

Available online at www.sciencedirect.com

Tetrahedron 62 (2006) 6893-6898

Tetrahedron

Reactions of 4-(dimethylamino)pyridinium activated pentachloropyridine with nitrogen nucleophiles and hydride

Andreas Schmidt,* Jan Christoph Namyslo and Thorsten Mordhorst

Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstrasse 6, D-38678 Clausthal-Zellerfeld, Germany

Received 20 March 2006; revised 21 April 2006; accepted 27 April 2006 Available online 19 May 2006

Abstract—Substitution reactions on 2',3',5',6'-tetrachloro-4-dimethylamino-[1,4]bipyridinyl-1-ylium chloride with nitrogen nucleophiles such as *n*-propylamine, isopropylamine, glycine, morpholine, and piperidine were examined. Highly functionalized $Cl^2, Cl^3, N^4, Cl^5, Cl^6$ -and $N^2, Cl^3, N^4, Cl^5, Cl^6$ -substituted pyridines were obtained, in part possessing unsubstituted 4-amino groups due to dealkylation. Detailed NMR studies were performed in order to elucidate the regiochemistry of these dealkylations.

1. Introduction

Substituted pyridines play a crucial role in organic, bioorganic, and pharmaceutical chemistry as well as in material sciences. This is reflected in an impressive number of monographs and review articles dealing with syntheses and properties of functionalized pyridines.¹ Numerous synthetic procedures have been developed during the last decades, among these ring closure reactions from acyclic precursors,² Dimroth rearrangements,³ ring contractions of 1,2-diazocines,⁴ multicomponent cascade heterocyclizations,⁵ Vilsmeier and the reverse Vilsmeier methods,⁶ electrochemical methods,⁷ pyrimidine–pyridine ring interconversions,⁸ metal-mediated [2+2+2]-cycloadditions,⁹ and other metal-organic syntheses.¹⁰ Although nucleophilic substitutions on pentafluoropyridine¹¹ and approaches from ynamines and ynamides¹² have been studied recently and proved to be promising avenues for the synthesis of highly substituted pyridines, an astonishing large number of simply functionalized pyridines have been unavailable to date. We recently described mono- and oligocationic hetarenium salts with up to ten positive charges within the same molecule,¹³ and their broad applicability in heterocyclic synthesis. Thus, 2',3',5',6'-tetrachloro-4-dimethylamino-[1,4]bipyridinyl-1ylium chloride 1, readily available in quantitative yields from pentachloropyridine, can be used to prepare Cl²,Cl³, O^4 ,Cl⁵,Cl⁶- and O^2 ,Cl³, O^4 ,Cl⁵,Cl⁶-pentasubstituted pyridines¹⁴ as well as their sulfur analogs.¹⁵ Similarly, hitherto unavailable O^2 ,Cl³, O^4 ,Cl⁵, O^{6-14} and biologically interesting S^2 , Cl^3 , S^4 , Cl^5 , S^6 -pentasubstituted pyridines, ¹⁵ as well as a broad variety of symmetric and non-symmetric O^2 , Cl^3 , S^4 , Cl^5, O^6 -pentasubstituted pyridines are available starting from

1.¹⁶ The procedure can be extended to the synthesis of first representatives of N^2 , Cl³, S⁴, Cl⁵, N⁶-pentasubstituted pyridines¹⁶ (Scheme 1). The preparation of amino-substituted pyridines, however, remained challenging. 2-Amino-substituted pyridines are available by the Chichibabin reaction,¹⁷ or by nucleophilic substitutions of suitable leaving groups at 2- or 4-position such as halogen atoms.¹⁸ More than one- or twofold substitutions afford vigorous reaction conditions due to the decreased reactivity of chloropyridines substituted with electron-donating groups. Halogen atoms at C-3 are inert toward these substitution reactions¹⁹ unless metalorganic procedures¹⁰ or hetaryne mechanisms are applied.²⁰ As a consequence, pentasubstituted pyridines with more than one amino-substituent are very rare. According to the

Scheme 1. Synthetic potential of DMAP-activated pentachloropyridine 1.

^{*} Corresponding author. Tel.: +49 5323 723861; fax: +49 5323 722858; e-mail: schmidt@ioc.tu-clausthal.de

Beilstein cross-fire database, less than 10 representatives of N^2 , Cl³, N^4 , Cl⁵, Cl⁶-pentasubstituted pyridines have been described to date in six publications^{21–26} and one patent.²⁷ We report here our results of studies directed toward the applicability of our synthetic strategy for the preparation of functionalized pyridines starting from hetarenium salts to some nitrogen nucleophiles.

