

UNIVERSITY^{OF} BIRMINGHAM

Subscriber access provided by University of Birmingham

Article

Diastereoselective synthesis of axially chiral xylose-derived 1,3disubstituted alkoxyallenes: scope, structure and mechanism

Moustapha Fortunato, Yves Gimbert, Elodie Rousset, Pedro Lameiras, Agathe Martinez, Sylvain Gatard, Richard Plantier-Royon, and Florian Jaroschik

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c01240 • Publication Date (Web): 23 Jul 2020 Downloaded from pubs.acs.org on July 23, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Diastereoselective synthesis of axially chiral xylose-derived 1,3-disubstituted alkoxyallenes: scope, structure and mechanism

Moustapha Fortunato,[§] Yves Gimbert,*[¶] Elodie Rousset, [§] Pedro Lameiras, [§] Agathe Martinez, [§] Sylvain Gatard,*[§] Richard Plantier-Royon,*[§] and Florian Jaroschik*[‡]

[§] Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne-Ardenne, 51687 Reims, France

[¶] Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058 Grenoble, France

[‡] ICGM, Université de Montpellier, ENSCM, 34090 Montpellier, France

ABSTRACT: The deprotonation of differently substituted propargyl xylosides with *s*-BuLi/TMEDA followed by protonation with *t*-butanol at –115 °C provided a range of new axially chiral 1,3-disubstituted alkoxyallenes in a diastereoselective way. Numerous reaction parameters such as solvent, temperature or protonating agent were examined as well as protecting groups on the xyloside moiety and the influence of the substituents on the alkyne part. The configuration of the main diastereoisomer of 3-methyl-1-xyloside-allene was determined for the first time by single crystal X-ray diffraction analysis and nOe NMR experiments. Furthermore, DFT calculations on the propargyl/allenyl lithium intermediates formed in the course of the deprotonation reaction provided new structural insights of these complexes. The subsequent protonation process with alcohols was investigated by theoretical surface exploration, revealing the importance of the approach of the alcohol towards the lithium compounds on the reaction outcome.

Introduction

In recent years, the number of applications of allenes as building blocks in organic synthesis has considerably increased due to their unique properties.¹ Indeed, their reactivity and their intrinsic chirality make them the precursors of choice to access more complex molecules such as heterocycles or natural products.² Therefore, there is an increasing need for efficient synthetic methodologies to access axially chiral allenes in an enantio- or diastereoselective manner.³ Among the recently developed procedures, only very few studies were dedicated to the synthesis of diastereomerically enriched alkoxyallenes,4 a widely employed class of allenes.^{2e,5} The applied strategy used chiral auxiliaries, however, the scope remained restricted to 1,3disubstituted allenes bearing alkyl substituents, hence limiting more molecular complexity. For instance, the groups of Tius^{4a} and Reissig^{4b,c}, respectively, reported the highly diastereoselective synthesis of some 1,3disubstituted alkoxyallenes using fructose- or camphorderived chiral auxiliaries in the well-known metalmediated isomerization^{1a,b} of propargyl ethers (Scheme 1).

Scheme 1. Synthetic access to diastereomerically enriched 1,3-disubstituted alkoxyallenes.

To rationalize the observed selectivities, several aspects must be considered. These reactions usually operate *via* a two-step mechanism (Scheme 2). First, a basic treatment in the presence of an organolithium reagent yields the Li-propargyl (P)/Li-allenyl (A) intermediates in equilibrium. Then, the protonation of this metallotropic equilibrium leads to a mixture of regio- and diastereoisomers. The protonation step can proceed either by a S_E2 or a S_E2' type mechanism. The regio- and stereoselectivity of these reactions depend on a certain number of parameters including the solvent, the temperature and the metal, as well as the transition states of the reaction and the rate constants.

Scheme 2. Metallotropic equilibrium between generally proposed Li-propargyl and Li-allenyl intermediates and protonation pathways.

In the case of Reissig's work,^{4b,c} the addition of HMPA or *t*-BuOK to the Li-propargyl/Li-allenyl intermediates in equilibrium led to the formation of considerably more basic separated ion pairs and proton migration to form allenyl carbanions with fixed configurations. The subsequent protonation occurred via a S_E2 mechanism to yield the diastereoisomers (aR) or (aS) with high conversion and good diastereomeric ratio (d.r.), depending on the additive (Scheme 1b). On the other hand, Tius suggested an assistance of the chiral auxiliary to selectively deprotonate the pro-S propargylic proton leading to the chelation of the cyclic oxygen of camphor to the lithium atom to stabilize the Li-propargyl (P) intermediate (without considering the usual Li-propargyl/Li-allenyl equilibrium). This would give access to the corresponding allene via a S_E2' mechanism (Scheme 1a).^{4a} These examples leave open a certain number of questions concerning the different stages of this mechanism, in particular on the existence of an equilibrium between the lithiated species and its influence on the regio- and the diastereoselectivity observed, but also on the role of the proton source in the process. As part of our work dedicated to the development of new chemical or enzymatic pentoses from transformation pathways for lignocellulosic biomass,⁶ we herein report on the diastereoselective synthesis of 1.3-disubstituted alkoxyallenes (R = alkyl, aryl, silyl) from propargyl xyloside **1**.⁷ Despite the high natural abundance of Dxylose in plants,⁸ only few examples have been reported

processes.⁹ One of the advantages of using this sugar moiety as a chiral auxiliary in this isomerization reaction lies in the presence of oxygen atoms with different spatial arrangements which have the capacity to coordinate lithium to promote the formation of the Li-propargyl/allenyl intermediates stabilized in a defined configuration. In order to provide further synthetic insights and gain a better understanding on the underlying reaction mechanisms, we explored the influence of protecting groups on the sugar moiety and the alkyne substituents on the structural parameters of the Li-propargyl (P)/allenyl (A) intermediates in equilibrium and studied the protonation pathways during the isomerization step by DFT studies. It should be noted that Reich and co-workers have extensively studied the structures and the equilibrium between Lipropargyl (P)/allenyl (A) species for a range of alkyl and silyl substituted compounds.^[10] However, this is the first report on a detailed study with alkoxy derivatives.

Results and Discussion

Synthesis of various substituted propargyl xylosides 3a-f from 1. Propargyl β-D-xylopyranoside 1 can be obtained either by a classical three-step chemical sequence from D-xylose or through an enzymatic transglycosylation process directly from beechwood xylans and propargyl alcohol.^{6c,11} The fully TBS protected propargyl xyloside 2 was readily prepared in up to 91 % yield from **1** by reaction with tbutyldimethylsilyl chloride (TBS-Cl) in presence of imidazole and a catalytic amount of DMAP (Scheme 3) after heating at 80 °C for 6 days.^{5b} Lower temperatures or shorter reaction times led to the formation of product mixtures containing di- and triprotected xylosides. Introduction of substituents on the alkyne was carried out via deprotonation and nucleophilic substitution for alkyl or silvl groups leading to **3a,b** or Pd-catalyzed Sonogashira¹² coupling for aryl groups providing **3c-e** in good to excellent yields. The *t*-butyl substituted compound 3f could not be obtained by these pathways, but via a 4-step procedure from Dxylose (see S1 in SI).

59

60

Scheme 3. Synthesis of various propargyl xylosides 2 and 3a-e.

i) Imidazole (5 eq.), TBSCI (4 eq.), DMAP cat., DMF, 80 °C; ii) *n*-BuLi (2 eq.), TMSCI or MeI (2 eq.), THF, -78 °C -> r.t., 14 h; iii) Arl (1.1 eq.), Pd(PPh_3)_4 (0.005 eq.), Cul (0.01 eq.), Et_3N/THF, 55 °C, 24h.

Structural characterization of 2 and 3a. A pseudoaxial conformation of the silylated groups for compounds **2** and **3a-f** was revealed by ¹H NMR.^{11a,13} Small coupling constants between 3.0 and 4.0 Hz were usually obtained for the ring protons of these compounds, showing a 1,2-*trans*-diaxial relationship between the silyl groups. For comparison, the unprotected xyloside **1** with the OH groups in equatorial position, showed values of 7.5 to 9.0 Hz for the analogous coupling constants (see Table S2).

To better analyse the preferred conformation of the silyl groups of the pyranosic cycle, ¹H NMR spectra of **2** and 3a in toluene-d₈ and in THF-d₈ were recorded at different temperatures between -40 °C and +70 °C and the values for ${}^{3}J_{1,2}$ for each temperature are reported in Table 1. Decreasing the temperature from r.t. to -40 °C, the ${}^{3}J_{1,2}$ coupling constants gradually increased to values above 6.0 Hz indicating an equatorial positioning of the silvlated groups. On the other hand, increasing the temperature up to 70 °C led to a decrease of the ${}^{3}J_{1,2}$ values towards 3.0 Hz, showing the preference of the OTBS groups for a pseudo-axial conformation. These results clearly evidence the influence of the temperature on the conformational equilibrium of the TBS protected propargyl xylosides 2 and 3a-f. It should be noted that variation in chemical shifts and differences in multiplicity were also observed at different temperatures, phenomena linked to the different conformations (see SI for the different ¹H NMR spectra recorded in toluene-d₈ and THF-d₈ at different temperatures).

The molecular structure of **2** was determined in a solid-state X-ray diffraction study from single crystals obtained by slow evaporation of a concentrated petroleum ether solution at room temperature (Scheme 3). Unexpectedly, the structure revealed a conformation with an equatorial positioning of the silyl ether groups. Further crystallographic details are provided in the supporting information. The structure of **2** is a rare example of a terminal propargyl appended carbohydrate and the structural parameters compare well with the literature.¹⁴

In order to gain further insights on the conformational equilibrium in compound **3a** with the OTBS groups in either axial or equatorial positions, DFT calculations were performed at the B3P86/6-31+G(d,p) level. No significant energetic difference between the optimised structures of the two conformations could be observed at room temperature (ΔG (ax/eq) = 0.12 kcal/mol) (see Table S3), hence a rapid equilibrium could be envisaged, leading to the crystallisation of the equatorial form, possibly due to packing effects.

Table 1. ${}^{3}J_{1,2}$ values (in Hz) observed in the 1 H NMR spectra (in toluene-d₈ and THF-d₈) of 2 and 3a, recorded at different temperatures.

T (°C)	³ J _{1,2} (Hz) ^[a] 2	³ J _{1,2} (Hz) ^[b] 2	³ J _{1,2} (Hz) ^[a] 3a
70	3.2	-	3.3
40	3.9	3.6	3.8
25	4.0	4.1	3.8
-10	5.0	5.2	5.6
-20	5.4	5.6	6.1
-30	5.8	6.0	6.4
-40	6.1	6.4	6.8

[a]: determined in toluene-d₈; [b]: determined in THF-d₈

Diastereoselective synthesis of a xylose-derived 1,3-disubstituted alkoxyallene. We then set out our studies on the synthesis of allene **4a** from the TBS protected 3-methyl substituted propargyl xyloside **3a**. After deprotonation with 3 eq. *n*-BuLi in THF at -78 °C, the reaction was quenched at -78 °C with 1N HCl to afford a 70:30 mixture of **3a** and **4a**, however, with no diastereoselectivity for **4a** (Scheme 4).^{4b,c} Interestingly,

the ratio **3a** to **4a** changed to 30:70 when the reaction was quenched at -30 °C, providing first evidence for an equilibrium between the Li-propargyl/allenyl intermediates. The ratios were determined by ¹H NMR spectroscopy in CDCl₃ showing the appearance of the allenic protons $(H_{3'})$ at 5.70 ppm and 5.80 ppm corresponding to the two diastereoisomers of allene **4a**. As in the case of propargyl derivatives **3a-f**, small coupling constants between 4.0 and 5.0 Hz were observed for allene 4a indicating a privileged pseudoaxial conformation at room temperature (see SI for ${}^{3}J_{1,2}$ values observed in the ¹H NMR spectra recorded at different temperatures).

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17 18

19

20

21

22 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

Scheme 4. Conversion of propargyl xyloside 3a to allene 4a with HCl as the proton source.

Inspired by the work of the group of Tius,^{4a} we then switched to *t*-BuOH as the proton source (Table 2). Addition of *t*-BuOH to the lithiated compound at -78 °C afforded 90% conversion to 4a. However, only a modest 60:40 diastereoselectivity was observed (entry 1). Switching the solvent to diethyl ether and addition of equimolar amounts of TMEDA, with respect to n-BuLi, provided a better 70:30 diastereoselectivity (entry 2). As previously mentioned, a decrease in temperature can increase the chirality transmission from the starting material,¹⁵ and the configurational stability of the organometallic species.¹⁶ Therefore, we performed the addition of t-BuOH at -115 °C to yield 4a still with a good conversion but, at the same time, with even better stereoselectivity 93:7 (entry 3). The major diastereoisomer was isolated as a pure compound in 75% yield. Other solvents (hexanes or toluene) provided less satisfying results (entries 4 and 5). Finally, the amount of alkyllithium reagent could be reduced to 1.2 equivalent when s-BuLi was employed instead of *n*-BuLi (entry 6). Attempted transmetallation with $ZnBr_2$ did not improve the outcome (entry 7).¹⁶ With the use of another chelating amine ligand, such as the chiral (+)-spartein ligand (entry 8), no conversion into the allene was observed. It should be noted that in the absence of TMEDA no reaction took place in diethyl ether.

Table 2. Optimisation studies for conversion of propargyl xyloside 3a to allene 4a using *t*-BuOH as the proton source.

Entry	Base (eq.)	Solvent	T ^[a] (°C)	Additive	Conv. ^[b] (%)	d.r. ^[b]
1	<i>n</i> -BuLi (3)	THF	- 78	-	90	60:40
2	<i>n</i> -BuLi (3)	Et ₂ O	- 78	TMEDA	90	70:30
3	<i>n</i> -BuLi (3)	Et ₂ O	- 115	TMEDA	90	93:7
4	<i>n</i> -BuLi (3)	Toluene	- 115	TMEDA	75	50:50
5	<i>n</i> -BuLi (3)	Hexanes	- 115	TMEDA	55	67:33
6	s-BuLi (1.2)	Et₂O	- 115	TMEDA	90	93:7
7	s-BuLi (1.2)	Et₂O	- 115	TMEDA, ZnBr ₂	50	70:30
8	s-BuLi (1.2)	Et ₂ O	- 115	(+)- sparteine	0	-

[a]: Protonation temperature; [b]: determined by ¹H NMR.

