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METHYLSULFONIC ACID ADSORBED ON SILICA GEL
AS A SOLID ACID FOR DIMERIZATION OF INDOLES: A
CONVENIENT SYNTHESIS OF 2,3’-BI(3H-INDOL)-3-ONE
OXIMES

Qiong Chang, Hongen Qu, Wenbing Qin, Liangxian Liu, and
Zhengwang Chen
Department of Chemistry and Chemical Engineering, Gannan Normal
University, Ganzhou, China

GRAPHICAL ABSTRACT

Abstract A simple, convenient, and efficient approach for the synthesis of (E)-2,30-bi(3H-

indol)-3-one oxime derivatives has been developed. The methodology is based on a

three-component coupling reaction of indoles and sodium nitrite using a silica-supported

methylsulfonic acid as solid acid. The practical utility of this three-component coupling

reaction has been demonstrated in the gram-scale dimerization of indole.

[Supplementary materials are available for this article. Go to the publisher’s online

edition of Synthetic Communications1 for the following free supplemental resource: Full

experimental and spectral details.]

Keywords Biindoles; CH3SO3H-SiO2; indoles; tandem reaction; three-component

coupling reaction

INTRODUCTION

Indole derivatives are important compounds that are widespread in nature and
exhibit significant biological activity.[1] For example, the bis-indole alkaloid indiru-
bin 1 and its analogs (collectively referred to as indirubins) were among the early
cyclin-dependent kinase (CDK) inhibitors to be discovered.[2] Indirubins can be
found in various indigo dye-producing plants (more than 200 species) (Fig. 1).[3]
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Moreover, indirubin is the active ingredient of a traditional Chinese medicine recipe,
‘‘Danggui Longhui Wan,’’ used to treat various diseases including chronic myelocy-
tic leukemia.[3] Bisindole alkaloids 2a–c were isolated from field-collected fruiting
bodies of the myxomycete Perichaena chrysosperma, and compound 2a was shown
to have hedgehog signal inhibitory activity (Figure 1).[4] In addition, isatisine A 3

(Figure 1), an oxindole system having indole 2-substituents, is present in the roots
and leaves of Isatis indigotica fort (Cruciferae). This biennial herbaceous plant is
widely cultivated in China and East Asia for the prevention and treatment of viral
diseases such as influenza, viral pneumonia, mumps, and hepatitis.[5]

Thus, the development of new methods for accessing unique biindole deriva-
tives for new leads in drug and material discovery is still highly desirable. Various
attempts have been made to construct biindolyl scaffolds.[6–9] Among various meth-
ods, the oxidative dimerization of indoles has been well investigated.[6] Recently,
some progress on construction of the 2,30-linked and 3,30-linked biindolyl scaffolds
was made, including the palladium- or copper-catalyzed intermolecular coupling
reaction[7] and iodine-induced dimerization of indoles.[8] For example, Shi and
coworkers reported the oxidative homo dimerization of N-protected and free indole
derivatives toward 3,30-linked biindolyl scaffolds via Pd-catalyzed direct C-H trans-
formations.[7d] However, most of these procedures require expensive metal catalysts
and high loading of metal oxidants.[8]

With the demand for green chemistry, solid-supported reagents have gained
much prominence because of their environmental benefits and easy separation of
the products.[10] In the past several years, some Brønsted acids, such as HBF4,

[11]

HClO4,
[12] and TfOH[13] have been successfully supported on silica gel and applied

as solid acids in various catalytic reactions. However, the study of methylsulfonic
acid supported on silica gel is still very rare.[14]

RESULTS AND DISCUSSION

Recently, we reported the highly regioselective preparation of 2-(1H-indol-3-yl)-
2,30-biindolin-3-one derivatives starting from indoles by using 2,2,6,6-tetramethylpi-
peridine N-oxyl radical (TEMPO) in air as an environmentally benign oxidant.[15]

Figure 1. Structure of some bisindole alkaloids.
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As a part of our ongoing project aimed at developing environmentally benign chemical
transformations, herein we report the successful one-pot, three-component coupling of
indoles with sodium nitrite for the construction of various (E)-2,30-bi(3H-indol)-3-one
oximes by using a silica-supported methylsulfonic acid as solid acid.