2. Results and discussion

We studied substitution reactions on 2', 3', 5', 6'-tetrachloro-4-dimethylamino-[1,4]bipyridinyl-1-ylium chloride **1** with the nitrogen nucleophiles such as *n*-propylamine, isopropylamine, glycine, morpholine, and piperidine. Nucleophilic substitutions on **1** with *n*-propylamine and isopropylamine were first performed in the presence of sodium hydride as base. Mixtures of substituted pyridines were obtained, which are presented in Table 1, among them new representatives of N^2 , Cl^3, N^4, Cl^5, Cl^6 -pentasubstituted species.

Surprisingly, *n*-propylamine as nucleophile resulted in the formation of 3,5,6-trichloro- N^2 -propyl-pyridine-2,4-diamine **5a** as the main product (Table 1, entry 1), when the reaction was conducted at 50 °C over a period of 4 h. 3,5,6-Trichloro- N^2,N^4 -dipropyl-pyridine-2,4-diamine **6a** was isolated in very low yields. The 4-isopropylamino-substituted tetra-chloropyridine **4b** was found to be the main product of the reaction of hetarenium salt **1** with isopropylamine under analogous reaction conditions (Table 1, entry 3). 3,5,6-Trichloro- N^2 -isopropyl-pyridine-2,4-diamine **5b** was formed in low yields as a by-product. In either case, unmodified starting material was easily separated by filtration over silica gel.

Obviously, the 4-amino groups in **5a** and **5b** were formed from propylamino- and isopropylamino groups, respectively.

Table 1. Reaction of 1 with amines in the presence of bases

In a control experiment, the dipropylamino-substituted pyridine **6a** indeed reacted with isopropylamine in the presence of sodium hydride in DMF to give the dealkylated product **5a** (Scheme 2). Several mechanisms can be discussed. The lack of electron-withdrawing groups does not support an $E1_{cb}$ -type mechanism and elimination of propene. Nucleophilic attack, however, of propylamide and isopropylamide on the 4-propylamino groups in the initially formed N^2 , N^4 -dialkyl-pyridine-2,4-diamines **6a** and **6b**, respectively, resulted in the formation of *N*,*N*-dialkylamines and 4-NH₂-substituted pyridines.

Scheme 2. Proposed mechanism for dealkylations.

The regiochemistry of this conversion was unambiguously confirmed by NMR methods. Thus, in the ¹H NMR spectra of **5a**, taken in CDCl₃ at rt, two H/D-exchangeable resonance frequencies in a 1:2 ratio are observable at δ =4.82 and 4.95 ppm, which were assigned to the NHR and NH₂

	$CI \xrightarrow{N \oplus CI} CI \xrightarrow{O} CI \xrightarrow{O}$	CI VH2 CI CI +	$\begin{array}{c} NH_2\\ CI & CI & CI \\ CI & NH_2 \end{array} + \begin{array}{c} CI \\ CI & NH_2 \end{array}$		NH ₂ CI + C NHR C		
	1	2	3	4	5	6	
Entry	Amine	Temp/time	Base	Product	R	Yield %	
1	<i>n</i> -PrNH ₂	50 °C, 4 h	NaH	5a	<i>n</i> -Pr	32	
				6a	<i>n</i> -Pr	5	
2			$NaNH_2$	2	Н	7	
				3	Н	18	
				4a	<i>n</i> -Pr	0	
				5a	<i>n</i> -Pr	40	
				6a	<i>n</i> -Pr	35	
3	<i>i</i> -PrNH ₂	40 °C, 4 h	NaH	4b	<i>i</i> -Pr	37	
				5b	<i>i</i> -Pr	5	
4			$NaNH_2$	2	Н	10	
				3	Н	10	
				4b	<i>i</i> -Pr	15	
				5b	<i>i</i> -Pr	30	
				6b	<i>i</i> -Pr	0	

group, respectively. In agreement to the proposed structure, the gs-HMBC ($^{1}H-^{13}C$) spectrum displays all the expected long range C–H couplings as presented in Figure 1.

Figure 1. HMBC-detected long range C-H couplings in 5a.