Determining the configuration of the major diastereoisomer of 4a. In previous studies, the structure of the major diastereoisomer of allene was deduced from the stereochemistry of the products of consecutive transformations, e.g. Nazarov cyclisation^{4a} or allene oxidation.^{4b} In this study, we provide direct, analytical evidence for the elucidation of the configuration of the major isomer of **4a**. The presence of a bulky OTBS group in vicinity to the allenyl moiety encouraged us to carry out nOe NMR experiments to gain structural insights on the allene configuration. The nOe experiments carried out on a diastereomeric mixture of allenes **4a**-(aS) and **4a**-(aR) showed that the *t*-Bu group of the OTBS group on the carbon in position 2 of the pyranosic cycle correlated both with the allenic proton $H_{3'}$ and the Me group linked to the allene

function (for NMR spectra see SI). Interestingly, the correlation spots did not have the same intensity for each of the two diasteroisomers, indicating a closer distance between H_{3'} and the *t*-Bu group for the major diastereoisomer. In parallel, we carried out molecular modeling (B3P86/6-31+G(d,p) level) on the two diastereoisomers of allene **4a**, in order to determine the distances between the different groups. The distance calculated for **4a**-(a*S*) between the *t*-Bu group was smaller with the proton H_{3'} (5.23 Å, higher intensity for correlation task in NMR) than with the methyl group (Me) (5.69 Å) (Figure 1; see SI for **4a**-(a*S*) for the major isomer.

Figure 1. Above: Optimized structure of the major diastereoisomer **4a**-(aS) with OTBS groups in axial position obtained by DFT calculations (B3P86/6-31+G(d,p) level) showing the distances (in Å) between H₃' and methyl group on allene with OTBS group. Below: Crystal structure of **4a**-(aS) with OTBS groups in equatorial position. Ellipsoids are represented at 30 % probability; hydrogen atoms are omitted for clarity, except for the allene hydrogens.

The absolute configuration of the major diastereoisomer **4a**-(aS) was then confirmed by X-Ray diffraction studies. Single crystals were grown from a concentrated pentane solution at 0 °C. The structure showed again the presence of all OTBS groups in the

equatorial position, as per compound **2**. Further crystallographic details are provided in the supporting information. The bond lengths and bond angles are in good agreement with the only other structurally characterized example of a sugar-based alkoxyallene, carrying a fructose fragment in that case.¹⁷ Interestingly, DFT calculations on **4a** with the OTBS groups in axial or equatorial position, show a slight preference for their axial positioning at room temperature ($\Delta G(ax/eq)$ for **4a**-(aS) = -3.5 kcal/mol; $\Delta G(ax/eq)$ for **4a**-(aR) = -2.3 kcal/mol) (see Table S3), in agreement with the NMR data. However, an equilibrium still exists leading to the crystallization of the product with the silylated groups in equatorial position.

Evidence and study of the metallotropic equilibrium. To evidence a deprotonation step driving to a metallotropic equilibrium between Lipropargyl/allenyl intermediates during the process of the formation of the allenes 4a-(aS) and 4a-(aR), the same reaction was carried out using *t*-BuOD instead of *t*-BuOH (Scheme 5). Deuterated allene 4a-(aS)-D was obtained with high conversion (90%) and d.r. (90:10). Moreover, propargyl xyloside 3a-D was also formed, indicating that the 90% conversion, observed under the best conditions, was not due to incomplete deprotonation of the starting material.

Scheme 5. Conversion of propargyl xyloside 3a to allene 4a-D and propargyl 3a-D with *t*-BuOD as the proton source.

We were then interested in studying the influence of this metallotropic equilibrium on the regioselectivity previously obtained for the allenes **4a**. We tested several proton sources by varying the size and the nature of the alcohol (Table 3). Whereas primary alcohols, such as methanol or *n*-butanol still provided good d.r. values, significantly lower conversion was observed (entries 2 and 3). Surprisingly, isopropanol repeatedly furnished very low conversion (10%) (entry **4**). Quenching with phenol provided moderate conversion and d.r. (entry 5), whereas the more acidic 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) resulted in observations similar to HCl, *i.e.* low conversion with no diastereoselectivity (entry 6).

Inspired by the work from Yoshida and co-workers,¹⁸ we also considered using chiral alcohols to have a double asymmetric induction in addition of the sugar moiety, expecting some "match" or "mismatch" effects in terms of stereoselectivity. With the chiral alcohol (R)-

^گ Me

pantolactone very good conversion and moderate diastereoselectivity were observed (entry 7). With the (*S*)-isomer poor conversion of 40% and no diastereoselectivity were observed (entry 8). Finally, with (*R*)- and (*S*)-mandelate, despite very good conversions, poor diastereoselectivities were obtained (entries 9 and 10).

The variation in regioselectivity obtained with the various proton sources indicates that the equilibrium between Li-propargyl /allenyl intermediates is rapid and the predominant formation of the allenes **4a** mainly depends on the protonation step.^{16,19}

Table 3. Study of the metallotropic equilibrium with various proton sources.

1) a Duli (1.1 ag.)

0

OTBS	OTBS	Me <u>Et₂0, -78 °C, TMED</u> 2) Proton source -115 °C, 1.5 h	A OTBS OTB	Me + OTBS S OTBS OTB 4a-(aS
-	Entry	Proton source	3a:4a. ^[a]	d.r. ^[a] 4a -(a <i>S</i>): 4a -(a <i>R</i>)
	1	<i>t</i> -BuOH	10:90	90:10
-	2	<i>n</i> -BuOH	60:40	80:20
	3	MeOH	60:40	80:20
	4	<i>i</i> -PrOH	90:10	50:50
-	5	Phenol	40:60	70:30
-	6	HFIP	90:10	50:50
-	7	(R)-pantolactone	10:90	70:30
-	8	(S)-pantolactone	60:40	50:50
-	9	(R)-mandelate	10:90	65:35
-	10	(S)-mandelate	10:90	65:35
-				

[a]: ¹H NMR shifts in ppm determined in CDCl₃.

Influence of protecting groups on the sugar moiety on the diastereoselectivity. We next studied the impact of the alcohol protecting groups on the diastereoselectivity, using the OMe protected propargyl xyloside **5a**. Under the optimised conditions determined for **4a** (Table 2, entry 6), compound **5a** gave only a 65:35 diastereomeric mixture of allenes **6a** with high conversion (Scheme 6). This result clearly indicated that steric factors due to the bulky TBS groups are important in this transformation. Because the signals of the allenic protons H_3 in the ¹H NMR spectra of the diastereoisomers of **4a** and **6a** deviated by less than 0.1 ppm in all cases, the configuration of the major stereoisomer was assumed to be (aS). It should be noted that the OMe protected allene **6a** is less stable over silica gel than the corresponding OTBS products, leading to low isolated yields.

Scheme 6. Conversion of propargyl xyloside 5a into allene 6a.

Extension of the scope to the synthesis of allenes 4b-f with various substituents. With the optimised conditions in hand (Table 2, entry 6), we next extended this approach to other alkyl-substituted as well as silyl and aryl-substituted propargyl xylosides **3b-f** (Table 4).

Trialkylsilyl substitution on the sp-hybridized carbon atom of the propargyl alkyne group has previously been shown to significantly influence the reaction outcome for allene synthesis.¹⁰ We therefore examined the substrate **3b** having a TMS substituent. Low conversion to the allene **4b** with moderate d.r. was observed (entry 2). Due to the small difference in polarity between **3b** and 4b these products could not be separated by column chromatography. With the phenyl substituted starting compound 3c moderate conversion and d.r. values were obtained, even though these are the highest value to date in the literature (entry 3). Substitution of the aromatic nucleus by an electron-donating group (entry 4) brings a slight reduction in the conversion while the substitution by an electron-withdrawing group (entry 5) leads to total conversion to the allene with a diastereoisomeric ratio of 55:45. In agreement with a previous literature report,²¹ these arylsubstituted allenes showed significantly lower stability over time and over silica gel (or alumina), compared to their alkyl analogues, and therefore could not be isolated in a pure form. With the propargyl xyloside having a bulky *t*-Bu group **3f** (entry 6) full conversion to allene 4f was observed, however with a slightly lower d.r. compared to the methyl group. It was found that this compound was stable for purification over silica gel and a mixture of the two diastereomers could be obtained with a quantitative yield.

Table 4. Scope of the synthesis of allenes 4a-f from propargyl xylosides 3a-f.

Entry	R	Conv. (%) ^[a] (isolated yields)	d.r. ^[a] 4-(aS):4- (aR) ^[b]
1	Me (3a)	90 (75 %)	(4a) 93:7
2	TMS (3b)	42 (-)	(4b) 70:30
3	C ₆ H ₅ (3c)	65 (-)	(4c) 70:30
4	p-C ₆ H ₄ OMe (3d)	50 (-)	(4d) 70:30
5	<i>p</i> -C ₆ H ₄ CF ₃ (3e)	100 (-)	(4e) 55:45
6	<i>t</i> -Bu (3f)	100 (quant.)	(4f) 80:20

[a]: d.r. were determined by ¹H NMR in CDCI₃ from crude reaction mixtures; [b]: we assumed that the stereochemistry preferentially formed for all the allenes **4b-f** was (a*S*), taking into account previous result obtained with **4a** and previous works.⁴

Table 5 provides the values of the chemical shifts for the signals of the allenic protons $H_{1'}$ and $H_{3'}$ in solution in CDCl₃ for the new allenes **4a-f** and **6a,b**. Literature data on alkoxyallenes with aryl groups are scarce due to their poor stability.^{21,22} In the case of **4c-4e**, we have assigned the signals from the spectra of the crude reaction mixtures. These data are in agreement with those of the slightly more stable compound **6b** with a *p*-F-C₆H₄ group on the allene and OMe protecting groups, obtained under different conditions and fully characterized in solution by NMR. From these values, a strong influence on the chemical shifts of H_1 ' and H_3 ' can be observed between alkyl/SiMe₃ groups (entries 1,2,6,7) and aryl groups (entries 3,4,5,8). Only a weak electronic effect of the aryl groups on the chemical shift became evident.

DFT studies on the diastereoselective formation of allene 4a-(aS). The mechanism leading to the major diastereoisomer **4a-**(aS) was next studied by DFT calculations. As the reaction was performed at – 110°C, the OTBS groups were placed in equatorial position for the calculations, as this was found to be the major conformation at low temperature (-70 °C), according to our variable-temperature ¹H NMR studies (Table 1). In agreement with previous works,^{1a,b} we propose a twostep mechanism for the allene formation. The first step would consist in the deprotonation of the propargyl xyloside **3a** with the base, leading to four possible intermediates in equilibrium **3a**-Li-(*S*), **3a**-Li-(*R*), **4a**-Li-(a*S*) and **4a**-Li-(a*R*) as revealed by DFT calculations (Scheme 7).²³ Table 5. Chemical shifts observed by ¹H NMR for protons $H_{1'}$ et $H_{3'}$ of new allenes 4a-f and 6a,b.

Entry	Compound	R	$\delta H_{1}^{[a]}$	$\delta H_{3}^{,[a]}$
1	4a	Ме	6.47 (a <i>S</i>) 6.50 (a <i>R</i>)	5.70 (a <i>S</i>) 5.80 (a <i>R</i>)
2	4b	SiMe ₃	6.48 (a <i>S</i>) 6.53 (a <i>R</i>)	5.83 (a <i>S</i>) 5.86 (a <i>R</i>)
3	4c	Ph	6.94 (a <i>S</i> + a <i>R</i>)	6.66 (a <i>S</i>) 6.76 (a <i>R</i>)
4	4d	<i>p</i> -C ₆ H₄OMe	6.90 (a <i>S</i> + a <i>R</i>)	6.62 (a <i>S</i>) 6.72 (a <i>R</i>)
5	4e	<i>p</i> -C ₆ H ₄ CF ₃	7.00 (a <i>S</i> + a <i>R</i>)	6.67 (a <i>S</i>) 6.78 (a <i>R</i>)
6	4f	<i>t</i> -Bu	6.53 (a <i>R</i>) 6.57 (a <i>S</i>)	5.72 (a <i>R</i>) 5.80 (a <i>S</i>)
7	6a	Ме	6.55 (a <i>S</i> + a <i>R</i>)	5.75 (a <i>S</i>) 5.83 (a <i>R</i>)
8	6b	p-C ₆ H₄F	7.01 (a <i>R</i> + a <i>S</i>)	6.66 (aS) 6.75 (aR)

[a]: ¹H NMR shifts in ppm determined in CDCI₃.

Scheme 7. Deprotonation of 3a leading to four intermediates lithium species: 3a-Li-(S), 3a-Li-(R), 4a-Li-(aS) and 4a-Li-(aR).

In contrast to the general description of lithiumallenyl species with the lithium bound to the terminal

59

carbon atom, DFT calculations show that in **4a**-Li-(a*S*)/(a*R*) the lithium is η^3 -coordinated to the allenyl moiety as indicated by the Li-C distances in the range of 2.04 to 2.56 Å (Figure 2).¹⁰ Furthermore, an interaction between Li and the oxygen atom of the pyranosic cycle was observed for lithium propargyl complex **3a**-Li-(*R*), with a Li-O distance of 1.98 Å (Figure 2). For **3a**-Li-(S) such an interaction was not observed.

Figure 2. Calculated structures of **3a**-Li-(S), **3a**-Li-(R), **4a**-Li-(aS) and **4a**-Li-(aR) at B3P86/6-31+G(d,p) level, distances in Å.

Among the four isomers, the allenyllithium **4a**-Li-(a*S*) is thermodynamically favoured and should lead to the major diastereoisomer **4a**-(aS) upon protonation. Variation of temperature or taking into account the solvent did not significantly influence the calculated equilibrium. As described experimentally, the protecting groups and the alkyne substituents can lead to considerable variation in the reaction outcome. Therefore, we also calculated the four lithiated structures for the trimethylsilvl substrate 3b and the OMe protected sugar substrate **5a** (see SI). Considerable changes in the ΔG values for the different propargyl and allenyllithium species of the equilibrium could be observed, which might be responsible for the lower conversion and *d.r.* values observed with these substrates.

