
& C�H Activation

Iridium-Catalyzed Intramolecular Methoxy C�H Addition to
Carbon–Carbon Triple Bonds: Direct Synthesis of 3-Substituted
Benzofurans from o-Methoxyphenylalkynes

Takeru Torigoe, Toshimichi Ohmura,* and Michinori Suginome*[a]

Abstract: Catalytic hydroalkylation of an alkyne with
methyl ether was accomplished. Intramolecular addition
of the C�H bond of a methoxy group in 1-methoxy-2-
(arylethynyl)benzenes across a carbon–carbon triple bond
took place efficiently either in toluene at 110 8C or in p-
xylene at 135 8C in the presence of an iridium catalyst. The
initial 5-exo cyclization products underwent double-bond
migration during the reaction to give 3-(arylmethyl)benzo-
furans in high yields.

Transition-metal-catalyzed hydroalkylation, that is, addition of
a C(sp3)�H bond to a carbon–carbon unsaturated bond, is an
atom- and step-economical bond-forming reaction. Hydroalky-
lation at the C�H bond a to a heteroatom such as oxygen, ni-
trogen, and sulfur is particularly attractive because it allows
chemoselective functionalization of heteroatom-containing or-
ganic compounds (Scheme 1).[1] Indeed, catalytic addition of

a C�H bond a to nitrogen atoms in alkylamines and their de-
rivatives to carbon–carbon unsaturated bonds has been dem-
onstrated by using various transition-metal catalysts
(Scheme 1, X = N).[2, 3] The protocol has been extended to intra-
molecular variants, which lead to the formation of nitrogen-
containing heterocyclic compounds.[3d,e,g] In contrast, utilization
of an oxygen-bound C�H bond in hydroalkylation remains lim-
ited (Scheme 1, X = O).[3d,e, 4–6] Lewis acid mediated reactions in-
volving a 1,5-hydride shift and variants using platinum and

gold catalysts are known for benzylic and cyclic ethers.[4] In ad-
dition, transition-metal-catalyzed hydroalkylation with alcohols
and THF, which may involve a radical process[5] or a redox-trig-
gered C–C coupling mechanism[6] instead of direct activation
and insertion of a-C�H into C�C unsaturated bonds, has also
been reported. However, to our knowledge, hydroalkylation
with methyl ethers (ROCH3) has not been achieved.[7] Given
that the methyl ether functionality is ubiquitous in organic
compounds, it is synthetically valuable to establish hydroalky-
lation at the a-C�H bond of methoxy groups by using transi-
tion-metal catalysts. In the course of our study on the catalytic
activation of C(sp3)�H bonds of the methyl group on a silicon
atom,[8] we became interested in the activation of methyl
groups bound to an oxygen atom. We herein report the intra-
molecular addition of a C�H bond of the methoxy group
across the carbon–carbon triple bond of o-methoxyphenylal-
kynes. The initial 5-exo cyclization products underwent double-
bond migration during the reaction to afford 3-substituted
benzofurans selectively.

1-Methoxy-2-(phenylethynyl)benzene (1 a) was reacted in
toluene at 110 8C in the presence of [IrCl(C2H4)2]2 (2 mol %) as
a catalyst precursor and DTBM-SEGPHOS (L1, 4 mol %) as
a ligand (Table 1, entry 1).[9] The reaction gave 3-benzylbenzo-
furan (2 a) and (E)-3-benzylidene-2,3-dihydrobenzofuran ((E)-
3 a) in 36 and 20 % yield, respectively, after 12 h (entry 1).
When the reaction was carried out with an extended reaction
time (24 h), 2 a and (E)-3 a were formed in 91 and 2 % yield, re-
spectively (entry 2). These results and deuterium-labeling ex-
periments, which are described later, indicate that intramolecu-
lar addition of a C�H bond of the methoxy group of 1 a took
place across the C–C triple bond in a syn fashion to give (E)-
3 a, which underwent double-bond migration to afford 2 a. The
reaction proceeded efficiently at 110 8C, whereas conducting
the reaction at 80 8C resulted in low conversion (entry 3).
[IrCl(C2H4)2]2 was the most suitable catalyst precursor, whereas
the use of [IrCl(cod)]2 or [Ir(OMe)(cod)]2 (cod = 1,5-cycloocta-
diene) resulted in slower or no reaction (entries 4 and 5). Li-
gands L1 and DTBM-MeOBIPHEP (L4) were optimal for both
hydroalkylation and double-bond migration (entries 2 and 9);
an inefficient catalyst was formed with DM-SEGPHOS (L2,
entry 7), and the iridium complex bearing DTBM-BINAP (L3)
demonstrated moderate catalyst activity (entry 8). These results
indicate that the 3,5-tert-butyl-4-methoxyphenyl (DTBM) group
on the phosphorus atoms and the 6,6’-dialkoxy-1,1’-biphenyl
backbone are key ligand structures that are required to accom-
plish high catalyst efficiency. Iridium and ligand were both es-