Among these, the ${}^{3}J_{CH}$ coupling of the hydrogen atoms of the NH₂ group with C-5 is diagnostically important. However, a 2D INADEQUATE, performed to unambiguously prove the 13 C peak assignments, suffered from disadvantageous relaxation times of the aromatic carbon atoms due to the absence of H atoms at the pyridine ring. We solved the problem by considering very large C–C coupling constants within this special pyridine ring (approx. 70 Hz) and by addition of 4% chromium(III) acetylacetonate as a relaxation reagent, and proved the C–C connectivities as shown in Figure 2. Analogous results were obtained with **5b**.

As a result, the ¹³C NMR peak assignments of the N^2 ,Cl³, N^4 ,Cl⁵,Cl⁶-substituted pyridines presented in this paper is as shown in Figure 3. A ¹⁵N HMBC measurement allowed to assign the resonance frequency δ_N at -310.3 ppm

Figure 3. Peak assignments of the ¹³C NMR resonance frequencies.

to the 4-NH₂-group of **5a**, whereas the signal at -294.5 ppm is caused by the 2-NHR group. The pyridine nitrogen atom could not be detected by ¹⁵N NMR spectroscopy.

Next we used sodium amide as base for the reaction of hetarenium salt 1 with amines. This base gave best results on treatment of 1 with a broad variety of O- and S-nucleophiles.^{13–16} In these reactions the amide anion never reacted as nucleophile. Indeed, we found a quantitative conversion of the starting material 1. Again, the N^2 ,Cl³, N^4 ,Cl⁵,Cl⁶-substituted pyridine **5a** was isolated as the main product of the reaction with *n*-propylamine at 50 °C (Table 1, entry 2). The diamine **6a** was found in 35% yield. Additional by-products are tetrachloropyridin-4-amine **2** and trichloropyridine-2,4-diamine **3**, isolated in 7% and 18% yield, respectively. The latter mentioned compounds formed also on treatment of pentachloropyridine with ammonia at 170–190 °C, in addition to 2-aminotetrachloropyridine.^{21,22} Similar results were obtained starting from isopropylamine (Table 1, entry 4). A mixture of **2**, **3**, **4b**, and **5b** was formed, with **5b** as the

main product. All compounds were easily separated and purified by column chromatography on silica gel.

Glycine as nitrogen nucleophile yielded methyl-(2,3,5,6-tetrachloro-pyridin-4-yl)-amine **7**, which is a known compound,²⁴ and 3,5,6-trichloro- N^2 , N^4 -dimethyl-pyridine-2,4-diamine **8** in moderate and low yields, respectively (Scheme 3). Obviously, these compounds were formed on decarboxylation of the glycine moieties under the applied reaction conditions. To the best of our knowledge, **8** has never been described before. The pyridylamine **7** was obtained earlier on reaction of pentachloropyridine with methylamine in 1,4-dioxane as a mixture of 2- and 4-isomers after a reaction time of 18 h.²⁴

Scheme 3.

Morpholine in the presence of sodium amide converted hetarenium salt 1 into 3,5-dichloro-(2,6-dimorpholin-4-yl)pyridin-4-ylamine 9a in 59% yield, which was isolated as a pure compound (Table 2, entry 2). In accordance with the structure, the ¹³C NMR spectra showed a symmetric molecule. Sodium hydride as the base gives lower vields and considerable amounts of 2,3,5-trichloro-6-morpholin-4-yl-pyridin-4-ylamine 10a (Table 2, entry 1), the regiochemistry of which was elucidated by HMBC measurements as described above. The morpholine-substituted trichloropyridine with N^2 , Cl^3 , N^4 , Cl^5 , Cl^6 substitution pattern is available by substitution of secondary aliphatic amines on (Z)-perchloro-1,3-butadiene-1-carbonitrile.²⁸ Pentachloropyridine reacts with morpholine at the 2-position. Twofold substitution results in the formation of N^2 , Cl^3 , Cl^4 , Cl^5 , N^6 morpholino-substituted pyridine. Some earlier published structures had to be revised.28

Table 2. Morpholine and piperidine as N-nucleophiles

On reaction of hetarenium salt **1** with piperidine, **9b** and **10b** were obtained under the conditions presented in Table 2 (entries 3 and 4).