We then studied the second step of this mechanism, the protonation step of the lithium species, using MeOH as the protonation agent.²⁴ We sought to obtain a stable structure, where a MeOH molecule would present an interaction with one of the different lithium species shown in Scheme 7. We studied these processes by scanning the potential energy surface corresponding to the approach of MeOH on the $C_{1'}$ atom or the $C_{3'}$ atom of the lithium species. First, we explored the protonation of **4a**-Li-(a*S*), which is the thermodynamically favoured complex and should lead to the observed major allene **4a**-(a*S*). In a first scan by shortening the distance MeO-

H---C3', step by step of 0.1 Å, the MeOH molecule is positioned so as to allow interaction between the oxygen, which will transfer a proton, and the lithium ion. After the proton transfer, this generates a TMEDA-Li-OMe species and the allene 4a-(aS) in a S_E2 mechanism without energy barrier (Scheme 8 and Figure 3a). The formation of the Li-OMe bond (distance O-Li 1.83 Å just before the proton transfer) seems to increase the effectiveness of this protonation step. This point became further evident when in another surface exploration, the MeOH was approached from the side opposite of the Li-TMEDA chelate (Figure 3b). In this case, a very high energy cost was observed as the methanolate is too far away from the Li-ion and therefore this approach seems an unfavorable protonation pathway.

Scheme 8. Possible $S_E 2$ pathway for the protonation of 4a-Li-(aS).

(b) the bringing of MeOH by the other side of the Li-TMEDA chelate

unfavorable disposition to stabilize MeO⁻ during the proton transfer

Figure 3. DFT Calculations: (a) favored and (b) unfavored protonation pathways of **4a**-Li-(*S*).

For the formation of allenes, a protonation of the Lipropargyl-intermediate has also been proposed by Tius.^{4a} From the propargylic structure **3a**-Li-(*S*), two protonation pathways were studied (Scheme 9): a) a protonation leading to the recovery of starting product **3a** (S_E2), and b), a protonation leading to allene **4a** (S_E2').^{1a,b} These two pathways position the MeOH initially in the Li-TMEDA chelate environment.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 19 20

21

22

23 24

25

26

27 28

29

30

31

32

33

34

35

36

In a first surface exploration corresponding to pathway a), the distance $MeO-H---C_{1'}$ was shortened and the MeOH molecule was positioned so as to allow interaction between the oxygen, which will transfer a proton, and the lithium ion to generate after transfer, a TMEDA-Li-OMe species and the propargyl xyloside 3a (Figure 4a). This process is globally barrier-less and the driving force for this reaction seems again the formation of the Li-OMe bond (distance O-Li 1.85 Å just before the proton transfer). In a second surface exploration (pathway b), we brought the H of MeOH closer to $C_{3'}$ to see if the allenic structure could be formed in this way (Figure 4b). And indeed, it is possible to access **4a**-(a*S*), the major diastereoisomer experimentally observed in agreement with the X-ray studies, in an almost barrier-free process judging by the observation of the evolution of energy during the shortening of the MeO-H---C_{3'} distance. Once again, allowing interaction between the 0 that will transfer the proton and the Li (distance O-Li of 1.83 Å) stabilizes the system. The situation became again very different, when in a third scan in analogy to the process shown in Figure 3b, the MeOH was brought closer to the opposite side of the Li-TMEDA chelate. As the methanolate formed during the proton transfer cannot be stabilized by the Li ion, too far away on the opposite side, the energy cost of this transfer, was found much higher (the evolution of energy is in adequacy, see Scheme S6 in SI), and therefore the formation of 4a-(aR) is highly disadvantaged.

4a-(aS) + TMEDA-Li-OMe

Figure 4. DFT Calculations: favored protonation pathways of **3a**-Li-(*S*).

Conclusion

In conclusion, we have reported an in-depth study on the diastereoselective synthesis of new 1.3disubstituted alkoxyallenes using a xyloside as chiral auxiliary. This procedure could be applied to a variety of substituted propargyl xylosides, including alkyl, silyl and aryl groups. Depending on the steric bulk and the electronic influence good to excellent yields and moderate to high d.r. values were observed. NMR spectroscopy, DFT calculations and X-ray structure analysis provided insights on the structure of the major diastereoisomer 4a-(aS) as well as the underlying mechanism of its formation. At this stage of the study, it is not possible to definitively discriminate between the two mechanisms S_E2 and S_E2 ' for the protonation step. The large size of the system and the protonation almost without energy barrier did not allow to obtain transition states of the reaction and thus data concerning the kinetics of the reaction. In addition, other parameters, such as the aggregation of the alcohol in ether at -115 °C of the intermediate lithium complexes, are not known. Nevertheless, this study brings a certain number of new general elements for these isomerization processes with alkoxy derivatives. The existence of the metallotropic equilibrium has been demonstrated by deuteration reactions, variable temperature reactions and by DFT studies. The different regioselectivities obtained depending on the proton source show that the interconversion between Li-

57

58 59

propargyl/allenyl intermediates during the metallotropic equilibrium is rapid and has no real influence on the regio- and the diastereo-selective outcome of the reaction. The predominant formation of the allenes **4a** mainly depends on the protonation step. The DFT studies have also evidenced structural aspects on the lithium species in particular about the chelation of the lithium atom i) in the Li-propargyl (P), to the cyclic oxygen of the sugar, ii) in the Li-allenyl (A), over the whole allenyl fragment. In addition, these theoretical studies have also shown that during the protonation step, the approach of the proton source must be done on the same side as the chelate Li-TMEDA and the driving force for this reaction seems the formation of a LiOMe-TMEDA complex. Since we now dispose of a new family of allenes, their use as precursors in the diastereoselective synthesis of more complex molecules such as new heterocycles will be investigated.2e,5b

Experimental part

General Information

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

All manipulations were performed under strict exclusion of air or moisture on a vacuum line using Schlenk techniques or in dry boxes under purified argon atmosphere. All solvents (THF, diethyl ether) were dispensed by a solvent dispenser (PureSolvTM by Innovative Technology). But-2-yn-1-ol was commercially available and used as received. 1,2,3,4-**7**.^{11b} tetra-*O*-acetyl-β-D-xylopyranose 3-(4fluorophenyl)prop-2-yn-1-ol²⁵ and 4,4-dimethylpent-2vn-1-ol²⁶ were synthesized as previously described in the literature. NMR measurements were obtained using a Bruker Avance I spectrometer equipped with a QNP probe (250 MHz for the ¹H), a Bruker Avance III spectrometer equipped with a BBFO+ probe (500 MHz for ¹H, 126 MHz for ¹³C and 471 MHz for ¹⁹F) or a Bruker Avance III spectrometer equipped with a CPTCI Cryosonde (600 MHz for ¹H and 151 MHz for ¹³C). The spectra were recorded at 298 K in CDCl₃, dried over molecular sieves unless mentioned otherwise. Chemical shifts are expressed in parts per million (ppm) and pattern abbreviations are s for singlet, d for doublet, dd for doublet of doublet, t for triplet, q for quartet, quint for quintuplet, sext for sextuplet and m for multiplet. High resolution ESI-MS spectra were recorded on a hybrid tandem quadrupole/time-of-flight (Q-TOF) instrument, equipped with a pneumatically assisted electrospray (Z-spray) ion source (Micromass. Manchester, UK) operated in positive mode. High resolution EI-MS spectra were obtained on a GCT-TOF mass spectrometer (Micromass, Manchester, UK) with EI source. Crystallographic data was collected on a Bruker D8 Venture diffractometer and on the MX2

beamline at the Australian Synchrotron facility.²⁷ The melting points were measured in capillary tubes with an SMP3 melting point device from Stuart Equipment. Optical rotations were measured on a Perkin Elmer 341 polarimeter. Infrared spectra were obtained from neat compounds, on a Nicolet 'Magna 550' spectrometer using an ATR (Attenuated Total Reflection) module. Elemental analyses were performed on a Thermo Electron Flash EA. All reagents were purchased from commercial sources and were used as received, unless noted otherwise.

2-(prop-2-yn-1-yl)-2,3,4-tri-0-t-*Synthesis* of butyldimethylsilyl- β -D-xylopyranoside **2**. To a solution of the unprotected xyloside 1 (0.61 g, 8.56 mmol) in DMF (10 mL) were added imidazole (2.9 g, 42.8 mmol), TBSCl (5.18 g, 34.24 mmol) and DMAP (45 mg, 0.17 mmol ca) and the mixture was heated at 80 °C with an oil bath for 6 days. Then, the resulting mixture was diluted with water, extracted with CH₂Cl₂, washed with 10% NaHCO₃ and brine. The combined organic extracts were dried over MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography over silica gel (10% EtOAc in hexanes) to afford the TBS-protected xyloside **2** as a colorless solid in 91% yield (4.15 g). ¹H NMR (500 MHz, CDCl₃) δ 4.75 (d, I = 3.3 Hz, 1H, H₁), 4.25 (dd, I =15.7, 2.4 Hz, 1H, H₁'), 4.21 (dd, *J* = 15.7, 2.4 Hz, 1H, H₁'), 4.02 (dd, J = 11.6, 2.9 Hz, 1H, H₅), 3.61 (t, J = 3.9 Hz, 1H, H_4), 3.56 (m, 1H, H_3), 3.52 (t, I = 3.3 Hz, 1H, H_2), 3.40 $(dd, I = 11.6, 3.9 Hz, 1H, H_5), 2.37 (t, I = 2.4 Hz, 1H, H_{3'}),$ 0.90-0.74 (27H, CH_{3(Sit-Bu)}), 0.12-0.06 (18H, CH_{3(SiMe)}). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 99.7 (C₁), 79.5 (C₂), 74.3 (C_{3'}), 74.1 (C₃), 73.3 (C₂), 70.5 (C₄), 63.2 (C₅), 54.4 (C1'), 26.3, 26.2, 26.1 (CH_{3(Sit-Bu})), 18.4, 18.0 (Cq(Sit-Bu)), -3.8, -3.9, -4.0, -4.1, -4.6 (CH_{3(SiMe)}). HRMS (EI) m/z: $[M+Na]^+$ Calcd for $C_{26}H_{54}O_5NaSi_3$ 553.3177; Found 553.3190. $[\alpha]^{20}_{D} = -12.5$ (c 1.1, CHCl₃). m.p. 37 °C. IR (neat, cm⁻¹) 2928, 2855, 1471, 1463, 1389, 1256, 1251, 1091, 1011, 831, 673.

General procedure for the alkylation/silylation reactions with 2

To a solution of **2** in dry THF, was slowly added *n*-BuLi (1.1 eq.) at -78 °C. After 1h, the corresponding CH₃I or TMSCl (2 eq.) was added dropwise. The mixture was stirred for 1 h whilst being allowed to warm to room temperature. A saturated aqueous NaHCO₃ solution was added, and the two phases were separated. The aqueous phase was then extracted with Et₂O. The combined organic phases were dried over MgSO₄, filtered and the solvents were evaporated. The crude reaction mixture was purified by a flash column chromatography over silica gel (eluent: PE/EtOAc 9:1) to afford the substituted alkyne.

Synthesis of 2-(but-2-yn-1-yl)-2,3,4-tri-0-tbutyldimethylsilyl- β -D-xylopyranoside **3a**. According to

2

3

4

5

6

7

8

9

40

41 42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

the general procedure, 2 (1.47 g, 2.79 mmol), nbutyllithium (1.34 mL, 3.32 mmol) and iodomethane (0.6 mL, 5.58 mmol) were reacted in THF (15 mL) to afford product **3a** as a colorless oil in 94% yield (1.46 g, 2.68 mmol). ¹H NMR (500 MHz, CDCl₃) δ 4.75 (d, I = 3.4Hz, 1H, H₁), 4.26 (d, I = 15.3 Hz, 1H, H₁), 4.20 (d, I = 15.3Hz, 1H, $H_{1'}$), 4.00 (dd, I = 11.6, 3.0 Hz, 1H, H_5), 3.60 (m, 1H, H_3), 3.55 (m, 1H, H_4), 3.49 (t, I = 3.4 Hz, 1H, H_2), 3.37 (dd, J = 11.6, 4.0 Hz, 1H, H₅), 1.82 (t, J = 2.3 Hz, 3H, CH₃), 0.95-0.84 (27H, CH_{3(Sit-Bu})), 0.12-0.05 (18H, CH_{3(SiMe})). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 99.3 (C₁), 82.4 (C₂), 10 11 74.9 (C_{3'}), 74.2 (C₃), 73.5 (C₂), 70.6 (C₄), 63.3 (C₅), 55.0 (C1'), 26.3, 26.2, 26.1 (CH_{3(Sit-Bu)}), 18.5, 18.4, 18.0 (C_{q(Sit-Bu)}) 12 _{Bul}), 3.7 (CH₃), -3.8, -3.9, -4.0, -4.1, -4.6 (CH_{3(SiMe)}). HRMS 13 (EI) m/z: [M+Na]⁺ Calcd for C₂₇H₅₆O₅NaSi₃ 567.3333; 14 Found 567.3340. $[\alpha]^{20}_{D} = -27$ (*c* 0.55, CHCl₃). IR (neat, 15 cm⁻¹) 2928, 2894, 1472, 1463, 1389, 1256, 1255, 1096, 16 1011, 939, 836, 776. 17

