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A palladium-catalyzed annulation reaction of alkynylborates
with o-iodophenyl ketones to form indenes is described.

Introduction

Indenes are important structural motifs found in a
number of biologically active compounds.[1] For example,
an indene framework with an exo-alkylidene moiety is im-
bedded in sulindac, which is a nonsteroidal antiinflamma-
tory drug,[1a] and dimethindene, an oral antihistamine
agent, has an indene core tethered to an amine moiety.[1b]

In addition to these commercial medicines, indene deriva-
tives have also been exploited as materials for optoelectron-
ics[2] and as ligands for transition-metal complexes.[3] Con-
sequently, the development of a new method for con-
structing indene skeletons is an attractive subject in organic
synthesis.[4]

Alkynylboron compounds have been utilized as useful in-
termediates in organic synthesis.[5] We have previously de-
veloped the palladium-catalyzed reaction of alkynylborates
with aryl halides;[6] (trisubstituted alkenyl)boranes, which
are otherwise difficult to synthesize, can be readily obtained
in a regio- and stereoselective fashion by this method. In
this work, we extended the scope of this palladium-cata-
lyzed reaction to the construction of indene skeletons. Alk-
ynylborates react with o-iodophenyl ketones to afford 2,3-
disubstituted indenols with specific installation of substitu-
ents at the 2- and 3-positions.
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Highly substituted indene skeletons are efficiently con-
structed with site-specific installation of the substituents.

Results and Discussion

Alkynylborate 1a and its constitutional isomer 1b were
prepared from the corresponding B-aryl-9-borabicy-
clo[3.3.1]nonane (Ar-9-BBN) and terminal alkyne accord-
ing to the reported method.[6c] The borate 1a (1.0 equiv.)
was treated with o-iodoacetophenone (2a; 1.05 equiv.) in
the presence of [(dpephos)Pd(π-allyl)Cl] (1 mol-%) at 50 °C
for 1 h (Scheme 1). The reaction mixture was then treated
with hydrogen peroxide to oxidize the organoboron residue.
Purification by column chromatography on silica gel af-
forded 2,3-diarylindenol 3a in 85% yield. In contrast, the
reaction of the borate 1b with 2a selectively provided the
regioisomeric indenol 3b in 88% yield. Thus, this palla-
dium-catalyzed reaction makes possible the selective pro-
duction of both regioisomers of 2,3-diarylindenols, which
is difficult to achieve by using the conventional annulation
reaction of o-halophenyl ketones with 1,2-diarylalkynes.[4h]

The selective formation of 3a from 1a and 2a can be ex-
plained by the mechanism shown in Scheme 2, which is
based on the mechanism proposed for the palladium-cata-
lyzed reaction of alkynylborates with simple aryl halides.[6c]

Oxidative addition of 2a to palladium(0) leads to arylpalla-
dium A. Regioselective cis-carbopalladation across the car-
bon–carbon triple bond of 1a gives alkenylpalladium B.
The phenyl group on the anionic boron migrates onto the
α carbon atom and the carbon–palladium bond is substi-
tuted with inversion of the stereochemistry to afford alken-
ylborane C.[7] The ketone moiety remains intact during the
course of the palladium-catalyzed reaction; the generated
B-alkenyl-9-BBN moiety undergoes intramolecular ad-
dition at the carbonyl group[8] to form the boron indenolate
D. Upon oxidative work-up with NaOH/H2O2, D is hy-
drolyzed to the indenol 3a.
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Scheme 1. Reactions of alkynylborates 1 and o-iodoacetophenone
(2a).

Scheme 2. Mechanism proposed for the formation of 3a.

A wide variety of highly-substituted indenols have been
generated by this reaction (Table 1). For example, thio-
phene-substituted 3d and alkyl-substituted 3e were ob-
tained in yields of 82 and 92 %, respectively. The use of o-
iodobenzaldehyde and o-iodobenzophenone gave the corre-
sponding indenols 3f and 3g. Indenols equipped with alk-
oxy, trifluoromethyl, and fluoro groups on the aromatic
ring (3h–j) were also synthesized.
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Table 1. Synthesis of indenols 3.[a]

[a] Reagents and conditions: 1.0 equiv. of alkynylborate 1,
1.05 equiv. of o-iodophenyl ketone 2, 1 mol-% of [(dpephos)
PdCl(π-allyl)], toluene, 50 °C, 1 h; then aq. H2O2, aq. NaOH,
MeOH, room temp., 2 h. Isolated yields are shown.