2',3',5',6'-Tetrachloro-4-dimethylamino-[1,4]bipyridinyl-1ylium chloride 1 reacts with sodium borohydride to give 2,3,5,6-tetrachlorpyridine 11 (Scheme 4). Best yields and purities were achieved when 2-propanol was used as solvent. On changing the solvent to ethanol, the yield decreased from 80 to 5% after reaction at rt over a period of 5 h. In DMF, the yield is 46% under analogous reaction conditions. In 2-propanol as solvent, the product was obtained in 95% purity. The 4-(dimethylamino)pyridine could be recovered. The chromatographically separable by-product proved to be 2.3.5-trichloropyridine, as evidenced by GC-MS analysis. Numerous procedures for the preparation of 2,3,5,6-tetrachloropyridine 11 exist, among them the reduction of pentachloropyridine with zinc, ammonium chloride, dimethylphosphonate in water at 89–90 °C,²⁹ electrochemical methods, 30^{-1} the chlorination of 2,3,5-trichloropyridine with hexachloroethane in the presence of $n-Bu_4NBr$ in aqueous sodium hydroxide,³¹ and some patented procedures.32

Scheme 4.

In summary, we supplement our synthetic strategy for the preparation of highly functionalized pyridines from hetarenium salts by results describing scope and limitations of the application of nitrogen nucleophiles.

3. Experimental

3.1. General

The ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 400 and DPX 200 at 400 and 200 MHz, respectively. The chemical shifts are reported in parts per million relative to internal tetramethylsilane (δ =0.00 ppm). FTIR spectra were obtained on a Bruker Vector 22 in the range of 400– 4000 cm⁻¹ (2.5% pellets in KBr). The GC–MS spectra were recorded on a GC Hewlett–Packard 5980, Series II in combination with a MS Hewlett–Packard 5989 B, and on a Varian GC3900 with SAT2100T mass spectrometer. Melting points are uncorrected.

3.2. General procedure for the reaction of 2',3',5',6'tetrachloro-4-dimethylamino-[1,4]bipyridinyl-1-ylium chloride 1 with amines

A suspension of **1** (10 mmol, 3.74 g) in 100 mL of the amine was treated with sodium hydride (50 mmol, 1.25 g) or sodium amide (50 mmol, 1.96 g) and heated at reflux temperature over a period of 5 h. Then, the amine was distilled off in vacuo and the residue was chromatographed (silica gel 60, EtOAc/petroleum ether=1:3).

3.2.1. 2,3,5,6-Tetrachloro-pyridin-4-ylamine (2). Pale yellow solid, mp 210 °C ($C_5H_2Cl_4N_2$ requires C, 25.90; H, 0.87; N, 12.08. Found: C, 25.87; H, 0.86; N, 12.18); δ_H (DMSO- d_6) 7.38 (s, 2H; NH₂); δ_C (DMSO- d_6) 150.8,

144.1, 111.6; ν_{max} (KBr) (cm⁻¹): 3494, 3390, 1583, 1535, 1373, 1250, 1109, 1061, 973; *m*/*z*=233 (MH⁺, 100), 195 (M–Cl, 11).

3.2.2. 3,5,6-Trichloro-pyridine-2,4-diylamine (3). Pale yellow solid, mp 168 °C ($C_5H_4Cl_3N_3$ requires C, 28.27; H, 1.90; N, 19.78. Found: C, 29.06; H, 2.11; N, 19.05); δ_H (DMSO- d_6) 6.41 (s, 2H; α -NH₂), 6.31 (s, 2H; γ -NH₂); δ_C (DMSO- d_6) 153.1, 148.7, 143.5, 100.8, 94.3; ν_{max} (KBr) (cm⁻¹) 3453, 3369, 1612, 1573, 1439; m/z=213 (M, 100), 176 (M–Cl, 28).

3.2.3. Isopropyl-(2,3,5,6-tetrachloro-pyridin-4-yl)-amine (**4b**). Brownish solid, mp 74 °C ($C_8H_8Cl_4N_2$ requires C, 35.07; H, 2.94; N, 10.22. Found: C, 36.06; H, 2.97; N, 10.23); $\delta_{\rm H}$ (CDCl₃) 4.85 (s, 1H; N*H*), 4.61 (h, ³*J*=6.4 Hz, 1H; NC*H*), 1.27 (d, ³*J*=6.4 Hz, 6H; C*H*₃); $\delta_{\rm C}$ (CDCl₃) 150.0, 146.4, 115.4, 47.2, 24.4; $\nu_{\rm max}$ (KBr) (cm⁻¹) 1556, 1539, 1413, 1353, 1259, 1236, 1140, 1021, 912, 708; *m*/*z*= 275 (M, 100), 260 (M–CH₃).