Initially, the reaction of indole with sodium nitrite in the presence of HBF4 was
screened to obtain the optimized reaction conditions. A mixture of indole
(0.5mmol), HBF4 (0.5mmol), and sodium nitrite (0.6mmol) in CH3CN was stirred
at room temperature for 10 h. As expected, the desired coupling product 5a was
obtained in 37% isolated yield (Scheme 1), and the major by-product of this reaction
came from the dimer 6 and trimer 7.

To improve the reaction yield and limit the formationof by-products, different protic
acids were screened, and the results are summarized in Table 1. As depicted in Table 1,
methylsulfonic acid was optimal, with which the highest yield of 73% was obtained
(Table 1, entry 4). Interestingly, phenylsulfonic acid afforded the product in poor yield
(Table 1, entry 7), whereas TsOHafforded the product inmoderate yield (Table 1, entry 2).

With the demand for green chemistry, solid supporters such as silica gel have
attracted lots of attention in recent decades, because the heterogeneous reaction pro-
vides for easy separation of the products without tedious experimental workup. In
view of the corrosive and fuming problems of CH3SO3H, we prepared the silica gel–
supported CH3SO3H. To our surprise and pleasure, an important improvement was
observed when CH3SO3H-SiO2 was used as a solid acid, because 5a was obtained in
85% yield (Table 1, entry 5). Finally, the influence of the amount of CH3SO3H-SiO2

was also evaluated. As shown in Table 1 (entries 10–14), the amount of
CH3SO3H-SiO2 had an impact on the yield, and the optimal amount of
CH3SO3H-SiO2 used in the reaction was 1.1 equiv CH3SO3H-SiO2 (Table 1, entry 12).

In addition, the choices of solvent are also critical to the three-component
coupling reaction. Pyridine was proved to be the best for the formation of 5a, with
which the greatest yield of 89% was obtained (Table 1, entry 12). When CHCl3 or
CCl4 was employed as the reaction solvent, the desired 5a was obtained in a lower
yield of 33% and 21%, respectively (Table 1, entries 18 and 19). However, when
the reaction solvent was changed from pyridine to dicyclohexylamine (DCHA) or
dibenzylamine, no product was observed (Table 1, entries 20–21).

Scheme 1. Reaction of indole with sodium nitrite in the presence of HBF4.
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Finally, the desired product 5a was obtained in 89% isolated yield under the
typical conditions, that is, 1.0 equiv of indole and 1.2 equiv of NaNO2 as substrates
and 1.1 equiv of CH3SO3H-SiO2 as solid acid. Pyridine was the reaction solvent at
room temperature in the air.

With the optimal reaction conditions in hand, the substrate scope of indoles for
this three-component coupling was examined. The results are summarized in Table 2.
From Table 2 it was found that various substrates were converted into the corre-
sponding products in good to excellent yields, with the molecular structure of 5b con-
firmed by x-ray crystallography (Fig. 2). As depicted in Fig. 2, the values of the
N(1)¼C(7) bond length (1.313 Å) and N(3)¼C(8) bond length (1.273 Å) are consist-
ent with the localization of the double bond.

The method turned out to be tolerant toward a broad range of functional
groups at the 4, 5, 6, and 7 positions of indoles, such as halogen, nitrile, amide,
ester, ether, or amine. For the substituted indoles, the electronic effect of the