18 Synthesis of the 2-(3-(trimethylsilyl)prop-2-yn-1-yl)-19 2,3,4-tri-O-t-butyldimethylsilyl-\u03b3-D-xylopyranoside 3b. 20 According to the general procedure, 2 (175 mg, 0.33 21 mmol), n-butyllithium (0.19 mL, 0.36 mmol) and TMSCl 22 (0.05 mL, 0.36 mmol), were reacted in THF (1 mL) to 23 afford product **3b** as a colorless oil in quantitative yield 24 (199 mg, 0.33 mmol). ¹H NMR (500 MHz, CDCl₃) δ 4.74 25 $(d, J = 3.0 \text{ Hz}, 1\text{H}, \text{H}_1), 4.24 (d, J = 15.3 \text{ Hz}, 1\text{H}, \text{H}_1), 4.19$ 26 (d, J = 15.3 Hz, 1H, H₁), 3.99 (dd, J = 11.4, 2.8 Hz, 1H, H₅), 27 3.60 (t, J = 3.9 Hz, 1H, H₃), 3.56-3.52 (m, 1H, H₄), 3.50 (t, 28 J = 3.3 Hz, 1H, H₂), 3.37 (dd, J = 11.4, 3.3 Hz, 1H, H₅), 29 0.92-0.86 (27H, CH_{3(Sit-Bu}), 0.15 (s, 9H, CH_{3(TMS)}), 0.11-30 0.05 (18H, CH_{3(SiMe)}). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 31 101.4 (C_{2'}), 99.3 (C₁), 91.1 (C_{3'}), 73.7 (C₃), 73.1 (C₂), 70.4 32 (C₄), 62.8 (C₅), 54.9 (C_{1'}), 26.3, 26.2, 26.0 (CH_{3(Sit-Bul}), 33 18.5, 18.4, 18.0 (C_{q(Sit-Bu})), 0.0 (CH_{3(TMS)}), -3.8, -3.9, -4.0, -34 4.1, -4.6 (CH_{3(SiMe)}). HRMS (EI) m/z: [M+Na]⁺ Calcd for 35 $C_{29}H_{62}O_5NaSi_4$ 625.3572; Found 625.3580. [α]²⁰_D = -31 36 (c 0.64, CHCl₃). IR (neat, cm⁻¹) 2953, 2928,2895, 1732, 37 1472, 1462, 1388, 1360, 1250, 1094, 1011, 938, 832, 38 773. 39

General procedure for the Sonagashira coupling reactions with 3

A dry Schlenk tube under argon atmosphere was charged with $Pd(PPh_3)_4$ (0.005 eq.) and CuI (0.01 eq.), 2 (1 eq.) and iodobenzene (1 eq.) were added followed by a mixture of THF/Et₃N (1:1). After 24 h heating at 55 °C with an oil bath, the reaction mixture was hydrolyzed with an aqueous solution of NH₄Cl and extracted with diethyl ether. The organic phase was washed with a saturated NaCl solution, dried over MgSO₄ and concentrated under reduced pressure. The crude reaction mixture was purified by a flash column chromatography over silica gel (eluent: PE/EtOAc 9:1) to afford the substituted alkyne.

of 2-(3-phenylprop-2-yn-1-yl)-2,3,4-tri-O-t-Synthesis *butyldimethylsilyl-* β *-D-xylopyranoside* **3c**. According to the general procedure, 2 (210 mg, 0.39 mmol), Pd $(PPh_3)_4$ (5 mg), CuI (6 mg) and iodobenzene (0.05 mL, 0.44 mmol) were reacted in a mixture of THF (0.5 mL) and Et₃N (2 mL) to afford product 3c as a colorless oil in quantitative yield (223 mg, 0.37 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.41 (m, 2H, H_{Ar}), 7.30 (m, 2H, H_{Ar}), 4.83 $(d, J = 3.4 \text{ Hz}, 1\text{H}, \text{H}_1), 4.48 (d, J = 15.3 \text{ Hz}, 1\text{H}, \text{H}_{1'}), 4.43$ $(d, l = 15.3 \text{ Hz}, 1\text{H}, \text{H}_{1'}), 4.05 (dd, l = 11.5, 3.0 \text{ Hz}, 1\text{H}, \text{H}_{5}),$ 3.62 (m, 1H, H₃), 3.57 (m, 1H, H₄), 3.54 (t, J = 3.4 Hz, 1H, H_2), 3.41 (dd, I = 11.5, 4.0 Hz, 1H, H_5), 0.90 (27H, $CH_{3(Sit-1)}$ _{Bu)}), 0.13-0.03 (18H, CH_{3(SiMe)}). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 131.8 (C_{Ar}), 128.4 (C_{Ar}), 128.3 (C_{Ar}), 99.6 (C₁), 86.2 (C_{2'}), 85.0 (C_{3'}), 74.1 (C₃), 73.4 (C₂), 70.6 (C₄), 63.3 (C₅), 55.1 (C_{1'}), 26.3, 26.2, 26.1 (CH_{3(Sit-Bu)}), 18.5, 18.0 $(C_{q(Sit-Bu)})$, -3.7, -3.9, -4.0, -4.6 (CH_{3(SiMe)}). HRMS (EI) m/z: [M+Na]⁺ Calcd for C₃₂H₅₈O₅NaSi₃ 629.3490; Found 629.3488. $[\alpha]^{20}_{D} = -30$ (*c* 0.59, CHCl₃). IR (neat, cm⁻¹) 2928, 2856, 1748, 1471, 1361, 1251, 1043, 1078, 831.

Synthesis of 2-(3-(4-methoxyphenyl)prop-2-yn-1-yl)-2,3,4-tri-O-t-butyldimethylsilyl- β -D-xylopyranoside **3d**. According to the general procedure, 2 (370 mg, 0.69 mmol), Pd(PPh₃)₄ (5 mg), CuI (6 mg) and 1-iodo-4methoxybenzene (180 mg, 0.76 mmol) were reacted in a mixture of THF (1 mL) and Et₃N (3.5 mL) to afford product 3d as a colorless oil in 93% yield (409 mg, 0.64 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, *J* = 8.4 Hz, 2H, H_{Ar}), 6.82 (d, J = 8.4 Hz, 2H, H_{Ar}), 4.82 (d, J = 3.2 Hz, 1H, H₁), 4.46 (d, J = 15.3 Hz, 1H, H₁'), 4.41 (d, J = 15.3 Hz, 1H, H₁'), 4.04 (dd, J = 11.6, 2.7 Hz, 1H, H₅). 3.81 (s, 3H, OCH₃), 3.61 (m, 1H, H₃), 3.57 (m, 1H, H₄), 3.53 (t, J = 3.5 Hz, 1H, H₂), 3.40 (dd, J = 11.6, 3.9 Hz, 1H, H₅), 0.90 (27H, CH_{3(Sit-Bu)}), 0.13-0.03 (18H, CH_{3(SiMe)}). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 159.7 (C_{Ar}), 133.3 (C_{Ar}), 114.0 (C_{Ar}), 99.5 (C₁), 86.1 (C_{2'}), 83.5 (C_{3'}), 74.1 (C₃), 73.4 (C₂), 70.6 (C₄), 63.3 (C₅), 55.4 (C_{1'}), 55.2 (OCH₃), 26.3, 26.2, 26.1 (CH_{3(Sit-} _{Bu)}), 18.5, 18.4 (C_{q(Sit-Bu)}), -3.8, -3.9, -4.0, -4.6 (CH_{3(SiMe)}). HRMS (EI) m/z: [M+Na]⁺ Calcd for C₃₃H₆₀O₆NaSi₃ 659.3595; Found 659.3599. $[\alpha]^{20}_{D} = -19$ (*c* 0.263, CHCl₃). IR (neat, cm⁻¹) 2929, 2895, 2857, 1509, 1404, 1388, 1322, 1250, 1079, 774.

Synthesis of 2-(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1*yl*)-2,3,4-tri-O-t-butyldimethylsilyl-β-D-xylopyranoside **3e**. According to the general procedure, 2 (370 mg,0.69 mmol), Pd(PPh₃)₄ (5 mg), CuI (6 mg) and 1-iodo-4trifluoromethylbenzene (0.12 mL, 0.76 mmol) were reacted in a mixture of THF (1 mL) and Et₃N (3.5 mL) to afford product **3e** as a colorless oil in 98% yield (459 mg, 0.68 mmol). ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, J = 8.1 Hz, 2H, H_{Ar}), 7.50 (d, J = 8.1 Hz, 2H, H_{Ar}), 4.82 (d, J =3.1 Hz, 1H, H₁), 4.49 (d, J = 15.3 Hz, 1H, H₁'), 4.44 (d, J = 15.3 Hz, 1H, H₁'), 4.05 (dd, J = 11.5, 2.8 Hz, 1H, H₅), 3.62 (m, 1H, H₃), 3.57 (m, 1H, H₄), 3.54 (t, J = 3.3 Hz, 1H, H₂), 3.42 (dd, J = 11.5, 3.6 Hz, 1H, H₅), 0.90 (27H, CH_{3(Sit-Bu})), 0.15-0.00 (18H, CH_{3(SiMe)}). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 132.0 (C_{Ar}), 125.3 (C_{Ar}), 125.3 (C_{Ar}), 99.7 (C₁), 87.7 (C_{2'}), 84.8 (C_{3'}), 73.9 (C₃), 73.3 (C₂), 70.4 (C₄), 63.2 (C₅), 54.9 (C₁'), 26.3, 26.2, 26.0 (CH_{3(Sit-Bu})), 18.5, 18.4,

55

56

57 58 59

60

18.0 ($C_{q(Sit-Bu)}$), 1.2 ($C_{8'}$), -3.8, -3.9, -4.0, -4.1, -4.6 ($CH_{3(SiMe)}$). ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -62.9. HRMS (EI) m/z: [M+Na]⁺ Calcd for $C_{33}H_{57}F_3O_5NaSi_3$ 697.3364; Found 697.3365. [α]²⁰_D = -29 (*c* 0.476, CHCl₃). IR (neat, cm⁻¹) 2929, 2895, 2857, 1471, 1322, 1079, 1065, 774, 657, 439.

Synthesis of 2-(4,4-dimethylpent-2-yn-1-yl)-2,3,4-tri-0tert-butyldimethylsilyl-β-D-xylopyranoside **3f** in 3 steps (see SI for synthesis scheme).

To a solution of 1,2,3,4-tetra-*O*-acetyl-β-D-xylopyranose 7 (4.0 g, 12.58 mmol) and 4.4-dimethylpent-2-vn-1-ol (2 mL, 15.09 mmol) in dry CH₂Cl₂ (30 mL) at 0 °C, was added dropwise BF3·Et20 (2.4 mL, 18.87 mmol). The reaction mixture was stirred for 3h at 0 °C. The reaction mixture was warmed to r.t. then extracted with CH₂Cl₂ (3 times), washed with 10 % NaHCO₃ (3 times) and brine (3 times). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography over silica gel (10% EtOAc in PE) to afford the acetylated xyloside. 8c as a white solid in 68 % yield (3.13 g, 8.45 mmol). ¹H NMR (600 MHz, $CDCl_3$) δ 5.19 (t, I = 8.4 Hz, 1H, H₃), 4.96-4.89 (2H, H₂ + H_4), 4.74 (d, I = 6.7 Hz, 1H, H_1), 4.30 (s, 2H, $H_{1'}$), 4.12 (dd, J = 11.9, 5.0 Hz, 1H, H₅), 3.39 (dd, J = 11.9, 8.5 Hz, 1H, H₅), 2.07 (s, 3H, CH_{3(OAc)}), 2,05 (s, 3H, CH_{3(OAc)}), 2.04 (s, 3H, CH_{3(0Ac)}), 1.22 (s, 9H, H_{5'}). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 170.3 (C=O), 170.0 (C=O), 169.7 (C=O), 97.9 (C₁), 96.4 (C_{2'}), 73.0 (C_{3'}), 71.4 (C₃), 70.6 (C₂), 69.1 (C₄), 62.1 (C₅), 56.4 (C_{1'}), 31.0 (C_{5'}), 27.6 (C_{4'}), 21.0, 20.9 (CH_{3(OAc)}). HRMS (EI) m/z: [M+Na]⁺ Calcd for $C_{18}H_{26}O_8Na$ 393.1525; Found 393.1526. $[\alpha]^{20}D$ = -17 (c 0.6, CHCl₃). m.p. 117 °C. IR (neat, cm⁻¹) 3320, 2971, 1771, 1444, 1357, 1161, 1104, 1038, 637, 615.

To a solution of 8c (3.13 g, 8.45 mmol) in methanol (30 mL) was added Na (10 mg). The mixture was stirred at r.t. for 2 h. The resulting mixture was filtered through a short pad of DOWEX-50H⁺ resin, concentrated under reduced pressure and the residue was then purified by flash column chromatography over silica gel (5 % MeOH in CH_2Cl_2) to afford the unprotected xylosides **9c** as a white solid in quantitative yield (2.06 g, 8.45 mmol). ¹H NMR (500 MHz, CD₃OD) δ 4.40 (d, I = 7.6 Hz, 1H, H₁), 4.28 (m, 2H, H₁'), 3.88 (dd, J = 11.5, 5.3 Hz, 1H, H₅), 3.49 $(m, 1H, H_4), 3.31 (m, 1H, H_3), 3.22-3.16 (2H, H_2 + H_5),$ 1.23 (s, 9H, (CH₃)₃). ¹³C{¹H} NMR (126 MHz, CD₃OD) δ 102.7 (C₁), 96.4 (C_{2'}), 77.7 (C₃), 74.9 (C_{3'}), 74.6 (C₂), 71.2 (C₄), 66.9 (C₅), 57.1 (C_{1'}), 31.3 (C_{5'}), 28.4 (C_{4'}). HRMS (EI) for C₁₂H₂₀O₅Na: calc. (m/z) 267.1208; found (m/z) 267.1215. $[\alpha]^{20}_{D} = -21$ (c 0.7, CH₃OH); m.p. 102 °C. IR (neat, cm⁻¹) 3306, 2971, 2925, 2864, 1444, 1359, 1248, 52 1138, 1071, 1053, 615. 53

> According to the synthesis of **2**, unprotected D-xyloside **9c** (230 mg, 0.87 mmol), imidazole (300 mg, 4.35 mmol), TBSCl (530 mg, 3.48 mmol) and DMAP (5 mg,

0.02 mmol ca) were reacted in DMF (1 mL) to afford product **3f** as a colorless oil in 97 % yield (501 mg, 0.85 mmol). ¹H NMR (500 MHz, CDCl₃) δ 4.70 (d, *J* = 3.4 Hz, 1H, H₁), 4.23 (d, *J* = 15.0 Hz, 1H, H₁), 4.16 (d, *J* = 15.0 Hz, 1H, H₁), 3.99 (dd, *J* = 11.5, 3.0 Hz, 1H, H₅), 3.59 (m, 1H, H₃), 3.54 (m, 1H, H₄), 3.49 (t, *J* = 3.4 Hz, 1H, H₂), 3.36 (dd, *J* = 11.5, 4.0 Hz, 1H, H₅), 1.20 (s, 9H, H₅), 0.96-0.85 (27H, CH_{3(Sit-Bu})), 0.14-0.04 (18H, CH_{3(SiMe})). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 99.2 (C₁), 95.0 (C₂), 74.2 (C₃), 74.1 (C₃), 73.4 (C₂), 70.6 (C₄), 63.1 (C₅), 54.8 (C₁), 31.1 (C₅), 26.4, 26.3, 26.1 (CH_{3(Sit-Bu})), 22.7 (C₄), 18.5, 18.0 (C_{q(Sit-Bu})), -3.7, -3.9, -4.0, -4.5 (CH_{3(SiMe})). HRMS (EI) m/z: [M+Na]⁺ Calcd for C₃₀H₆₂O₅NaSi₃ 609.3796; Found 609.3803. [α]²⁰_D = -30 (*c* 1.06, CHCl₃). IR (neat, cm⁻¹) 2953, 2856, 1472, 1251, 1085, 1011, 969, 832.