3.2.4. 3,5,6-Trichloro- N^2 **-propyl-pyridine-2,4-diamine** (**5a**). Yellow solid, mp 76 °C ($C_8H_{10}N_3Cl_3$ requires C, 37.75; H, 3.96; N, 16.51. Found: C, 37.56; H, 3.87; N, 16.49); $\delta_{\rm H}$ (CDCl₃) 4.85 (br s, 2H; NH₂), 4.78 (br s, 1H; NH), 3.38 (dt, ³J=7.3, 1.5 Hz, 2H; NCH₂), 1.62 (sx, ³J=7.3 Hz, 2H; CH₂CH₃), 0.97 (t, ³J=7.3 Hz, 3H; CH₃); $\delta_{\rm C}$ (CDCl₃) 151.5, 146.9, 144.6, 103.1, 96.1, 43.3, 22.8, 11.4; $\nu_{\rm max}$ (KBr) (cm⁻¹) 3511, 3405, 2969, 2929, 2864, 1614, 1583, 1507, 1447, 1298, 1165; *m*/*z*=255 (M, 43); 225 (M-C₃H₇, 100).

3.2.5. 3,5,6-Trichloro-*N*²**-isopropyl-pyridine-2,4-diamine (5b).** Brownish solid, mp 26 °C (C₈H₈Cl₃N₃ requires C, 37.75; H, 3.96; N, 16.51. Found: C, 37.34; H, 3.75; N, 16.26); $\delta_{\rm H}$ (CDCl₃) 4.85 (s, 2H; N*H*₂), 4.60 (s, 1H; N*H*), 4.19 (h, ³*J*=6.4 Hz, 1H; NC*H*), 1.22 (d, ³*J*=6.4 Hz, 6H; C*H*₃); $\delta_{\rm C}$ (CDCl₃) 150.9, 147.0, 144.7, 103.0, 96.1, 42.9, 23.1, 11.2; $\nu_{\rm max}$ (KBr) (cm⁻¹) 3498, 3400, 2972, 1610, 1578, 1504, 1437, 1311, 1182, 1126, 1055; *m/z*=254 (M, 100), 238 (M–CH₃).

3.2.6. 3,**5**,**6**-**Trichloro**- N^2 , N^4 -**dipropyl-pyridine**-**2**,**4**-**diamine** (**6a**). Yellow liquid (C₁₁H₁₆Cl₃N₃ requires C, 44.54; H, 5.44; N, 14.17. Found: C, 43.67; H, 4.95; N, 14.18); $\delta_{\rm H}$ (CDCl₃) 4.86 (s, 1H; N*H*), 4.78 (br s, 1H; N*H*), 3.39 (t, ³*J*=7.3 Hz, 2H; NCH₂), 3.36 (t, ³*J*=7.3 Hz, 2H; NCH₂), 1.61 (h, ³*J*=7.3 Hz, 4H; CH₂), 0.96 (t, ³*J*=7.3 Hz, 6H; CH₃); $\delta_{\rm C}$ (CDCl₃) 151.5, 146.9, 144.7, 103.2, 96.1, 43.3, 22.9, 11.4; $\nu_{\rm max}$ (NaCl) (cm⁻¹) 3398, 2963, 2875, 1582, 1356, 1233, 1070; *m*/*z*=296 (M, 4), 260 (M–Cl, 100), 225 (M–2Cl, 27), 184 (M–2Cl–C₃H₇, 22).

3.2.7. 3,5-Dichloro-(2,6-dimorpholin-4-yl)-pyridin-4-ylamine (9a). Colorless solid, mp 64 °C ($C_{13}H_{18}Cl_2N_4O_2$ requires C, 46.86; H, 5.44; N, 16.81. Found: C, 46.50; H, 5.70; N, 16.80); $\delta_{\rm H}$ (CDCl₃) 4.93 (br s, 2H; NH₂), 3.80–3.85 (m, 8H), 3.26–3.31 (m, 8H); $\delta_{\rm C}$ (CDCl₃): 154.3, 148.7, 100.1, 66.9, 49.5; $\nu_{\rm max}$ (KBr) (cm⁻¹) 3473, 3321, 2969, 2855, 1621, 1554, 1420, 1392, 1365, 1283, 1257, 1154, 1110, 1067, 1030, 1019, 1007; *m*/*z*=333 (M, 100); 296 (M–Cl, 31).