Table 1. Optimization of the reaction conditionsa

Entry Acid (equiv) Solvent Yield (%)b

1 HBF4 (1) Pyridine 62

2 TsOH (1) Pyridine 48

3 CF3CO2H (1) Pyridine 65

4 CH3SO3H (1) Pyridine 73

5 CH3SO3H-SiO2 (1)
c Pyridine 85

6 HOAc (1) Pyridine Trace

7 PhSO3H (1) Pyridine 10

8 PhCO2H (1) Pyridine 0

9 SiO2 (10) Pyridine 0

10 CH3SO3H-SiO2 (0.5) Pyridine 45

11 CH3SO3H-SiO2 (0.8) Pyridine 76

12 CH3SO3H-SiO2 (1.1) Pyridine 89

13 CH3SO3H-SiO2 (1.2) Pyridine 86

14 CH3SO3H-SiO2 (1.3) Pyridine 81

15 CH3SO3H-SiO2 (1.1) CH3CN 41

16 CH3SO3H-SiO2 (1.1) THF 6

17 CH3SO3H-SiO2 (1.1) EtOH 5

18 CH3SO3H-SiO2 (1.1) CHCl3 33

19 CH3SO3H-SiO2 (1.1) CCl4 21

20 CH3SO3H-SiO2 (1.1) DCHA d 0

21 CH3SO3H-SiO2 (1.1) Dibenzylamine 0

aReaction conditions: indole (0.50mmol), NaNO2 (0.60mmol), rt.
bIsolated yield.
cCH3SO3H adsorbed on silica.
dDicyclohexylamine.
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substituent groups could affect the reactivity of the substrates. In general,
electron-donating substituents were more beneficial for this transformation, whereas
the electron-withdrawing groups decreased the reaction yields. For instance,
5-methoxy-1H-indole containing an electron-donating group (OCH3) showed high
reactivity and the corresponding product 5e was obtained in 92% yield (Table 2,
entry 5), whereas 5-nitro-1H-indole containing strongly electron-withdrawing
groups (NO2) showed poor reactivity and the corresponding product 5i was obtained
in 54% yield (Table 2, entry 9). Furthermore, we found that the position of substi-
tuents on C5, C6, and C7 of the indole ring did not have a significant effect on
the formation of 5.

To explore more the scope of this reaction, N-CH3 indole was also investigated.
It was found that under the optimized conditions, 3-nitroso-2,30-biindole 8 was
obtained in excellent yield (Scheme 2).

Finally, the practical applicability of this three-component coupling reaction is
also demonstrated. We used indole as a test substrate and worked on a gram scale. A
50mmol (5.85 g) reaction of indole was performed with CH3SO3H-SiO2 (110.00 g,
55mmol) and NaNO2 (4.10 g, 60mmol) in pyridine (60mL) under the atmosphere

Table 2. Reaction scope of indoles with NaNO2
a

Entry
R

N Time (h) Yield (%)b

1 H 5a 10 89

2 5-Br 5b 24 62

3 5-F 5c 24 60

4 5-CH3 5d 10 91

5 5-OCH3 5e 10 92

6 5-OBn 5f 10 89

7 5-NH2 5g 10 78

8 5-NHAc 5h 10 85

9 5-NO2 5i 24 54

10 5-CN 5j 24 68

11 5-CO2CH3 5k 24 76

12 6-F 5l 24 67

13 6-Cl 5m 24 77

14 7-Cl 5n 24 62

15 7-CH3 5o 10 90

16 7-OCH3 5p 10 95

17 7-OBn 5q 10 91

18 4-CH3 5r 10 72

aReaction conditions: CH3SO3H-SiO2 (0.55mmol), indole (0.50mmol), NaNO2

(0.60mmol), pyridine (1mL), rt.
bIsolated yield.
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and the mixture was stirred at room temperature for 10h. The desired product was
obtained in 86% yield. This result indicates that the present approach is a practical
process for three-component coupling of indoles with NaNO2.

Although the reaction mechanism has not been clear up to now, a possible
process is proposed in Scheme 3. First, indole reacts with NaNO2 in the presence

Figure 2. ORTEP representation of the molecular structure of 5b.

Scheme 2. Reaction of N-CH3 indole with NaNO2 using CH3SO3H-SiO2 as the solid acid.