Alkenyl-substituted 3k and alkyl-substituted 3l were also
synthesized from B-alkenyl-9-BBN 1c and B-alkyl-9-BBN
1d, respectively; see Equations (1) and (2). The formation
of 3l is noteworthy from a mechanistic point of view; the n-
butyl group on the anionic boron migrates onto the α-car-
bon atom in preference to the bridgehead sp3 carbon of the
9-BBN framework.[9] This selectivity stands in sharp con-
trast to that observed in the reaction with iodine.[10]

(1)

It was possible to directly synthesize 2,3-dialkylindenol
3m in one-pot starting from 1-octene, 4-phenylbut-1-yne,
and o-iodoacetophenone (2a) without isolation of the inter-
mediates (Scheme 3). Hydroboration of 1-octene with H-9-
BBN in THF afforded B-n-octyl-9-BBN, which was then



Regioselective Construction of Indene Skeletons

(2)

treated with 4-phenylbut-1-ynyllithium to form the corre-
sponding lithium alkynylborate. A toluene solution con-
taining o-iodoacetophenone (2a) and [(dpephos)Pd(π-allyl)-
Cl] was then added to the reaction mixture, which was
heated at 50 °C for 1 h. Oxidative work-up and purification
by column chromatography furnished 3m in a 91% isolated
yield based on 2a.

Scheme 3. Synthesis of indenol 3m from 1-octene.

The palladium-catalyzed annulation of 1a with 2b gave
indenol 3n in 74% yield, which was subjected to further
derivatization (Scheme 4). Oxidation of 3n with manga-
nese(IV) oxide furnished the indenone 4. The following
Wolff–Kishner reaction reduced the carbonyl group with-
out isomerization of the double bond to give indene 5 in
59% yield.[11]

Scheme 4. Synthesis of indenone 4 and indene 5.
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Conclusions

We have described the palladium-catalyzed annulation
reaction of alkynylborates with o-iodophenyl ketones. A
wide variety of highly substituted indenols can be regiospe-
cifically synthesized by this method.

Experimental Section
Procedure for the Palladium-Catalyzed Reaction of Alkynylborate
1a with o-Iodoacetophenone (2a): Under argon, a toluene solution
(1.0 mL) of alkynylborate 1a (80.68 mg, 0.20 mmol), [(dpephos)-
PdCl(π-allyl)] (1.44 mg, 0.002 mmol), and o-iodoacetophenone was
stirred for 1 h at 50 °C. Aqueous H2O2 (0.5 mL, 30 wt.-%), aqueous
NaOH (0.5 mL, 20 wt.-%), and MeOH (0.5 mL) were added to the
reaction mixture at 0 °C. After stirring for 2 h at room temperature,
the resulting mixture was diluted with water and extracted with
ethyl acetate (3� 15 mL). The combined organic layers were
washed with brine, dried with MgSO4, and concentrated under re-
duced pressure. The residue was purified by preparative thin-layer
chromatography on silica gel (hexane/ethyl acetate = 5:1) to afford
the indenol 3a (55.9 mg, 0.17 mmol, 85% yield).

3a: 1H NMR: δ = 1.59 (s, 3 H), 2.04 (br. s, 1 H), 3.82 (s, 3 H),
6.84–6.90 (m, 2 H), 7.21–7.30 (m, 8 H), 7.42–7.48 (m, 2 H), 7.51–
7.55 (m, 1 H) ppm. 13C NMR: δ = 23.9, 55.2, 83.2, 113.9, 120.8,
121.8, 126.5, 126.8, 127.2, 128.0, 128.4, 129.4, 130.5, 135.0, 138.2,
142.3, 146.2, 149.6, 158.9 ppm. IR (ATR): ν̃ = 3315, 1508, 1248,
752, 694 cm–1. HRMS (ESI+): calcd for C23H21O2 [M + H]+

329.1536; found 329.1556.

Supporting Information (see footnote on the first page of this arti-
cle): Experimental details, characterization data of new com-
pounds, 1H and 13C NMR spectra of compounds 3–5.
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