3.2.8. 3',5'-Dichloro-3,4,5,6,3",4",5",6"-octahydro-2*H*, 2"*H*-[1,2',6',1"]terpyridin-4'-ylamine (9b). Yellow solid,

mp 41 °C ($C_{15}H_{22}Cl_2N_4$ requires C, 54.72; H, 6.73; N, 17.02. Found: C, 54.28; H, 7.06; N, 16.81); $\delta_{\rm H}$ (CDCl₃) 4.78 (s, 2H; NH₂), 3.10–3.30 (m, 8H; CH₂), 1.50–1.75 (m, 12H; CH₂); $\delta_{\rm C}$ (CDCl₃) 155.3, 148.2, 99.7, 50.4, 26.0, 24.7; $\nu_{\rm max}$ (KBr) (cm⁻¹): 3480, 3380, 2935, 2918, 2847, 2827, 1611, 1598, 1553, 1541, 1422, 1373, 1283, 1258, 1217, 1117, 1076, 1007, 866; m/z=330 (MH⁺, 100); 294 (M–Cl, 45); 244 (M–C₅H₁₀N, 24).

3.2.9. 2,3,5-Trichloro-6-(morpholin-4-yl)-4-amino-pyridine (10a). Colorless solid, mp 144 °C ($C_9H_{10}Cl_3N_3O$ requires C, 38.26; H, 3.57; N, 14.87. Found: C, 38.23; H, 3.12; N, 14.34); $\delta_{\rm H}$ (CDCl₃) 5.11 (s, 2H; 10H), 3.77–3.90 (m, 4H; 9H), 3.25–3.40 (m, 4H; 8H); $\delta_{\rm C}$ (CDCl₃) 155.6, 148.9, 144.2, 108.2, 104.3, 66.8, 49.5; $\nu_{\rm max}$ (KBr) (cm⁻¹): 3445, 3334, 1622, 1559, 1525, 1417, 1367, 1254, 1112; m/z=283 (M, 100).

3.2.10. 3',5',6'-**Trichloro-3,4,5,6-tetrahydro-**2*H*-**[1,2**']**bipyridinyl-4'-ylamine (10b).** Yellow oil. $\delta_{\rm H}$ (CDCl₃) 5.04 (s, 2H; N*H*₂), 3.13–3.30 (m, 4H; C*H*₂), 1.50–1.77 (m, 6H; C*H*₂); $\delta_{\rm C}$ (CDCl₃) 156.7, 148.7, 144.0, 107.3, 104.4, 50.4, 25.8, 24.4; *m*/*z*=281 (M, 100), 245 (M–Cl, 25); 86 (C₅H₁₀N, 31).

3.3. General procedure for the reaction of 2',3',5',6'tetrachloro-4-dimethylamino-[1,4]bipyridinyl-1-ylium chloride (1) with glycine

A suspension of pyridinium salt **1** (3.74 g, 10 mmol) in 100 mL of DMF was treated with sodium amide (1.96 g, 50 mmol) and glycine (1.5 g, 20 mmol) and heated for 5 h at 120 °C. After cooling, the reaction mixture was poured in water, and pH was adjusted to 5 with hydrochloric acid. The mixture was then evaporated to dryness, and the residue was chromatographed (silica gel, ethyl acetate/petroleum ether=1:4).

3.3.1. 2,3,5,6-Tetrachloro-4-(*N*-methylamino)-pyridine (7). Oil, $\delta_{\rm H}$ (CDCl₃) 4.82 (s, 1H; 5H), 2.91 (s, 3H; 6H); $\delta_{\rm C}$ (CDCl₃) 155.0, 148.5, 97.7, 41.5; $\nu_{\rm max}$ (KBr) (cm⁻¹): 3498, 3397, 3945, 1601, 1553, 1484, 1396, 1325, 1045, 843, 705; m/z=247 (MH⁺, 100), 214 (M–CH₄N, 75). No satisfactory elemental analysis achieved.

3.3.2. 2,3,5-Trichloro-4,6-di-(*N*-methylamino)-pyridine (8). Colorless solid, 69 °C ($C_7H_8N_3Cl_3$ requires C, 34.96; H, 3.35; N, 17.47. Found: C, 35.22; H, 2.90; N, 17.55); $\delta_{\rm H}$ (CDCl₃) 5.07 (br s, 2H; 7H, 9H), 2.94 (s, 6H; 8H, 10H); $\delta_{\rm C}$ (CDCl₃) 156.3, 148.8, 143.6, 106.5, 102.4, 41.4 (overlapped); $\nu_{\rm max}$ (KBr) (cm⁻¹) 3502, 3402, 1601, 1563, 1525, 1397, 1327, 1043, 938; *m*/*z*=241 (MH⁺, 100), 210 (M–CH₄N, 15).