Scheme 3. Plausible mechanism for the one-pot, three-component coupling reaction.
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of CH3SO3H-SiO2 as the solid acid, leading to the formation of intermediate 9,
which readily tautomerizes the isomeric 3-oxime intermediate 10. Subsequently,
the highly reactive species 10 is trapped by second indole to give dimer 11. Finally,
the intermediate 11 is further oxidized (likely by NaNO2) to result in the formation
of the desired product 5.

In summary, we have successfully developed a practical, operationally simple,
economical, and environmentally friendly procedure for the synthesis of (E)-2-
,30-bi(3H-indol)-3-one oximes via one-pot, three component-coupling reactions.
Moreover, it has several advantages: (1) an inexpensive and environmentally friendly
CH3SO3H-SiO2 has been used as the solid acid, (2) a wide variety of functional
groups, including electron-rich and electron-withdrawing groups, can survive, (3)
it is highly regioselective (2,30-linkage), (4) this tandem reaction proceeded smoothly
without exclusion of moisture or air from the reaction mixture, which gives a rapid
access to a variety of substituted (E)-2,30-bi(3H-indol)-3-one oximes in good to excel-
lent yields at room temperature, and (5) in comparison with the homogeneous reac-
tions using CH3SO3H as an acid, the heterogeneous reactions give better reaction
yields. Further study in this area is going on in our laboratory to develop
cross-coupling of indoles.

EXPERIMENTAL

Preparation of the Silica Gel-Supported Methylsulfonic Acid
(CH3SO3H-SiO2)

To a suspension of silica gel (10.0 g, 200–300 mesh) in tetrahydrofuran (THF)
(35mL), CH3SO3H (480mg, 5mmol) was added. Themixture was stirredmagnetically
for 60min at rt. The THF was removed under reduced pressure, and the residue was
dried at 110 �C for 2 h to afford CH3SO3H-SiO2 (0.5mmol g�1) as a white powder.

Typical Experimental Procedure for the Preparation of (E)-2,3’-Bi(3H-
indol)-3-one Oxime (5a)

CH3SO3H-SiO2 (1.1 g, 0.55mmol) was added to a solution of indole (59mg,
0.50mmol) and NaNO2 (41mg, 0.60mmol) in pyridine (1mL) under the atmos-
phere, and the mixture was stirred at room temperature for 10 h. The reaction mix-
ture was concentrated under reduced pressure. The residue was purified by flash
chromatography on silica gel (eluent: EtOAc=PE¼ 1:1) to yield the corresponding
product 5a (58mg, 89%).

Characterization Data of (E)-2,3’-Bi(3H-indol)-3-one Oxime (5a)

Red-brown solid, mp: 243–244 �C (from EtOAc=PE¼ 1:1) (lit,[16] mp:
243–244 �C). IR (KBr) (nmax: 3172, 3050, 1548, 1438, 1008, 753 cm

�1. 1H NMR
(400MHz, DMSO-d6): d 13.34 (s, 1H), 11.82 (s, 1H), 8.51 (d, J¼ 8.0Hz, 1H,
Ar-H), 8.32 (d, J¼ 4.0Hz, 1H, Ar-H), 8.04 (d, J¼ 4.0Hz, 1H, Ar-H), 7.49 (d,
J¼ 8.0Hz, 1H, Ar-H), 7.43 (m, 2H, Ar-H), 7.22 (m, 3H, Ar-H). 13C NMR
(100MHz, DMSO-d6): d 162.6, 157.2, 155.4, 136.9, 132.2, 132.1, 127.2, 126.5,

2932 Q. CHANG ET AL.
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125.8, 123.1, 122.9, 121.6, 121.5, 119.9, 112.5, 109.0. MS (ESI): 262 (MþHþ, 100),
284 (MþNaþ, 5). These assignments matched with those previously published.[17]

SUPPORTING INFORMATION

Full experimental detail, 1H and 13C NMR spectra for the compounds 5–8,
copies of 1H and 13C NMR spectra for all compounds, and x-ray data of compound
5b can be found via the Supplementary Content section of this article’s Web page.
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