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Triton-B-Catalyzed, Efficient, One-Pot Synthesis
of Dithiocarbazates Through Alcoholic Tosylates
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Jammu-Tawi, India

2Synthetic Research Laboratory, Department of Chemistry,
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Abstract: A quick, efficient, one-pot synthesis of dithiocarbazates was accom-
plished in high yields by the reaction of various tosylates of primary, secondary,
and tertiary alcohols with a variety of substituted hydrazines using the benzyl–
trimethylammonium hydroxide (Triton-B)=CS2 system. The reaction conditions
are mild with simpler workup procedures than the reported methods.

Keywords: Alcoholic tosylates, benzyltrimethylammonium hydroxide, carbon
disulfide, dithiocarbazates, substituted hydrazines

INTRODUCTION

Organic dithiocarbazates have received much attention because of their
numerous remarkable medicinal, industrial, and synthetic applications.[1,2]

They have extensively been used as pharmaceuticals,[3] as agrochemicals,[4]

as intermediates in organic synthesis,[5] for protection of amino groups in
peptide synthesis,[6] as linkers in solid-phase organic synthesis,[7] and as
donor ligands in complexation reactions with transition metals.[8] To
satisfy the demand, their synthesis has changed from the use of costly
and toxic chemicals such as thiophosgene[9] and its derivatives,[10] directly

Received July 8, 2008.
Address correspondence to Devdutt Chaturvedi, Bio-organic Chemistry

Division, Indian Institute of Integrative Medicine, Canal Road, Jammu-Tawi
180001, J & K, India. E-mail: ddchaturvedi002@yahoo.co.in

Synthetic Communications1, 39: 1273–1281, 2009

Copyright # Taylor & Francis Group, LLC

ISSN: 0039-7911 print=1532-2432 online

DOI: 10.1080/00397910802519141

1273

D
ow

nl
oa

de
d 

by
 [

E
as

t C
ar

ol
in

a 
U

ni
ve

rs
ity

] 
at

 0
5:

17
 0

6 
Se

pt
em

be
r 

20
13

 



or indirectly, to abundantly available, cheap, and safe reagents such as like
CS2. However, their formation using CS2 employed harsh reaction condi-
tions, such as use of strong bases, high reaction temperatures, and long
reaction times.[11] Thus, we were prompted to improve procedures. Our
group[12] has been engaged during the past several years with the develop-
ment of new methodologies for the preparation of carbamates, dithio-
carbamates, and related compounds using cheap, abundantly available,
and safe reagents such as CO2 and CS2. Recently,[13] we found that
benzyltrimethyl ammonium hydroxide (Triton-B) is the best catalyst for
the synthesis of carbamates, dithiocarbamates, and dithiocarbonates
(xanthates). We report here an efficient, one-pot synthesis of dithiocarba-
zates from a variety of primary, secondary, and tertiary alcoholic tosylates
and substituted hydrazines using the Triton-B=CS2 system.

RESULTS AND DISCUSSION

A mixture of substituted hydrazine and CS2 was taken in dry dimethyl
sulfoxide (DMSO), and Triton-B was added to it. The reaction was
stirred for 30 min at room temperature, and then the corresponding alco-
holic tosylate was added. The reaction was continued until completion as
checked by thin-layer chromatography (TLC; see Table 1). We proposed

Table 1. Conversion of alcoholic tosylates into dithiocarbazates of formula 1–16

Entry R1 R2 R3 R Time (h)

1 n-C3H7 H H 4-MeO-Ph 2
2 PhCH2CH2 H H Ph 2
3 PhCH2 H H Ph 2.5
4 Ph H H Bn 3
5 C2H5 Me H Bn 3
6 Ph-4-MeO H H Ph-3-NO2 3
7 C3H7 H H Ph-4-NO2 3
8 C3H7 H H Ph-2,4-NO2 4
9 C3H7 H H Naphthyl 3

10 C4H9 C4H9 H Ph 3
11 C4H9 C4H9 C4H9 Ph 3
12 C5H11 H H n-C4H9 2.5
13 C7H15 H H Ph 2.5
14 C9H19 H H n-C4H9 2
15 C3H7 C3H7 H Ph 3
16 Ph CH3 H Ph 3.5