3.3.3. 2,3,5,6-Tetrachloropyridine (**11**). A suspension of salt **1** (3.74 g, 10 mmol) in 100 mL of anhydrous 2-propanol was treated with sodium borohydride (0.57 g, 15 mmol) at rt and stirred for 6 h. Then, the solution was poured in diluted hydrochloric acid and extracted twice with diethyl ether. The organic layer was separated, evaporated, and chromatographed (silica gel, ethyl acetate/petroleum ether=1/1). All spectroscopic data are in agreement to an authentic sample.

Acknowledgements

The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support.

References and notes

- 1. Spitzner, D. Science of Synthesis; Black, D. S. C., Ed.; Thieme: Stuttgart, 2004; Vol. 15, pp 11–284; Spitzner, D. Houben-Weyl, Methoden der Organischen Chemie; Kreher, E., Ed.; Thieme: Stuttgart, 1994; Vol. E7b, pp 286-686; Pyridine and its Derivatives; Weissberger, A., Taylor, E. C., Abramovitch, A., Eds.; The Chemistry of Heterocyclic Compounds; Wiley-Interscience: New York, NY, 1974 and 1975; Vol. 14; Supplement 1-4; Larsen, R. D.; Davies, I. W. Progress in Heterocyclic Chemistry; Gribble, G. W., Gilchrist, T. L., Eds.; Pergamon: Oxford, 1999; Vol. 11, pp 230-255; Larsen, R. D.; Marcoux, J. F. Progress in Heterocyclic Chemistry; Gribble, G. W., Gilchrist, T. L., Eds.; Pergamon: Oxford, 2000; Vol. 12, pp 237-262; The Chemistry of Pyridine and Its Derivatives. In Second Supplements to the 2nd Edition of Rodd's Chemistry of Carbon Compounds; Mellor, J. M., Sainsbury, M., Eds.; Heterocyclic Compounds; Elsevier Science: Amsterdam, 1998; Vol IV, pp 1-116; Parts F and G; A literature survey is given in: Beleńkii, L. I.; Kruchkovskaya, N. D.; Gramenitskava, V. N. Adv. Heterocycl. Chem. 1999, 73, 295.
- Sausins, A.; Duburs, G. *Heterocycles* 1988, 27, 269; Kröhnke, F. *Synthesis* 1976, 1; Beschke, H. *Aldrichimica Acta* 1981, 14, 13; Jutz, J. C. *Top. Curr. Chem.* 1978, 73, 125; Cossey, A. L.; Harris, R. L. N.; Huppatz, J. L.; Phillips, J. N. *Angew. Chem.* 1972, 84, 1185; *Angew. Chem., Int. Ed. Engl.* 1972, 11, 1100; Aadil, M.; Kirsch, G. *Synth. Commun.* 1993, 18, 2587; Martin, P.; Steiner, E.; Streith, J.; Winkler, T.; Bellus, D. *Tetrahedron* 1985, 41, 4057; Pews, R. G.; Lysenko, Z. J. Org. *Chem.* 1985, 50, 5115; Kotschy, A.; Hajos, G.; Messmer, A.; Jones, G. *Tetrahedron* 1996, 52, 1399.
- Bornatsch, W.; Reel, H.; Schündehütte, K.-H. Chem. Ber. 1981, 114, 937.
- 4. Yogi, S.; Hokama, K.; Tsuge, O. Bull. Chem. Soc. Jpn. 1987, 60, 335.
- 5. Litvinov, V. P. Russ. Chem. Rev. (Engl. Transl.) 2003, 72, 69.
- 6. Meth-Cohn, O. Heterocycles 1993, 35, 539.
- 7. Toomey, J. E. Adv. Heterocycl. Chem. 1984, 37, 167.
- 8. van der Plas, H. C. Adv. Heterocycl. Chem. 2003, 84, 31.
- 9. Varela, J. A.; Saa, C. Chem. Rev. 2003, 103, 3787.
- Gradel, B.; Brenner, E.; Schneider, R.; Fort, Y. *Tetrahedron Lett.* 2001, 42, 568; Sakamoto, T.; Kondo, Y.; Murata, N.; Yamanaka, H. *Tetrahedron Lett.* 1992, 33, 5373; Sakamoto, T.; Shiga, F.; Yasuhara, A.; Uchiyama, D.; Kondo, Y.;