General procedure for the synthesis of disubstituted allenes 4a-f

To a solution of the propargyl xyloside **3a-f** (1 eq.) and TMEDA (1.1 eq.) in Et₂O at -78 °C was added *s*-BuLi (1.1 eq.). The resulting mixture was stirred at -78 °C for 1h, and then the temperature was decreased to reach -115 °C. After 30 min at -115 °C, a solution of *t*-BuOH (20 eq.) in Et₂O was added dropwise. The reaction mixture was stirred over 1h, warmed to r.t. and diluted with diethyl ether and water. The two phases were separated and the aqueous phase was extracted again with ether. The combined organic extracts were washed with 10% NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated under reduced pressure to afford the crude product as a mixture of allenes (two diasteroisomers (a*S*):(a*R*))/propargyl.

of 2-(buta-1,2-dien-1-vl)-2,3,4-tri-0-t-Synthesis butyldimethylsilyl- β -D-xylopyranoside **4a**. According to the general procedure, 3a (177 mg, 0.325 mmol), TMEDA (0.1 mL, 0.65 mmol), s-BuLi (0.46 mL, 0.65 mmol) and t-BuOH (1 mL) were reacted in Et_2O (4 mL + 2 mL) to obtain the crude product (177 mg) as a mixture of allenes **4a**-(a*S*)/(a*R*) (93:7)/propargyl (91:9). The crude product was purified by flash column chromatography over silica gel (1% Et₂0, 1% Et₃N in PE) and the major diastereoisomer of the allenes **4a**-(a*S*) was isolated as a white solid (158.6 mg, 75%). Diastereoisomer 4a-(aS): ¹H NMR (500 MHz, CDCl₃) δ 6.47 (qd, J = 5.5, 2.3 Hz, 1H, H₁'), 5.70 (qd, J = 6.9, 5.5 Hz, 1H, H₃), 4.77 (d, *J* = 4.3 Hz, 1H, H₁), 4.04 (dd, J = 11.6, 3.4 Hz, 1H, H₅), 3.60-3.58 (3H, H₂ + H₃ + H₄), 3.39 (dd, J = 11.6, 5.0 Hz, 1H, H₅), 1.75 (dd, J = 6.9, 2.3 Hz, 3H, CH_{3(allene)}), 0.91-0.88 (27H, CH_{3(Sit-Bu)}), 0.09-0.07 (18H, CH_{3(SiMe)}). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 194.9 (C_{2'}), 117.4 (C_{1'}), 100.9 (C_{3'}), 100.1 (C₁), 74.9 (C₄), 73.5 (C₂), 70.8 (C₃), 64.4 (C₅), 26.0, 26.1, 26.2, 26.3 (CH_{3(Sit-} Bu)), 18.5, 18.4 (Cq(Sit-Bu)), 16.8 (CH_{3(allene)}), -3.6, -3.8, -3.9, -4.1, -4.6 (CH_{3(SiMe)}). HRMS (EI) for C₂₇H₅₆O₅NaSi₃: calc. (m/z) 567.3333; found (m/z) 567.3329. $[\alpha]^{20}_{D}$ = -5.5 (*c* 0.61, CHCl₃). m.p. 54 °C. IR (neat, cm⁻¹) 2891, 2931, 2836, 1981, 1471, 1250, 830. Anal. Calcd for

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

 $C_{27}H_{56}O_5Si_3$: C, 59.50; H, 10.36. Found: C, 59.30; H, 10.66.

2 3 Synthesis of the 2-(3-trimethylsilylpropa-1,2-dien-1-yl)-4 2,3,4-tri-O-t-butyldimethylsilyl-\u03b3-D-xylopyranoside 4b. 5 According to the general procedure, 3b (159 mg, 0.26 6 mmol), TMEDA (0.08 mL, 0.52 mmol), s-BuLi (0.1 mL, 0.52 mmol) and t-BuOH (0.3 mL) were reacted in Et₂O 7 (1 mL + 0.6 mL) to obtain the crude product **4b** (159) 8 mg) as a mixture of allenes (d.r.: 70:30) /propargyl 9 (42:58). Due to the small difference in polarity between 10 **3b** and **4b**, these products could not be separated by 11 column chromatography. However, attempts to assign 12 signals are given below from a spectrum of a crude 13 reaction mixture. Diastereoisomer 4b-(aS): ¹H NMR 14 $(500 \text{ MHz}, \text{CDCl}_3) \delta 6.48 \text{ (d, } I = 6.4 \text{ Hz}, 1\text{H}, \text{H}_{1'}\text{)}, 5.83 \text{ (d, } I$ 15 = 6.4 Hz, 1H, H₃), 4.65 (d, I = 4.2 Hz, 1H, H₁), 3.99 (dd, I =16 11.4, 2.8 Hz, 1H, H₅), 3.60-3.47 (3H, H₃ + H₂ + H₄), 3.37 17 (dd, J = 11.4, 3.3 Hz, 1H, H₅), 0.92-0.86 (27H, CH_{3(Sit-Bu})), 18 0.15 (s, 9H, CH_{3TMS}), 0.11-0.05 (18H, CH_{3(SiMel}). 19 Diastereoisomer **4b**-(a*R*): ¹H NMR (500 MHz, $CDCl_3$) δ 20 6.53 (d, J = 6.4 Hz, 1H, $H_{1'}$), 5.86 (d, J = 6.4 Hz, 1H $H_{3'}$), 21 4.67 (d, J = 3.1 Hz, 1H, H₁), 3.99 (dd, J = 11.4, 2.8 Hz, 1H, 22 H_5), 3.60-3.47 (3H, $H_3 + H_2 + H_4$), 3.37 (dd, J = 11.4, 3.3 23 Hz, 1H, H₅), 0.92-0.86 (27H, CH_{3(Sit-Bu)}), 0.15 (s, 9H, 24 CH_{3TMS}), 0.11-0.05 (18H, CH_{3(SiMe)}). 25

26 Synthesis of 2-(3-phenylpropa-1,2-dien-1-yl)-2,3,4-tri-0-t-27 butyldimethylsilyl- β -D-xylopyranoside **4c**. According to 28 the general procedure, 3c (76 mg, 0.12 mmol), TMEDA 29 (0.02 mL, 0.13 mmol), s-BuLi (0.1 mL, 0.13 mmol) and t-30 BuOH (0.4 mL) were reacted in Et_2O (1 mL + 0.8 mL) to 31 obtain the crude product 4c (75 mg) as a mixture of 32 allenes (aS)/(aR) (70:30)/propargyl (65:35). The 33 allenes were not isolated from the propargyl 3c, due to 34 their low stability over time and over silica gel (or 35 alumina). However, attempts to assign signals are given 36 below from a spectrum of a crude reaction mixture. 37 Diastereoisomer 4c-(aS): ¹H NMR (500 MHz, CDCl₃) δ 38 7.42-7.29 (5H, H_{Ar}), 6.94 (d, J = 5.7 Hz, 1H, $H_{1'}$), 6.66 (d, J39 = 5.6 Hz, 1H, H₃), 4.82 (d, I = 3.2 Hz, 1H, H₁), 4.05 (m, 40 1H, H₅), 3.62-3.50 (3H, H₃ + H₂ + H₄), 3.34 (dd, I = 11.5, 41 3.6 Hz, 1H, H₅), 0.90-0.84 (27H, CH_{3(Sit-Bu)}), 0.12-0.08 42 (18H, CH_{3(SiMe)}). Diastereoisomer **4c**-(a*R*): ¹H NMR (500 43 MHz, CDCl₃) δ 7.42-7.29 (5H, H_{Ar}), 6.94 (d, J = 5.7 Hz, 1H, $H_{1'}$), 6.76 (d, J = 5.6 Hz, 1H, $H_{3'}$), 4.86 (d, J = 3.2 Hz, 1H, 44 H₁). 45

Synthesis of 2-(3-(p-methoxy)propa-1,2-dien-1-yl)-2,3,4*tri-O-t-butyldimethylsilyl-β-D-xylopyranoside* 4d. According to the general procedure, 3d (62 mg, 0.1 mmol), TMEDA (0.05 mL, 0.12 mmol), s-BuLi (0.1 mL, 0.13 mmol) and t-BuOH (0.3 mL) were reacted in Et₂O (1 mL + 0.6 mL) to obtain the crude product **4d** (62 mg) as а mixture of allenes (aS)/(aR)(70:30)/propargyl (50:50). The allenes were not isolated from the propargyl 3d, due to their low stability over time and on silica gel (or alumina). However, attempts to assign signals are given below from a spectrum of a crude reaction mixture. Diastereoisomer **4d**-(a*S*): ¹H NMR (500 MHz, CDCl₃) δ 7.35 (d, *J* = 8.4 Hz, 2H, H_{Ar}), 6.90 (d, *J* = 5.7 Hz, 1H, H₁), 6.84 (d, *J* = 8.4 Hz, 2H, H_{Ar}), 6.62 (d, *J* = 5.6 Hz, 1H, H₃), 4.82 (d, *J* = 2.9 Hz, 1H, H₁), 4.03 (m, 1H, H₅), 3.81 (s, 3H, OCH₃), 3.57-3.46 (3H, H₃ + H₂ + H₄), 3.33 (m, 1H, H₅), 0.94-0.85 (27H, CH_{3(Sit-Bu})), 0.13-0.07 (18H, CH_{3(Sit-Bu})). Diastereoisomer **4d**-(a*R*): ¹H NMR (500 MHz, CDCl₃) δ 7,35 (d, *J* = 8.4 Hz, 2H, H_{Ar}), 6.90 (d, *J* = 5.7 Hz, 1H, H₁), 6.84 (d, *J* = 8.4 Hz, 2H, H_{Ar}), 6.72 (d, *J* = 5.6 Hz, 1H, H₃'), 4.85 (d, *J* = 2.9 Hz, 1H, H₁), 4.03 (m, 1H, H₅), 3.81 (s, 3H, OCH₃), 3.57-3.46 (3H, H₃ + H₂ + H₄), 0.94-0.85 (27H, CH_{3(Sit-Bu})), 0.13-0.07 (18H, CH_{3(Site-Bu})).

Synthesis of the 2-(3-(4-(trifluoromethyl)phenyl)propa-1,2-dien-1-yl)-2,3,4-tri-O-t-butyldimethylsilyl-β-D-

xylopyranoside **4e**. According to the general procedure, **3e** (52 mg, 0.08 mmol), TMEDA (0.05 mL, 0.09 mmol), s-BuLi (0.07 mL, 0.09 mmol) and t-BuOH (0.3 mL) were reacted in Et_2O (1 mL + 0.6 mL) to obtain the crude product **4e** as a mixture of allenes (aS)/(aR) (55:45). The allenes were not isolated in a pure form, due to their low stability over time and on silica gel (or alumina). However, attempts to assign some signals are given below from a spectrum of a crude reaction mixture. Diastereoisomer 4e-(aS): ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, I = 8.0 Hz, 2H, H_{Ar}), 7.46 (m, 2H, H_{Ar}), 7.00 (d, J = 5.6 Hz, 2H, H₁'), 6.67 (d, J = 5.6 Hz, 1H, H₃'), 4.86 (d, J = 3.2 Hz, 1H, H₁). ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -62.4. Diastereoisomer **4e**-(a*R*): ¹H NMR (500 MHz, CDCl₃) δ 7.55 (d, I = 8.0 Hz, 2H, H₅'), 7.46 (m, 2H, $H_{6'}$), 7.00 (d, I = 5.6 Hz, 2H, $H_{1'}$), 6.78 (d, I = 5.7 Hz, 1H, $H_{3'}$), 4.88 (d, J = 3.2 Hz, 1H, H_1). ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -62.5.

Synthesis of 2-(4,4-dimethylpenta-1,2-dien-1-yl)-2,3,4-tri-*O-t-butyldimethylsilyl-β-D-xylopyranoside* **4f**. According to the general procedure, **3f** (90 mg, 0.17 mmol), TMEDA (0.1 mL, 0.25 mmol), s-BuLi (0.25 mL, 0.25 mmol) and t-BuOH (0.25 mL) were reacted in Et_2O (1 mL + 0.5 mL) to obtain the crude (90 mg) as a mixture of allene (aS):(aR) (80:20). The crude product was purified by flash column chromatography on silica gel (1% Et_2O , 1% Et_3N in PE) and a small amount of the major diastereoisomer of the allenes 4f-(aS) was isolated in a pure form as a white solid (13 mg, 14%) and mixture of allenes (75 mg). Diastereoisomer 4f-(aS): ¹H NMR (500 MHz, CDCl₃) δ 6.57 (d, *J* = 5.6 Hz, 1H, $H_{1'}$), 5.80 (d, I = 5.6 Hz, 1H, $H_{3'}$), 4.75 (d, I = 3.4 Hz, 1H, H_1), 4.04 (dd, J = 11.8, 2.9 Hz, 1H, H_5), 3.62-3.56 (3H, H_3 $+ H_2 + H_4$, 3.39 (dd, / = 11.8, 3.7 Hz, 1H, H₅), 1.04 (s, 9H, CH_{3(t-Bu}), 0.93-0.87 (27H, CH_{3(Sit-Bu})), 0.10-0.04 (18H, CH_{3(SiMe)}). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 190.2 (C_{2'}), 119.1 (C_{1'}), 117.3 (C_{3'}), 99.9 (C₁), 74.2 (C₄), 73.2 (C₂), 70.5 (C₃), 63.6 (C₅), 33.2 (C_{g(t-Bu,allene1}), 29.7 (CH_{3(t-} Bu,allene)), 26.3, 26.1 (CH_{3(Sit-Bu})), 18.5, 18.4 (C_{q(Sit-Bu})), -3.7, -3.9, -4.0, -4.2, -4.5 (CH_{3(SiMe)}). HRMS (EI) m/z: [M+Na]+ Calcd for C₃₀H₆₂O₅NaSi₃ 609.3803; Found 697.3815. $[\alpha]^{20}$ -19.4 (*c* 0.175, CHCl₃).