Note. All the products were characterized by IR, NMR, and mass
spectroscopic data.
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that the S� of the dithiocarbazate ion produced will attack the electrophi-
lic carbon of the respective alcoholic tosylates to afford dithiocarbazates
in high yields (80–98%) at room temperature in 2–4 h, as mentioned in
Table 1. The reaction proved to be successful, and the desired products
were isolated. Their structures were confirmed by various spectroscopic
and analytical techniques. The alcoholic tosylates of primary, secondary,
and tertiary alcohols were prepared following the standard procedure.[14]

The whole reaction conditions are shown in Scheme 1.
We tried several solvents such as like n-heptane, n-hexane, acetoni-

trile, benzene, toluene, methanol, dichloromethane, chloroform, DMSO,
dimethylformamide, and hexamethylphosphoric triamide, of which dry
DMSO proved to be most suitable at room temperature.

In conclusion, we developed a convenient and efficient protocol for
the one-pot, three-component coupling of various amines with a variety
of primary, secondary, and tertiary alcoholic tosylates via the CS2 bridge
using Triton-B. This method generates the corresponding dithiocarba-
zates in good to excellent yields. Furthermore, this method exhibits sub-
strate versatility, mild reaction conditions, and experimental convenience.
This synthetic protocol is believed to offer a more general method for
the formation of carbon–sulfur bonds, which are essential to numerous
organic syntheses.

EXPERIMENTAL

General

Chemicals were procured from Merck, Aldrich, and Fluka chemical com-
panies. Reactions were carried out under an atmosphere of argon. IR
spectra (4000–200 cm�1 were recorded on a Bomem MB-104 Fourier
transform infrared (FTIR) spectrophotometer using the neat technique,
where as NMR spectra were scanned on an AC-300 F NMR (300-
MHz) instrument using CDCl3 and some other deutrated solvents, with
tetra methylsilane (TMS) as internal standard. Elemental analyses were
conducted by means of a Carlo-Erba EA 1110-CNNO-S analyzer and
agreed favorably with calculated values.

Scheme 1.
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Typical Experimental Procedure

Carbon disulfide (8 cm3) were slowly added and Triton-B (2 cm3) to a
stirred solution (under Ar) of 3 mmol substituted hydrazine in 5 cm3

anhyd. DMSO at room temperature. Then the mixture was stirred for
0.5 h, at which point 3 mmol of the required alcoholic tosylate were
added over a period of 5 min. The stirring was further continued until
the completion of reaction (Table 1). The reaction mixture was poured
into 20 cm3 distilled water, and the organic layer was extracted with
3�10 cm3 EtOAc. The organic layer was washed with 20 cm3 0.1
N HCl, 25 cm3 saturated solution of NaHCO3, and 30 cm3 brine; dried
(Na2SO4), and concentrated to get the desired compound.

Data

N0-(4-Methoxyphenyl)hydrazinecarbodithioc Acid Butyl Ester
(1, C12H18N2OS2)

Yield: 94%; yellow oil; IR (neat) €tt¼ 675, 1210 cm�1; 1H NMR (CDCl3)
d¼ 0.85 (t, 3H, J¼ 7.3 Hz), 1.33 (m, 2H), 1.85 (m, 2H), 2.0 (s, NH), 2.95
(t, 2H, J¼ 6.3 Hz), 3.73 (s, 3H), 4.05 (m, NH), 6.75–7.60 (m, 4H);
13C NMR (CDCl3) d¼ 13.5, 21.8, 32.4, 33.9, 43.7, 55.6, 112.5, 114.9,
134.5, 152.4, 222.5 (C¼ S) ppm; MS (EI): m=z¼ 270.

N0-Phenyl Hydrazine Carbodithioc Acid 3-Phenyl Propyl Ester
(2, C16H18N2S2)

Yield: 96%; yellow oil; IR (neat) €tt¼ 676, 1205 cm�1; 1H NMR (CDCl3)
d¼ 2.05 (s, H, NH), 2.30 (m, 2H, Ph �CH2 �CH2 �CH2-S), 2.56 (t, 2H,
J¼ 7.2 Hz, Ph �CH2), 2.87 (t, 2H, Ph �CH2 �CH2 �CH2 � S), 4.03 (m, H,
Ph �NH), 6.66–7.12 (m, 10H, Ar-H); 13C NMR (CDCl3), d¼ 32.2, 33.6,
34.4, 112.5, 119.2, 125.8, 128.6, 129.5, 138.6, 221.6 (C¼ S) ppm; MS:
m=z¼ 302.

