of symmetrical 1,5-dienes as coupling by-products under Pd catalysis: (a) T. Ishiyama, T.-a. Ahiko and N. Miyaura, Tetrahedron Lett., 1996, **37**, 6889; (b) M. Kimura, I. Kiyama, T. Tomizawa, Y. Horino, S. Tanaka and Y. Tamaru, Tetrahedron Lett., 1999, **40**, 6795.
- 12 Catalytic activation of allyl boronates for addition to C(sp²) centers: selected examples for 1,2-addition: (a) account: D. G. Hall, Synlett, 2007, 1644; (b) P. Zhang and J. P. Morken, J. Am. Chem. Soc., 2009, 131, 12550; (c) P. Jain and J. C. Antilla, J. Am. Chem. Soc., 2010, 132, 11884 and references cited therein; 1,4-addition: (d) J. D. Sieber, S. Liu and J. P. Morken, J. Am. Chem. Soc., 2008, 130, 4978; (f) M. B. Shaghafi, B. L. Kohn and E. R. Jarvo, Org. Lett., 2008, 10, 4743.
- 13 Catalytic C(sp³)–C(sp³) cross-couplings between O,O-acetals and allyl boronates: U. Schneider, H. T. Dao and S. Kobayashi, Org. Lett., 2010, 12, 2488.
- 14 While our present alcohol study was in progress, Pd-catalysed branched-selective allyl-allyl cross-couplings between carbonates and boronates were reported: P. Zhang, L. A. Brozek and J. P. Morken, J. Am. Chem. Soc., 2010, 132, 10686.
- 15 Catalytic activation of allyl alcohols for intermolecular C–C bond formation: R. Matsubara, K. Masuda, J. Nakano and S. Kobayashi, *Chem. Commun.*, 2010, 46, 8662 and references cited therein.
- 16 Catalysts that did not promote any reaction between 1a and 2a (recovery of starting materials): AuHal₃ (Hal = Cl, Br), XAuCl₄. yH_2O (X = H, Na; y = 2, 3), FeCl₃, Me₃SiOTf, B(C₆F₅)₃, MeO-9-BBN, InCl₃.
- 17 Catalytic C(sp³)-C(sp³) cross-coupling between ethers and allyl borane 2b: H. T. Dao, U. Schneider and S. Kobayashi, *Chem. Commun.*, 2011, 47, 692.
- 18 Conversion of allyl alcohols into allyl indium reagents with Ni(acac)₂ (5–20 mol%), PPh₃ (20–80 mol%) and InI (100 mol%): T. Hirashita, S. Kambe, H. Tsuji, H. Omori and S. Araki, J. Org. Chem., 2004, **69**, 5054.
- 19 During the preparation of our manuscript, related studies for the catalytic activation of allyl alcohols were reported: (a) Pd-catalysed intermolecular C–Si and C–B bond formations: N. Selander, J. R. Paasch and K. J. Szabó, J. Am. Chem. Soc., 2011, 133, 409; Pd-catalysed intermolecular C–C bond formations: (b) S.-F. Zhu, X.-C. Qiao, Y.-Z. Zhang, L.-X. Wang and Q.-L. Zhou, Chem. Sci., 2011, 2, 1135; (c) boronic acid-catalysed intramolecular C–O bond formations: H. Zheng, M. Lejkowski and D. G. Hall, Chem. Sci., 2011, 2, 1305.
- 20 Pd(0)-catalysed Cope-type rearrangement of 1,5-dienes: H. Nakamura, H. Iwama, M. Ito and Y. Yamamoto, J. Am. Chem. Soc., 1999, 121, 10850.
- 21 The electron-rich allyl alcohol **5g** was reported to react in a *branched*-selective allyl–allyl cross-coupling with **2a** (single example): see ref. 14.
- 22 Y. Sumida, S. Hayashi, K. Hirano, H. Yorimitsu and K. Oshima, Org. Lett., 2008, 10, 1629.
- 23 Feature article: S. E. Denmark and C. R. Butler, *Chem. Commun.*, 2009, 20.