General procedure for synthesis of methoxyprotected propargyl xylosides 5a and 5b in 3 steps (see SI for synthetic scheme).

To a solution of 1,2,3,4-tetra-O-acetyl- β -D-xylopyranose 7 and the corresponding propargyl alcohol (1.2 eq.) in dry CH₂Cl₂ at 0 °C, was added dropwise BF₃·Et₂O (1.5 eq.). The reaction mixture was stirred for 3h at 0 °C. The reaction mixture was warmed to r.t. then extracted with CH₂Cl₂ (3 times), washed with 10 % NaHCO₃ (3 times) and brine (3 times). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The crude residue was purified by flash column chromatography over silica gel (10% EtOAc in PE) to afford the corresponding acetylated xylosides **Ba,b**.

To a solution of the acetylated xyloside derivatives **8a,b** in methanol was added Na (0.3 eq.). The mixture was stirred at r.t. for 2 h. The resulting mixture was filtered through a short pad of DOWEX-50H⁺ resin, concentrated under reduced pressure and the residue was then purified by flash column chromatography over silica gel (5 % MeOH in CH_2Cl_2) to afford the unprotected xylosides **9a,b**.

For the methylation, a literature procedure known for galactosides was modified for xylosides.²⁸ To a solution of unprotected D-xylosides **9a,b** (1 eq.) in dry acetonitrile (1 mL / 0.06 mmol), was added MeI (20 eq.), followed by Ag₂O (1.2 mmol/OH) and a catalytic amount of Me₂S. The mixture was stirred in the dark at room temperature. After 21 h, the reaction mixture was diluted with water. The aqueous phase was extracted with EtOAc and the combined organic extracts were washed with brine and dried over MgSO₄. The crude residue was purified by flash column chromatography over silica gel (10% EtOAc in PE) to afford the corresponding methylated xyloside **5a,b**.

38 *Synthesis* of the (but-2-ynyl)-2,3,4-tri-O-acetyl-β-D-39 *xylopyranoside* **8a**. *According* to the general procedure, 40 1,2,3,4-tetra-*O*-acetyl-β-D-xylopyranose **7** (6.0 g, 18.86 41 mmol), but-2-yn-1-ol (1.7 mL, 22.63 mmol) and 42 BF₃·Et₂O (3.53 mL, 28.29 mmol) were reacted in CH₂Cl₂ 43 (50 mL) to afford product 8a as a white solid in 92 % 44 yield (5.69 g, 17.35 mmol). ¹H NMR (500 MHz, CDCl₃) δ 45 5.19 (t, J = 8.5 Hz, 1H, H₃), 4.97–4.88 (2H, H₂ + H₄), 4.73 46 $(d, J = 6.8 \text{ Hz}, 1\text{H}, \text{H}_1), 4.28 (q, J = 2.4 \text{ Hz}, 2\text{H}, \text{H}_{1'}), 4.14$ 47 (dd, / = 11.9, 5.1 Hz, 1H, H₅), 3.39 (dd, / = 11.9, 8.6 Hz, 48 1H, H₅), 2.07 (s, 3H, CH_{3(OAc)}), 2.05 (s, 3H, CH_{3(OAc)}), 2.04 49 (s, 3H, $CH_{3(0Ac)}$), 1.86 (t, J = 2.4 Hz, 3H, $H_{4'}$). ¹³C{¹H} NMR 50 (126 MHz, CDCl₃) δ 170.3 (C=O), 170.0 (C=O), 169.6 51 (C=0), 98.2 (C_1) , 83.6 $(C_{2'})$, 73.8 $(C_{3'})$, 71.5 (C_3) , 70.7 52 (C₂), 69.0 (C₄), 62.2 (C₅), 56.4 (C₁'), 20.9, 20.8 (CH_{3(0Ac})), 53 3.8 (C_{4'}). HRMS (EI) m/z: $[M+Na]^+$ Calcd for C₁₅H₂₀O₈Na 54 351.1050; Found 351.1056. $[\alpha]^{20}_{D} = -29$ (*c* 0.752, 55 CHCl₃); m.p. 108 °C; IR (neat, cm⁻¹) 2927, 2822, 1744, 56 1460, 1368, 1219, 1157, 1046, 904, 879. 57

Synthesis of (3-(4-fluorophenyl)prop-2-ynyl)-2,3,4-tri-0*acetyl-\beta-D-xylopyranoside* **8b**. According to the general procedure, 1,2,3,4-tetra-*O*-acetyl-β-D-xylopyranose **7** (668 mg, 2.16 mmol), 3-(4-fluorophenyl)prop-2-yn-1-ol (357 mg, 2.38 mmol) and BF₃·Et₂O (0.41 mL, 3.24 mmol) were reacted in CH₂Cl₂ (20 mL) to afford **8b** as a white solid in 62 % yield (548 mg, 1.35 mmol). ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3) \delta 7.42 \text{ (dd, } I = 8.7, 1.6 \text{ Hz}, 2\text{H}, \text{H}_{5'}),$ 7.02 (t, J = 8.7 Hz, 2H, H₆), 5.20 (t, J = 8.4 Hz, 1H, H₁), 5.00-4.91 (2H, $H_2 + H_4$), 4.81 (d, J = 6.6 Hz, 1H, H_3), 4.54 $(d, J = 1.6 Hz, 2H, H_{1'}), 4.16 (dd, J = 11.9, 5.0 Hz, 1H, H_5),$ 3.43 (dd, / = 11.9, 8.4 Hz, 1H, H₅), 2.06 (s, 6H, CH_{3(0Ac)}), 2.05 (s, 3H, CH_{3(OAc)}). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 170.1 (C=O), 169.9 (C=O), 169.5 (C=O), 162.8 (d, I = 250.0 Hz, C₇), 133.8 (d, J = 8.4 Hz, C₅), 118.4 (d, J = 3.4 Hz, $C_{4'}$), 115.8 (d, J = 22.2 Hz, $C_{6'}$), 98.5 (C_1), 86.0 ($C_{2'}$), 83.4 (C_{3'}), 71.3 (C₃), 70.6 (C₂), 68.9 (C₄), 62.1 (C₅), 56.5 (C1'), 20.9, 20.8 (CH_{3(OAc)}). ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -110.2. HRMS (EI) m/z: [M+Na]⁺ Calcd for $C_{20}H_{21}O_8NaF$ 431.1118; Found 431.1122. $[\alpha]^{20}D$ = -28 (*c* 0.80, CHCl₃). m.p. 85 °C. IR (neat, cm⁻¹) 3478, 2960, 2239, 1754, 1602, 1508, 1433, 1224, 1077, 840, 757.

Synthesis of 2-(but-2-yn-1-yl)-β-D-xylopyranoside **9a.** According to the general procedure, acetylated xylose derivative **8a** (2.87 g, 8.75 mmol) and Na (5 mg) were reacted in methanol (20 mL) to afford product **9a** as a white solid in quantitative yield (1.76 g, 8.75 mmol). ¹H NMR (500 MHz, CD₃OD) & 4.41 (d, *J* = 7.5 Hz, 1H, H₁), 4.31 (dq, *J* = 15.2, 2.3 Hz, H₁·), 3.87 (dd, *J* = 11.5, 5.3 Hz, 1H, H₅), 3.51–3.47 (m, 1H, H₄), 3.33–3.31 (m, 1H, H₃), 3.23–3.14 (2H, H₂ + H₅), 1.84 (t, *J* = 2.3 Hz, 3H, H₄·). ¹³C{¹H} NMR (126 MHz, CD₃OD) & 102.6 (C₁), 83.6 (C₂·), 77.7 (C₃), 75.2 (C₃·), 74.7 (C₂), 71.2 (C₄), 66.9 (C₅) , 57.1 (C₁·) , 3.1 (C₄·). HRMS (EI) m/z: [M+Na]⁺ Calcd for C₉H₁₄O₅Na 225.0739; Found 225.0742. [α]²⁰_D = -54 (*c* 0.60, CH₃OH); m.p. 152 °C; IR (neat, cm⁻¹) 3385, 2959, 2925, 2869, 1435, 1359, 1243, 1164, 1109, 1046, 975.

Synthesis of 2-((3-(4-fluorophenyl) prop-2-yn-1-yl)-β-D*xylopyranoside* **9b**. According to the general procedure, acetylated xylose derivative **8b** (260 mg, 0.63 mmol) and Na (2 mg) were reacted in methanol (20 mL) to afford product **9b** as a white solid in quantitative yield (176 mg, 0.63 mmol). ¹H NMR (600 MHz, CD₃OD) δ 7.46–7.43 (m, 2H, $H_{5'}$), 7.07 (t, J = 8.8 Hz, 2H, $H_{6'}$), 4.58 $(d, J = 15.8 \text{ Hz}, 1\text{H}, \text{H}_{1'}), 4.53 (d, J = 15.7 \text{ Hz}, 1\text{H}, \text{H}_{1'}), 4.46$ $(d, I = 7.4 Hz, 1H, H_1), 3.89 (dd, I = 11.5, 5.3 Hz, 1H, H_5),$ $3.50 (ddd, I = 10.1, 8.7, 5.3 Hz, 1H, H_4), 3.34 (m, 1H, H_3),$ 3.24-3.20 (2H, H₂ + H₅). ¹³C{¹H} NMR (151 MHz, CD₃OD) δ 164.9 (d, J = 248.5 Hz, $C_{7'}$), 134.9 (d, J = 8.7 Hz, $C_{5'}$), 120.2 ($C_{4'}$), 116.6 (d, J = 22.5 Hz, $C_{6'}$), 103.0 (C_1), 86.2 (C_{2'}), 85.2 (C_{3'}), 77.6 (C₃), 74.7 (C₂), 71.1 (C₄), 66.9 (C₅), 57.2 ($C_{1'}$). ¹⁹F{¹H} NMR (235 MHz, CD₃OD) δ -112.9. HRMS (EI) m/z: [M+Na]⁺ Calcd for C₁₄H₁₅O₅NaF 305.0801; Found 305.0803. $[\alpha]^{20}$ = -29 (*c* 0.65, CH₃OH). m.p. 181 °C. IR (neat, cm⁻¹) 3386, 2926, 2868, 2780, 1597, 1510, 1361, 1234, 1159, 1046, 977, 837.

59 60

58

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

2

3

4

5

6

7

8

9

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

Synthesis of 2-(but-2-yn-1-yl)-2,3,4-tri-0-methyl-β-D*xylopyranoside* **5a**. According to the general procedure, unprotected D-xylosides 9a (753.7 mg, 3.73 mmol), Ag₂O (3.12 g, 1.2 mmol/OH), Me₂S (0.1 mL, ca) and methyl iodide (12 mL, 186 mmol), were reacted in acetonitrile (60 mL), to afford product 5a as a white solid in 95 % yield (856 mg, 3.51 mmol). ¹H NMR (600 MHz, CDCl₃) δ 4.38 (d, J = 7.2 Hz, 1H, H₁), 4.24 (dq, J = 15.2, 2.4 Hz, 2H, H₁'), 3.90 (dd, J = 11.6, 5.1 Hz, 1H, H₅), 3.53 (s, 3H, OCH₃), 3.50 (s, 3H, OCH₃), 3.40 (s, 3H, OCH₃), 10 3.17-3.18 (m, 1H, H₄), 3.11-3.05 (2H, H₂ + H₅), 2.95 (dd, J 11 = 8.8, 7.2 Hz, 1H, H₃), 1.79 (t, J = 2.3 Hz, 3H, H₄). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 101.4 (C₁), 84.9 (C₃), 83.0 (C₂), 12 82.9 ($C_{2'}$), 79.3 (C_4), 74.2 ($C_{3'}$), 63.1 (C_5), 60.6 (OCH₃), 13 60.3 (OCH₃), 58.6 (OCH₃), 56.3 (C₁), 3.7 (C₄). HRMS (EI) 14 m/z: [M+Na]⁺ Calcd for C₁₂H₂₀O₅Na 267.1208; Found 15 267.1213. $[\alpha]^{20}_{D}$ = -49 (*c* 1.2, CHCl₃). m.p. 65 °C. 16

17 Synthesis of 2-(3-(4-fluorophenyl)prop-2-yn-1-yl)-2,3,4-18 *tri-0-methyl-β-D-xylopyranoside* **5b**. According to the 19 general procedure, unprotected D-xyloside 9b (280 mg, 20 1 mmol), Ag₂O (1.4 g, 1.2 mmol/OH), Me₂S (0.1 mL, ca) 21 and methyl iodide (3.2 mL, 50 mmol), were reacted in 22 acetonitrile (20 mL), to afford product 5b as a white 23 solid in 97 % yield (313 mg, 0.96 mmol). ¹H NMR (500 24 MHz, CDCl₃) δ 7.40 (m, 2H, H₅'), 6.99 (m, 2H, H₆'), 4.55 25 $(m, 2H, H_{1'}), 4.52$ (d, I = 7.7 Hz, 1H, H₁), 3.99 (dd, I =26 11.6, 5.0 Hz, 1H, H₅), 3.59 (s, 3H, OCH₃), 3.58 (s, 3H, 27 OCH₃), 3.46 (s, 3H, OCH₃), 3.27 (m, 1H, H₄), 3.21-3.14 28 $(2H, H_2 + H_5), 3.05 (dd, I = 8.7, 7.1 Hz, 1H, H_3).$ ¹³C{¹H} 29 NMR (126 MHz, CDCl₃) 162.7 (d, J = 249.7 Hz, C₇), 133.8 30 $(d, I = 8.4 \text{ Hz}, C_{5'}), 118.7 (d, I = 3.7 \text{ Hz}, C_{4'}), 115.7 (d, I =$ 31 22.1 Hz, C₆), 101.7 (C₁), 85.6 (C₂), 84.8 (C₃), 84.0 (C₃), 32 83.0 (C₂), 79.4 (C₄), 63.2 (C₅), 60.7 (OCH₃), 60.4 (OCH₃), 33 58.7 (OCH₃), 56.5 (C_{1'}). ¹⁹F{¹H} NMR (235 MHz, CDCl₃) δ 34 -110.5. HRMS (EI) m/z: [M+Na]⁺ Calcd for C₁₇H₂₁O₅NaF 35 347.1271; Found 347.1264. $[\alpha]^{20}_{D} = -47$ (*c* 0.62, CHCl₃). 36 m.p. 85 °C. IR (neat, cm⁻¹) 3100, 3065, 2930, 2859, 37 2745, 2222, 1600, 1506, 1462, 1368, 1221, 1096, 890, 38 637. 39