Scheme 1. Transition-metal-catalyzed hydroalkylation of alkynes and alkenes
by cleavage of the C(sp3)�H bond a to heteroatoms.
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sential ; no reaction took place in the absence of either of
these components (entries 6 and 10). A possible side reaction
was hydrogenation of the C�C triple bond to give 1,2-diaryl-
ethane (E)-4, which can occur through iridium-catalyzed hydro-
gen transfer from solvent.[10, 11] Indeed, the reaction of 1 a in
either THF or octane gave predominantly (E)-4, rather than 2
and (E)-3 a (entries 11 and 12). This undesirable reaction was
completely suppressed when the reaction was conducted in
toluene (entry 2).[12]

A range of 1-methoxy-2-(arylethynyl)benzene derivatives
were subjected to the iridium-catalyzed intramolecular hydro-
alkylation double-bond migration (Table 2).[13] Substrate 1 b,
bearing a 4-tolyl group at the terminus of the ethynyl group,
reacted smoothly under the standard conditions to give 2 b in
high yield (Table 2, entry 2). Higher catalyst loading (8 mol %)
was required for full conversion in the reaction of trifluorome-
thylphenyl-substituted substrate 1 c (entry 3). The relative reac-
tivity decreased in the order 1 b>1 a>1 c,[14] indicating that
the presence of an electron-rich aryl group increases the reac-
tivity. Substrates 1 d–h bearing methoxy, benzyloxy, siloxy,
phenoxy, and trifluoromethyloxy groups, respectively, were all
tolerated in the reaction (entries 4–8). Methoxy- and benzy-
loxy-substituted compounds 1 d and 1 e showed lower reactivi-
ty than 1 f–h and the reaction required both elevated tempera-
ture and higher catalyst loading (entries 4 and 5), indicating
that coordination of the ether functionality may reduce the ac-
tivity of the catalyst.

The reaction was applicable to a boronic ester 1 i, giving the
synthetically attractive compound 2 i in good yield (Table 2,
entry 9). In the reaction of methyl- and trifluoromethyl ketone
derivatives 1 j and 1 k, ligand L4 was more suitable than L1; by
using L4, the corresponding benzofurans 2 j and 2 k were ob-
tained in moderate yields (entries 10 and 11). The reaction of
1 l–n, bearing ortho-substituted phenyl groups, proceeded effi-

Table 1. Reaction conditions.[a]

Entry Ir precursor L Solvent T [8C], t [h] Yield [%]
2 a[b] 3 a[b] 4[b]

1 [IrCl(C2H4)2]2 L1 toluene 110, 12 36 20 0
2 [IrCl(C2H4)2]2 L1 toluene 110, 24 91 2 0
3 [IrCl(C2H4)2]2 L1 toluene 80, 24 1 6 0
4 [IrCl(cod)]2 L1 toluene 110, 24 57 18 2
5 [Ir(OMe)(cod)]2 L1 toluene 110, 24 0 0 0
6 – L1 toluene 110, 24 0 0 0
7 [IrCl(C2H4)2]2 L2 toluene 110, 24 6 3 0
8 [IrCl(C2H4)2]2 L3 toluene 110, 24 36 16 0
9 [IrCl(C2H4)2]2 L4 toluene 110, 24 89 2 0
10 [IrCl(C2H4)2]2 - toluene 110, 24 0 0 0
11 [IrCl(C2H4)2]2 L1 THF 110, 24 0 4 40
12 [IrCl(C2H4)2]2 L1 octane 110, 24 11 10 40

[a] 1 a (0.10 mmol), an Ir precursor (0.0020 mmol), and L (0.0040 mmol)
were stirred in solvent (0.2 mL) at 80–110 8C for 12–24 h. [b] 1H NMR yield.