Yoshinori, Y. Synthesis **1992**, 8, 746; Ji, J.; Li, T.; Brunelle, W. H. Org. Lett. **2003**, 5, 4611; Bonnemann, H.; Brijoux, W. Adv. Heterocycl. Chem. **1990**, 48, 177; Gros, P.; Fort, Y. Eur. J. Org. Chem. **2002**, 3375; Queguiner, G. J. Heterocycl. Chem. **2000**, 37, 615; Queguiner, G.; Marsais, F.; Snieckus, V.; Epsztajn, J. Adv. Heterocycl. Chem. **1991**, 52, 189.

- Sandford, G. *Eur. J. Org. Chem.* **2003**, *9*, 1465; Chambers, R. D.; Hoskin, P. R.; Sandford, G.; Yufit, D. S.; Howard, A. A. K. *J. Chem. Soc., Perkin Trans. 1* **2001**, 2788; Chambers, R. D.; Hoskin, P. R.; Kenwright, A. R.; Richmond, P.; Sandford, G.; Yufit, M. S.; Howard, J. A. K. *Org. Biomol. Chem.* **2003**, *1*, 2137.
- Zificsak, C. A.; Mulder, J. A.; Hsung, R. P.; Rameshkumar, C.; Wei, L. L. *Tetrahedron* 2001, *57*, 7575.
- 13. Schmidt, A.; Mordhorst, T.; Nieger, M. Org. Biomol. Chem. 2005, 3, 3788.
- 14. Schmidt, A.; Mordhorst, T. Synthesis 2005, 781.
- 15. Schmidt, A.; Mordhorst, T. Z. Naturforsch. 2005, 60b, 683.
- 16. Schmidt, A.; Mordhorst, T.; Nieger, M. *Tetrahedron* **2006**, *62*, 1667.
- 17. McGill, C. K.; Rappa, A. Adv. Heterocycl. Chem. 1988, 44, 1.
- Parrick, J.; Wilcox, R.; Kelly, A. J. Chem. Soc., Perkin Trans. 1 1980, 132.
- Vorbrüggen, H. Adv. Heterocycl. Chem. **1990**, 49, 117; Collins,
 I.; Suschitzky, H. J. Chem. Soc. C **1970**, 1523; Roberts, S. M.;
 Suschitzky, H. J. Chem. Soc., Chem. Commun. **1967**, 893.
- 20. Berry, D. J.; Wakefield, B. J. J. Chem. Soc. C 1969, 2342.
- 21. Sell, W. J.; Dootson, F. W. J. Chem. Soc. 1898, 73, 779.
- 22. Sell, W. J.; Dootson, F. W. J. Chem. Soc. 1900, 77, 771.
- Ivashchenko, Ya. N.; Moshchit, S. D.; Zalesski, G. A. Chem. Heterocycl. Compd. (Engl. Transl.) 1970, 6, 891; Khim. Geterotsikl. Soedin. 1970, 6, 959.
- 24. Collins, I.; Roberts, S. M.; Suschitzky, H. J. Chem. Soc. C 1971, 167.
- 25. Roberts, S. M.; Suschitzky, H. J. Chem. Soc. C 1968, 2844.
- 26. Chambers, R. D.; Musgrave, W. K. R.; Urben, P. G. Chem. Ind. (London) 1975, 89.
- Imperial Chem. Ind. Ltd. DE Patent 2139042, 1972; Chem. Abstr. 1972, 76, 126795.
- Roedig, A.; Grohe, K.; Sommer, H. Chem. Ber. 1982, 115, 1733.
- 29. Sutter, P.; Weis, C. D. J. Heterocycl. Chem. 1980, 17, 493.
- Chambers, R. D.; Musgrave, W. K. R.; Sargent, C. R.; Drakesmith, F. G. *Tetrahedron* **1981**, *37*, 591.
- Joshi, A. V.; Baidossi, M.; Qafisheh, N.; Chachashvili, E.; Sasson, Y. *Tetrahedron Lett.* 2004, 45, 5061.
- Dow Chem. DE Patent 1445683, 1973; *Chem. Abstr.* 1973, *80*, 59870; Olin Corp. US Patent 3,538,100, 1970; *Chem. Abstr.* 1970, 74, 33542; Nat. Res. Development Corp. BE Patent 660873, 1965; *Chem. Abstr.* 1965, *65*, 7152a.