Synthesis of disubstituted allenes 6a,b

Synthesis of 2-(buta-1,2-dien-1-yl)-2,3,4-tri-0-methyl- β -*D-xylopyranoside* **6a**. According to the general procedure, 5a (99.8 mg, 0.41 mmol), TMEDA (0.05 mL, 0.45 mmol), s-BuLi (0.35 mL, 0.45 mmol) and t-BuOH (0.6 mL) were reacted in Et₂O (1 mL + 0.8 mL) to obtain the crude product 6a (99.8 mg) as a mixture of allenes **6a**-(a*S*)/(a*R*) (65:35)/propargyl (91:9). The crude product was purified by flash column chromatography on silica gel (10% EtOAc in PE) to afford the substituted allene as a colorless oil for analyses in 15% yield, due to its low stability over silica gel. Diastereoisomer **6a**-(aS): ¹H NMR (500 MHz, CDCl₃) δ 6.55 (tq, *J* = 5.2, 2.2 Hz, 1H, H_{1'}), 5.75 (qd, *J* = 6.9, 5.4 Hz, 1H, H_{3'}), 4.48 (d, *J* = 6.9 Hz, 1H, H₁), 3.96 (m, 1H, H₅), 3.59 (s, 3H, OCH₃), 3.55 (s, 3H, OCH₃), 3.45 (s, 3H, OCH₃), 3.25 (m, 1H, H₃), 3.17-3.08 $(2H, H_2 + H_4 + H_5), 1.75 (t, J = 2.2 Hz, 3H, H_4).$ ¹³C{¹H}

NMR (126 MHz, CDCl₃) δ 194.1 (C₂), 117.9 (C₁), 101.9 (C_{3'}), 101.3 (C₁), 85.0 (C₃), 82.7 (C₂), 79.3 (C₄), 63.3 (C₅), 60.7, 60.5, 58.7 (OCH₃), 16.6 (C_{4'}). Diastereoisomer **6a**-(aR): ¹H NMR (500 MHz, CDCl₃) δ 6.55 (tq, J = 5.2, 2.2 Hz, 1H, $H_{1'}$), 5.83 (qd, I = 6.9, 5.4 Hz, 1H, $H_{3'}$), 4.51 (d, I =6.9 Hz, 1H, H₁), 3.99 (m, 1H, H₅), 3.59 (s, 3H, OCH₃), 3.56 (s, 3H, OCH₃), 3.45 (s, 3H, OCH₃), 3.25 (m, 1H, H₃), 3.17-3.08 (2H, $H_2 + H_4 + H_5$), 1.77 (t, J = 2.2 Hz, 3H, $H_{4'}$). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 194.6 (C_{2'}), 118.1 (C_{1'}), 101.9 (C_{3'}), 101.7 (C₁), 85.0 (C₃), 82.7 (C₂), 79.3 (C₄), 63.3 (C5), 60.7, 60.5, 58.7 (OCH3), 16.9 (C4). IR (neat, cm⁻¹) 2972, 2931, 2836, 1970, 1736, 1460, 1383, 1324, 1165, 1096, 1020.

Synthesis of 2-(3-(4-fluorophenyl)propa-1,2-dien-1-yl)-2.3.4-tri-O-methyl-B-D-xylopyranoside **6b**. To a solution of 5b (98.7 mg, 0.31 mmol) in THF (1mL) at -78 °C was added n-BuLi (0.18 mL, 0.37 mmol). The resulting mixture was stirred at -78 °C for 15 min then warmed to -40 °C and stirred for 25 min. Then, a HCl (1M in H₂O) solution was added dropwise. The reaction mixture was allowed to warm to room temperature and diluted with diethyl ether and water. The two phases were separated and the aqueous phase was extracted again with diethylether. The combined organic extracts were washed with 10 % NaHCO₃ and brine, dried over MgSO₄, filtered and concentrated under reduced pressure to afford the crude product (95.4 mg) as a allenes 6b mixture of (aS)/(aR)(60:40)/propargyl (93:7). The allenes **6b** were not isolated as pure compounds, due to their low stability over silica gel or alumina, but were fully characterized in solution by multinuclear NMR spectroscopy. Diastereoisomer **6b**-(a*S*): ¹H NMR (500 MHz, CDCl₃) δ 7.34 (m, 2H, $H_{5'}$), 7.01 (3H, $H_{1'} + H_{6'}$), 6.66 (d, J = 5.4 Hz, 1H, $H_{3'}$), 4.54 (d, J = 7.1 Hz, 1H, H_1), 3.85 (dd, J = 11.8, 5.1 Hz, 1H, H₅), 3.59 (s, 3H, OCH₃), 3.58 (s, 3H, OCH₃), 3.44 (s, 3H, OCH₃), 3.27 (m, 1H, H₄), 3.17-3.13 (2H, H₂ + H₃), 2.99 (dd, J = 11.8, 9.6 Hz, 1H, H₅). ¹³C{¹H} NMR (126 MHz, CDCl₃) δ 195.5 (d, J = 2.7 Hz, C₂), 163.7 (d, J = 249.7 Hz, $C_{7'}$), 133.9 ($C_{1'}$), 130.6 (d, J = 3.3 Hz, $C_{4'}$), 129.3 $(d, J = 8.1 \text{ Hz}, C_{5'}), 121.8 (C_1), 115.7 (d, J = 22.0 \text{ Hz}, C_{6'}),$ 107.4 (C_{3'}) 85.1 (C₃), 82.7 (C₂), 79.3 (C₄), 63.3 (C₅), 60.8, 58.8, 58.7 (OCH₃). ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -113.7. Diastereoisomer **6b**-(a*R*): ¹H NMR (500 MHz, CDCl₃) δ 7.34 (m, 2H, H_{5'}), 7.01 (3H, H_{1'} + H_{6'}), 7.42 (dd, J = 8.8, 5.4 Hz, 1H, $H_{3'}$), 6.75 (d, J = 5.4 Hz, 1H, $H_{1'}$), 4.58 $(d, J = 6.5 Hz, 1H, H_1), 4.00 (dd, J = 11.8, 5.3 Hz, 1H, H_5),$ 3.59 (s, 3H, OCH₃), 3.58 (s, 3H, OCH₃), 3.41 (s, 3H, OCH₃), 3.27 (m, 1H, H₄), 3.17-3.13 (3H, H₂ + H₃+ H₅). ${}^{13}C{}^{1}H{}$ NMR (126 MHz, CDCl₃) δ 194.8 (d, J = 2.7 Hz, C_{2'}), 161.8 $(d, J = 249.7 \text{ Hz}, C_{7'}), 133.8 (C_{1'}), 130.4 (d, J = 3.3 \text{ Hz}, C_{4'}),$ 29.2 (d, J = 8.1 Hz, $C_{5'} + C_{9'}$), 121.7 (C_1), 115.8 (d, J = 21.9 Hz, $C_{6'} + C_{8'}$, 107.4 ($C_{3'}$), 84.8 (C_{3}), 82.7 (C_{2}), 79.2 (C_{4}), 63.3 (C₅), 60.7, 58.8, 58.7 (OCH₃). ¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ -113.5.

ASSOCIATED CONTENT

Supporting Information.

Crystal data (CIF)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59

60

details on conformational studies of xylosides; details on determination of absolute configuration of **4a**(a*S*) by NOESY NMR experiments; spectra for all synthetic compounds; details for X-ray diffraction analysis; mechanistic study details for DFT calculation including Cartesian coordinates (PDF) "This material is available free of charge via the Internet at http://pubs.acs.org."

AUTHOR INFORMATION

Corresponding Author

- * Email: <u>yves.gimbert@univ-grenoble-alpes.fr</u>
- * Email: <u>sylvain.gatard@univ-reims.fr</u>
- * Email: <u>richard.plantier-royon@univ-reims.fr</u>
- * Email: <u>florian.jaroschik@enscm.fr</u>

Author Contributions

The manuscript was written through contributions of all authors.

Notes

The authors declare no conflict of interest.

ACKNOWLEDGMENT

Financial support from the CNRS and the University of Reims Champagne-Ardenne are gratefully acknowledged. We thank Carine Machado and Dominique Harakat for mass spectrometric analyses and we are grateful for the support of the technological platform PlAneT (ICMR, URCA) for the X-Ray Diffraction and NMR analyses. Part of this research was also undertaken on the MX2 beamline at the Australian Synchrotron, part of ANSTO, and made use of the Australian Cancer Research Foundation (ACRF) detector. The authors thank Maja Dunstan for her help collecting XRD data as well as Robert Gable and Louis Ricard for fruitful discussion. The authors acknowledge support from the ICMG Chemistry Nanobio Platform-PCECIC, Grenoble, for calculation facilities.

REFERENCES

(1) a) Schuster, H. F.; Coppola, G. M. Allenes in Organic Chemistry, Wiley-Interscience, New York, **1984**; b) Krause, N.; Hashmi, A. S. K. Modern Allene Chemistry, Wiley-VCH, Weinheim, **2004**; c) Aubert, C.; Fensterbank, L.; Garcia, P.; Malacria M.; Simonneau, A. Transition Metal Catalyzed Cycloisomerizations of 1,n-Allenynes and -Allenenes. Chem. Rev. **2011**, *111*, 1954-1993; d) Kitagaki, S.; Inagaki, F.; Mukai, C. [2+2+1] Cyclization of allenes. Chem Soc. Rev. **2014**, *43*, 2956-2978; e) Mascarenas, J. L.; Varela, I.; Lopez, F. Allenes and Derivatives in Gold(I)- and Platinum(II)-Catalyzed Formal Cycloadditions. Acc. Chem. Res. **2019**, *52*, 465-479.

(2) Reviews: a) Nedolya, N. A.; Tarasova, O.; Volostnykh, O. G.; Albanov, A. L.; Klyba, L. V.; Trofimov, B. A. Reactions of Lithiated Alkynes and Allenes with Isothiocyanates: A Simple and Efficient Synthesis of New Aryl- or Hetaryl-Substituted 3H-Azepines and 4,5-Dihydro-3H-azepines. Synthesis 2011, 2192-2204; b) Yu, S.; Ma, S. Allenes in Catalytic Asymmetric Synthesis and Natural Product Syntheses. Angew. Chem. Int. Ed. 2012, 51, 3074-3112; c) Adams, C. S.; Weatherly, C. D.; Burke, E. G.; Schomaker, J. M. The conversion of allenes to strained three-membered heterocycles. Chem. Soc. Rev. 2014, 43, 3136-3163; d) Neff, R. K.; Frantz, D. E. Recent applications of chiral allenes in axial-to-central chirality transfer reactions. Tetrahedron 2015, 71, 7-18; e) Reissig, H.-U.; Zimmer, R. Cyclizations of Alkoxyallenes: Mechanisms, Intermediates, Products - A Personal Account on Solved and Unsolved Problems with Unique Allene Building Blocks. Synthesis 2017, 49, 3291-3302; Recent original publications: f) Liu, H.-C.;

Hu, Y. Z.; Wang, Z.-F.; Tao, H.-Y.; Wang, C.-J. Synergistic Cu/Pd-Catalyzed Asymmetric Allenylic Alkylation of Azomethine Ylides for the Construction of α -Allene-Substituted Nonproteinogenic α -Amino Acids. *Chem. Eur. J.* **2019**, *25*, 8681-8685; g) Peng, S.; Cao, S.; Sun, J. Gold-Catalyzed Regiodivergent [2 + 2 + 2]-Cycloadditions of Allenes with Triazines. *Org. Lett.* **2017**, *19*, 524-527; h) Wang, X.; Lu, M.; Su, Q.; Zhou, M.; Addepalli, Y.; Yao, W.; Wang, Z.; Lu, Y. Phosphine-Catalyzed [4+2] Cycloadditions of Allenic Ketones: Enantioselective Synthesis of Functionalized Tetrahydropyridines. *Chem. Asian J.* **2019**, *14*, 3409-3413; i) Artigas, A.; Vila, J.; Lledó, A.; Solà, M.; Pla-Quintana, A.; Roglans, A. A Rh-Catalyzed Cycloisomerization/Diels–Alder Cascade Reaction of 1,5-Bisallenes for the Synthesis of Polycyclic Heterocycles. *Org. Lett.* **2019**, *21*, 6608-6613.

(3) Reviews: a) Ogasawara, M. Catalytic enantioselective synthesis of axially chiral allenes. Tetrahedron: Asymmetry 2009, 20, 259-271; b) Chu, W.-D.; Zhang, Y.; Wang, J. Recent advances in catalytic asymmetric synthesis of allenes. Catal. Sci. Technol. 2017, 7, 4570-4579; <u>Recent original publications:</u> c) Vaithiyanathan, V.; Ravichandran, G.; Thirumailavan, V. Synthesis of chiral allene moiety from Morita-Baylis-Hillman adduct of isatin derivatives via Claisen rearrangement. Tetrahedron Lett. 2019, 60, 507-510; d) Rodriguez, R. I.; Ramirez, E.; Fernandez-Salas, J. A.; Sanchez-Obregon, R.; Yuste, F.; Aleman, J. Asymmetric [2,3]-Wittig Rearrangement: Synthesis of Homoallylic, Allenylic, and Enynyl α-Benzyl Alcohols. Org. Lett. **2018**, 20, 8047-8051; e) Zhang, P.; Huang, Q.; Cheng, Y.; Li, R.; Li, P.; Li, W. Remote Stereocontrolled Construction of Vicinal Axially Chiral Tetrasubstituted Allenes and Heteroatom-Functionalized Quaternary Carbon Stereocenters. Org. Lett. 2019, 21, 503-507; f) Cheng, X.; Wang, Z.; Quintanilla, C. D.; Zhang, L. Chiral Bifunctional Phosphine Ligand Enabling Gold-Catalyzed Asymmetric Isomerization of Alkyne to Allene and Asymmetric Synthesis of 2,5-Dihydrofuran. J. Am. Chem. Soc. 2019, 141, 3787-3791; g) Yamano, M. M.; Knapp, R. R.; Ngamnithiporn, A.; Ramirez, M.; Houk, K. N.; Stoltz, B. M.; Garg, N. K. Cycloadditions of Oxacyclic Allenes and a Catalytic Asymmetric Entryway to Enantioenriched Cyclic Allenes. Angew. Chem. Int. Ed. 2019, 58, 5653 - 5657

(4) a) Harrington, P. E.; Murai, T.; Chu, C.; Tius, M. A. Asymmetric Cyclopentannelation: Camphor-Derived Auxiliary. *J. Am. Chem. Soc.* **2002**, *124*, 10091-10100; b) Hausherr, A.; Reissig, H.-U. Preparation of 3-Alkyl-Substituted 1-Alkoxyallenes – Synthetic and Mechanistic Aspects. *Synthesis* **2018**, *50*, 2546-2554; c) Hausherr, A.; Zimmer, R.; Reissig, H.-U. Additions of Carbohydrate-Derived Alkoxyallenes to Imines and Subsequent Reactions to Enantiopure 2,5-Dihydropyrrole Derivatives. *Synthesis* **2019**, *51*, 486-499.