Table 2. Iridium-catalyzed intramolecular hydroalkylation double-bond
migration of 1 to give benzofuranes.[a]

Entry Substrate T [8C],
[IrCl(C2H4)2]2 [mol %]

Yield [%][b]

1 R = H (1 a) 110, 2 85 (2 a)
2 R = CH3 (1 b) 110, 2 82 (2 b)
3 R = CF3 (1 c) 110, 4 83 (2 c)
4 R = OCH3 (1 d) 135, 4 74 (2 d)
5 R = OCH2Ph (1 e) 135, 4 74 (2 e)
6 R = OTBS (1 f) 110, 4 77 (2 f)
7 R = OPh (1 g) 110, 3 80 (2 g)
8 R = OCF3 (1 h) 110, 3 84 (2 h)
9 R = B(pin) (1 i) 135, 3 78 (2 i)
10 R = C(O)CH3 (1 j) 135, 5[c] 46 (2 j)
11 R = C(O)CF3 (1 k) 135, 5[c] 66 (2 k)

12 R = CH3 (1 l) 110, 3 81 (2 l)
13 R = OCH3 (1 m) 135, 2 80 (2 m)
14 R = Br (1 n) 135, 5 76 (2 n)

15 135, 5[c] 40 (2 o)

16 135, 5[c] 70 (2 p)

17 Ar = 2-naphthyl (1 q) 110, 2 77 (2 q)
18 Ar = 1-naphthyl (1 r) 135, 3 85 (2 r)

19 110, 2 81 (2 s)

20 135, 5[c] 33 (2 t)

[a] 1 (0.20 mmol), [IrCl(C2H4)2]2 (0.0040–0.010 mmol), and L1 (L1/Ir = 1)
were stirred for 24 h either in toluene (0.2 mL) at 110 8C or in p-xylene
(0.2 mL) at 135 8C unless otherwise noted. [b] Isolated yield. [c] L4 was
used as a ligand.
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ciently either by increasing the catalyst amount or upon heat-
ing the system to 135 8C (entries 12–14). The 2-bromophenyl
group of 1 n was tolerated (entry 14), whereas the reaction
was completely inhibited by the 4-bromophenyl group of 1 z
(Scheme 2). Similar effects of neighboring substituents were
observed in the reaction of carbonyl-substituted substrates :
only low conversion was observed in the reaction of methyl
ester 1 aa (Scheme 2), whereas the o-methyl-substituted com-
pound 1 o gave 2 o in moderate yield (entry 15). Ketone 1 p,
bearing a methoxy group ortho to the carbonyl group, gave
a higher yield than that obtained for 1 j (entries 10 and 16).
The higher catalyst efficiency with these substrates than with
1 aa is probably due to steric shielding of the carbonyl group
from interaction with the iridium catalyst. In addition to naph-
thalene derivatives 1 q and 1 r (entries 17 and 18), the hydroal-
kylation double-bond migration was applicable to 1 s and 1 t,
which bear 5-indolyl and 2-pyridyl groups, respectively (en-
tries 19 and 20).

1-Methoxy-2-(phenylethynyl)benzene derivatives 1 u–y,
which bear substituents R1–R4 on the tethering benzene ring,
were then subjected to the hydroalkylation double-bond mi-
gration (Table 3).[13] Compound 1 u (R3 = CH3) was slightly more
reactive than 1 a, and 2 u was formed efficiently under the
standard conditions (entry 1). In contrast, the reaction of 1 v
(R3 = CF3) was slower than that of 1 a and 1 u (entry 2), indicat-
ing that an electron-withdrawing group at the R3-position de-
creases the reactivity. The reaction of 1 w (R1 = CH3) was slower

than that of 1 u, probably for steric reasons (entry 3). Slower re-
action was also observed for 1 x (R2 = OCH3), which required
135 8C for full conversion (entry 4). In contrast, 1 y (R4 = OCH3)
reacted smoothly under the standard conditions to give 2 y in
good yield (entry 5).

Substrates that were not suitable for the reaction under the
present conditions are summarized in Scheme 2. In addition to
the reaction of 1 z and 1 aa described above, no desired cycli-
zation occurred in the reaction of either 1 ab or 1 ac, bearing

ethoxy or benzyloxy groups, respectively, instead of a methoxy
group. Submitting terminal alkyne 1 ad to the reaction condi-
tions resulted in the formation of a complex mixture, whereas
no reaction took place with trimethylsilylethyne 1 af. Com-
pound 1 ae did not give the desired product, although its con-
version was observed at 135 8C.