(5) a) Harrington, P. E.; Tius, M. A. Asymmetric Cyclopentannelation. Chiral Auxiliary on the Allene. *Org. Lett.* **2000**, 2447-2450; b) Cai, S.; Kishan Gorityala, B.; Ma, J.; Leow, M. L.; Liu, X.-W. [3 + 2] Cycloaddition on Carbohydrate Templates: Stereoselective Synthesis of Pyrrolidines. *Org. Lett.* **2011**, *13*, 1072-1075; c) Seghers, S.; Heugebaert, T. S. A.; Moens, M.; Sonck, J.; Thybaut, J. W.; Stevens, C. V. Design of a Mesoscale Continuous-Flow Route toward Lithiated Methoxyallene. *ChemSusChem* **2018**, *11*, 2248–2254; d) Lee, J.; Kang, S.; Kim, J.; Moon, D.; Rhee, Y. H. A Convergent Synthetic Strategy Towards Oligosaccharides Containing 2,3,6-Trideoxypyranoglycosides. *Angew. Chem. Int. Ed.* **2019**, *58*, 628–631.

(6) a) Ochs, M.; Muzard, M.; Plantier-Royon, R.; Estrine, B.; Rémond, C. Enzymatic synthesis of alkyl β -D-xylosides and oligoxylosides from xylans and from hydrothermally pretreated wheat bran. *Green Chem.* **2011**, *13*, 2380-2388; b) Gatard, S.; Salmon, L.; Deraedt, C.; Astruc, D.; Bouquillon, S. Gold Nanoparticles Stabilized by Glycodendrimers: Synthesis and Application to the Catalytic Reduction of 4-Nitrophenol. *Eur. J. Inorg. Chem.* **2014**, 2671-2677; c) Brusa, C.; Ochs, M.; Rémond, C.; Muzard, M.; Plantier-Royon, R. Chemoenzymatic synthesis of "click" xylosides and xylobiosides from lignocellulosic biomass. *RSC Adv.* **2014**, *4*, 9330-9338; d) Gatard, S.; Plantier-Royon,R.; Rémond, C.; Muzard, M.; Kowandy, C.; Bouquillon, S. Preparation of new β -D-xyloside- and β -D-xylobioside-based ionic liquids through chemical and/or enzymatic reactions. *Carbohydr. Res.* **2017**, *451*, 72-80.

(7) For other examples of allenes incorporating a sugar part: a) Rochet, P.; Vatèle, J.-M.; Goré, J. An Efficient Synthesis of Enantiopure 1-Alkoxy-1,2-propadienes from Propargyl Bromide. *Synthesis* **1994**, 795-799; b) Surivet, J.-P.; Goré, J.; Vatèle, J.-M. Total synthesis of (+)-goniodiol. *Tetrahedron Lett.* **1996**, *37*, 371-374; c) Mereyala, H. B.; Gurrala, S. R.; Mohan, S. K. Study of metal and acid catalysed deprotection of propargyl ethers of alcohols via their allenyl ethers. *Tetrahedron* **1999**, *55*, 11331-11342; d) Hoffmann-Röder, A.; Krause, N. Synthesis and Properties of Allenic Natural Products and Pharmaceuticals. *Angew. Chem. Int. Ed.* **2004**, *43*, 1196-1216; e) Banaag, A. R.; Tius, M. A. Traceless Chiral Auxiliaries for the Allene Ether Nazarov Cyclization. *J. Org. Chem.* **2008**, 73, 8133–8141; f) Huang, X.; Xue, C.; Fu, C.; Ma, S. A concise construction of carbohydrate-tethered axially chiral allenes via copper catalysis. *Org. Chem. Front.* **2015**, *2*, 1040-1044.

(8) a) Ebringerova A.; Heinze, T. Xylan and xylan derivatives – biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. *Macromol. Rapid Commun.* **2000**, *21*, 542-556.

(9) a) Koell, P.; Luetzen, A. D-xylose derived oxazolidin-2-ones as chiral auxiliaries in stereoselective alkylations. Tetrahedron-Asymmetry 1996, 7, 637-640; b) Koell, P.; Luetzen, A. D-Xylose derived oxazolidin-2-ones as chiral auxiliaries in stereoselective aldol reactions. Tetrahedron-Asymmetry 1997, 8, 1193-1206; c) Enholm, E. J.; Gallagher, M. E.; Jiang, S.; Batson, W. A. Free Radical Allyl Transfers Utilizing Soluble Non-Cross-Linked Polystyrene and Carbohydrate Scaffold Supports. Org. Lett. 2000, 2, 3355-3357; d) Enholm, E. J.; Cottone, J. S.; Allais, F. Highly Diastereoselective 5-Hexenyl Radical Cyclizations with Lewis Acids and Carbohydrate Scaffolds. F. Org. Lett. 2001, 3, 145-147; e) Enholm, E. J.; Bhardawaj, A. An asymmetric Kharasch reaction mediated by D-xylose: long range diastereocontrol. Tetrahedron Lett. 2003, 44, 3763-3765; f) Lu, Y. Just, G. Stereoselective synthesis of dithymidine phosphorothioates using D-xylose derived chiral auxiliaries. *Tetrahedron* 2001, 57, 1677-1687.

(10) a) Reich, H. J.; Holladay, J. E.; Walker, T. G.; Thompson, J. L. Solution Structure and Stereochemistry of Alkyl- and Silyl-Substituted Allenyl-Propargyllithium Reagents. *J. Am. Chem. Soc.* **1999**, *121*, 9769-9780; b) Reich, H. J. What's Going on with These Lithium Reagents? *J. Org. Chem.* **2012**, *77*, 5471-5491; c) Reich, H. J. Role of Organolithium Aggregates and Mixed Aggregates in Organolithium Mechanisms. *Chem. Rev.* **2013**, *113*, 7130-7178.

(11) a) Thorsheim, K.; Siegbahn, A.; Johnsson, R. E.; Stålbrand,
H.; Manner, S.; Widmalm, G.; Ellervik, U. Chemistry of xylopyranosides. *Carbohydr. Res.* 2015, *418*, 65-88; b) Brusa, C.;
Muzard, M.; Rémond, C.; Plantier-Royon, R. β-Xylopyranosides: synthesis and applications. *RSC Adv.* 2015, *5*, 91026-91055.

(12) Sonogashira, K. Development of Pd-Cu catalyzed crosscoupling of terminal acetylenes with sp2-carbon halides. *J. Organomet. Chem.* **2002**, *653*, 46-49.

(13) a) Eliel, E. L.; Satici, H. Conformational Analysis of Cyclohexyl Silyl Ethers. J. Org. Chem. 1994, 59, 688-689; b) Broddefalk, J.; Bergquist, K.-E.; Kihlberg, J. Use of acid-labile protective groups for carbohydrate moieties in synthesis of glycopeptides related to type II collagen. Tetrahedron 1998, 54, 12047-12070; c) Marzabadi, C. H.; Anderson, J. E.; Gonzalez-Outeirino, J.; Gaffney, P. R. J.; White, C. G. H.; Tocher, D. A.; Todaro, L. J. Why Are Silyl Ethers Conformationally Different from Alkyl Ethers? Chair-Chair Conformational Equilibria in Silvloxycyclohexanes and Their Dependence on the Substituents on Silicon. The Wider Roles of Eclipsing, of 1,3-Repulsive Steric Interactions, and of Attractive Steric Interactions. J. Am. Chem. Soc. 2003, 125, 15163-15173; d) Heuckendorff, M.; Pedersen, C. M.; Bols, M. Rhamnosylation: Diastereoselectivity of Conformationally

Armed Donors. J. Org. Chem. 2012, 77, 5559-5568; e) Bols, M.; Pedersen, C. M. Silyl-protective groups influencing the reactivity and selectivity in glycosylations. *Beilstein J. Org. Chem.* 2017, 13, 93-105.

(14) a) Cavigiolio, G.; Morgan, J. L.; Robinson, B. H.; Simpson, J. Fluorescent Sugar and Uridine Conjugates of 1,8-Naphthalimides with Methyl and Ferrocenyl Headgroups. *Aust. J. Chem.* **2004**, *57*, 885-894; b) Al-Mughaid, H.; Robertson, K. N.; Werner-Zwanziger, U.; Lumsden, M. D.; Cameron, T. S.; Grindley, T. B. 2-Propynyl 2,3,4,6-tetra-O-acetyl- α -D-mannopyranoside. *Acta Crystallogr. C* **2011**, C67, o60–o63.

(15) Dreller, S.; Dyrbusch, M.; Hoppe, D. Synthesis of Enantiomerically Enriched Allenes via Chiral, Configurationally Stable 1-Lithio-2-alkynyl Carbamates. *Synlett* **1991**, 397-400.

(16) Bejjani, J.; Botuha, C.; Chemla, F.; Ferreira, F.; Magnus, S.; Pérez-Luna, A. Metallotropic Equilibrium and Configurational Stability of 3-Chloro-1-(trimethylsilyl)propargyl and -allenyl Metals: Comparative Study among Lithium, Titanium, and Zinc. *Organometallics* **2012**, *31*, 4876-4885.

(17) Lysek, R.; Krajewski, P.; Urbańczyk-Lipkowska, Z.; Furman, B.; Kałuża, Z.; Kozerski, L.; Chmielewski, M. Conformation of chiral alkoxyallenes by proton NMR spectroscopy. *J. Chem. Soc. Perkin Trans.* **2000**, *1*, 61-67.

(18) Mikami, K.; Yoshida, A. Dynamic Kinetic Protonation of Racemic Allenylmetal Species for the Asymmetric Synthesis of Allenic Esters. *Angew. Chem. Int. Ed. Engl.* **1997**, *36*, 858-860.

(19) Ferreira, F.; Denichoux, A.; Chemla, F.; Bejjani, J. Highly Diastereoselective Syntheses of Propargylic Acid and Homopropargylic Systems. *Synlett* **2004**, 2051-2065.

(20) a) Reich, H. J.; Holladay, J. E.; Mason, J. D.; Sikorski, W. H. The Origin of Regioselectivity in an Allenyllithium Reagent. *J. Am. Chem. Soc.* **1995**, *117*, 12137-12150; b) Maercker, A.; Wunderlich, H.; Girreser, U. Polylithiumorganic compounds - 23. 3,4-Dilithio-1,2-butadienes by addition of lithium metal to 1,4-unsymmetrically substituted butatrienes. *Tetrahedron* **1996**, *52*, 6149-6172.

(21) Chowdhury, M. A.; Reissig, H.-U. Syntheses of Highly Substituted Furan and Pyrrole Derivatives via Lithiated 3-Aryl-1methoxyallenes: Application to the Synthesis of Codonopsinine. *Synlett* **2006**, 2383-2386.

(22) a) Runge, W. The Molecular Structure of Allenes and Ketenes, XI Semiempirical Calculations of ¹H-Chemical Shifts of Allenes. *Z. Naturforsch. B* **1977**, 32b, 1296-1303; b) Elsevier, C. J.; Meijer, J.; Tadema, G.; Vermeer, P.; Runge, W. The Molecular Structure of Allenes and Ketenes. Part 16. Phenyl Carbon Chemical Shifts of γ -Substituted Phenylallenes as a Probe for the Transmissions of Substituent Effects across the Allenic System. *J. Chem. Soc. Perkin Trans. II* **1983**, 1093-1101.

(23) The lithium species under consideration may form aggregates in solution (see ref. 10 and 16), however, in this paper, only monomeric species will be considered.

(24) No significant difference was observed between MeOH and *t*-BuOH in a preliminary calculation, so the smaller alcohol was chosen to minimize an already cumbersome system.

(25) Ni, K.; Meng, L.-G.; Ruan, H.; Wang, L. Controllable chemoselectivity in the coupling of bromoalkynes with alcohols under visible-light irradiation without additives: synthesis of propargyl alcohols and α -ketoesters. *Chem. Commun.* **2019**, *55*, 8438–8441.

(26) Wang, B.; Wang, X.; Yin, X.; Yu, W.; Liao, Y.; Ye, J.; Wang, M.; Liao, J. Cu-Catalyzed $S_N 2'$ Substitution of Propargylic Phosphates with Vinylarene-Derived Chiral Nucleophiles: Synthesis of Chiral Allenes. *Org. Lett.* **2019**, *21*, 3913-3917.

(27) Aragão, D.; Aishima, J.; Cherukuvada, H.; Clarken, R.; Clift, M.; Cowieson, N. P.; Ericsson, D. J.; Gee, C. L.; Macedo, S.; Mudie, N.; Panjikar, S.; Price, J. R.; Riboldi-Tunnicliffe, A.; Rostan, R.; Williamson, R.; Caradoc-Davies, T. T. MX2: a high-flux undulator microfocus beamline serving both the chemical and

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

The Journal of Organic Chemistry

macromolecular crystallography communities at the Australian Synchrotron. J. Synchrotron Radiat. 2018, 25, 885–891.

(28) Kováč, P. Alternative syntheses of methylated sugars: Part VIII. Methyl (methyl 3,4-di-O-methyl- α -D-galactopyranosid)uronate. Carbohydr. Res. 1972, 22, 464-466.