To obtain insight into the mechanism, the reaction of 1 b-D
was carried out (Scheme 3 A). Given that the reaction of 1 b-D
at 110 8C was rather slow compared with that of 1 b, the reac-
tion temperature was set to 135 8C. A benzofuran 2 b-D was

obtained in 79 % yield with reasonably high deuterium incor-
poration at both C2 and the benzylic carbon atoms (79 and
90 % D, respectively). The observed decrease in the deuterium
content is attributed to partial delivery of the deuterium to the
C�H bond at C7 of the benzofuran ring.[15] A large kinetic iso-
tope effect (kH/kD = 3.4) was observed in the independent reac-
tions of 1 b and 1 b-D (Scheme 3 B). Based on these results, we
propose a possible mechanism for the hydroalkylation double-
bond migration (Scheme 4). Coordination of the C�C triple
bond of 1 and oxidative addition of the C�H bond of the me-
thoxy group to IrI give complex A. Insertion of the C�C triple
bond into either the Ir�H or Ir�C bond proceeds in an intra-
molecular syn fashion to afford alkenyliridium B1 or B2. Subse-

Table 3. Effect of substituents on the tethering benzene ring.[a]

Entry Substrate Conditions[b] Product Yield [%][c]

1 110 8C, 2 mol % 80

2 110 8C, 4 mol % 78

3 135 8C, 2 mol % 81

4 135 8C, 4 mol % 75

5 110 8C, 2 mol % 76

[a] 1 (0.20 mmol), [IrCl(C2H4)2]2 (0.0040–0.0080 mmol), and L1 (L1/Ir = 1)
were stirred for 24 h either in toluene (0.2 mL) at 110 8C or in p-xylene
(0.2 mL) at 135 8C. [b] Mol % of [IrCl(C2H4)2]2 is given. [c] Isolated yield.

Scheme 2. Unsuitable substrates.

Scheme 3. d-Labeling experiments.
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quent reductive elimination gives (E)-3 with regeneration of IrI.
Compound (E)-3 then undergoes migration of the double
bond through a 1,3-H shift via p-allyl iridium C, which is
formed through oxidative addition of the allylic C�H to IrI. The
observed large kinetic isotope effect indicates that cleavage of
the C�H bond to form A should be the rate-determining step
in the intramolecular hydroalkylation.

2-Alkyl-3-aroylbenzofurans constitute an important structural
motif in certain bioactive compounds such as amiodaron[16]

and benzbromarone.[17] (Scheme 5 A). The hydroalkylation
double-bond migration of 1 provides a new route to such
compounds through conversions of 2. Direct conversion of 2 a
into 2-bromo-3-benzoylbenzofuran (5) was accomplished by
treatment with KBr/Oxone under visible-light irradiation
(Scheme 5 B).[18] It has been reported that the bromo group in
5 can be converted by Negishi coupling into an alkyl group
with retention of the carbonyl group.[19]

In conclusion, we have established the first catalytic hydroal-
kylation of C�C multiple bonds with methyl ethers in the iridi-
um-catalyzed conversion of o-methoxyphenylalkynes. 3-Substi-
tuted benzofurans are formed through intramolecular addition
of a C�H bond of a methoxy group across a C�C triple bond
and subsequent migration of the double bond. The insights
obtained in this study are expected to lead to further catalytic
functionalization of C(sp3)�H bonds, the development of which
still lags behind that of C(sp2)�H bonds. Further exploration of
catalytic addition reactions utilizing C(sp3)�H bonds is being
undertaken in this laboratory.
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Iridium-Catalyzed Intramolecular
Methoxy C�H Addition to Carbon–
Carbon Triple Bonds: Direct Synthesis
of 3-Substituted Benzofurans from o-
Methoxyphenylalkynes

Make it active : Intramolecular addition
of the C�H bond of a methoxy group in
1-methoxy-2-(arylethynyl)benzenes
across a carbon–carbon triple bond
took place efficiently in the presence of

an iridium catalyst. The initial 5-exo-cy-
clized products underwent double-bond
migration during the reaction to give 3-
(arylmethyl)benzofurans in high yields
(see scheme).
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