N0-Phenyl-hydrazine Carbodithioc Acid Phenethyl Ester
(3, C15H16N2S2)

Yield: 87%; yellow oil; IR (neat) €tt¼ 673, 1203 cm�1; 1H NMR (CDCl3)
d¼ 2.10 (s, H, NH), 3.20 (2H, t, J¼ 6.5, Hz, Ph �CH2CH2S), 3.24
(m, 2H, J¼ 7.2 Hz, PhCH2), 4.52 (m, H, PhNH), 6.69–7.15 (m, 10H,
Ar-H); 13C NMR (CDCl3) d¼ 34.5, 37.3, 47.2, 49.9, 118.6, 192.7, 223.3
(C¼ S) ppm; MS: m=z¼ 288.
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N0-Butyl Hydrazine Carbodithioc Acid Benzyl Ester (4, C12H18N2S2)

Yield: 92%; yellow oil; IR (neat) €tt¼ 676, 1207 cm�1; 1H NMR (CDCl3)
d¼ 1.05 (t, 3H, CH3), 1.33 (m, 2H, CH2CH3), 1.56 (m, 2H,
CH2 �CH2CH3), 2.05 (br, NH), 2.65 (m, 2H, NHCH2), 4.13 (s, 2H,
PhCH2), 7.06–7.15 (m, 5H, Ar-H); 13C NMR (CDCl3) d¼ 13.7, 20.2,
31.5, 38.5, 50.9, 126.8, 127.6, 128.5, 141.8, 223.5 ppm; MS: m=z¼ 254.

N0-Butyl-hydrazine Carbodithioc Acid Sec-butyl Ester (5, C9H20N2S2)

Yield: 90%; IR (neat) €tt¼ 682, 1214 cm�1; 1H NMR (CDCl3) d¼ 0.99
(t, 3H, CH3), 1.05 (t, 3H, CH3), 1.35 (m, 2H, CH2 �CH3), 1.41 (d, 3H,
CHCH3), 1.55 (m, 2H, CH3CH2CH2), 1.96 (m, 2H, CHCH2), 2.0
(br, H, NH), 2.65 (m, 2H, NHCH2), 2.70 (m, H, CH-S); 13C NMR
(CDCl3) d¼ 10.2, 13.7, 20.2, 21.5, 31.2, 32.3, 40.1, 49.9, 223.4 ppm;
MS: m=z¼ 220.

N0-(3-Nitrophenyl)-hydrazine Carbodithioc Acid 4-Methoxy Benzyl
Ester (6, C15H15N3O3S2)

Yield: 86%; yellow oil; IR (neat) €tt¼ 678, 1211 cm�1; 1H NMR (CDCl3)
d¼ 2.05 (br, H, NHPh �OMe), 3.73 (s, 3H, OCH3), 4.06 (br, H,
NHPh �NO2), 6.65–7.66 (m, 8H, Ar-H); 13C NMR (CDCl3) d¼ 38.3,
56.7, 107.5, 114.6, 118.4, 128.5, 129.9, 133.6, 143.6, 148.7, 160.6,
223.2 ppm; MS: m=z¼ 349.

N0-(4-Nitrophenyl)-hydrazine Carbodithioc Acid Butyl Ester
(7, C11H15N3O2S2)

Yield: 86%; yellow oil; IR (neat) €tt¼ 666, 1203 cm�1; 1H NMR (CDCl3)
d¼ 0.96 (t, 3H, CH3), 1.33 (m, 2H, CH2CH3), 1.96 (m, 2H, SCH2 �CH2),
2.05 (br, H, NH), 2.87 (t, 2H, SCH2), 4.04 (br, N, NHArNO2), 6.92–8.15
(m, 4H, Ar-H); 13C NMR (CDCl3) d¼ 13.7, 21.6, 32.2, 33.7, 113.5,
124.6, 138.8, 143.3, 223.5 ppm; MS: m=z¼ 285.

N0-(2,4-Dinitro-phenyl)hydrazinecarbodithioc Acid Butyl Ester
(8, C11H14N4O4S2)

Yield: 80%; yellow oil; IR (neat) €tt¼ 670, 1212 cm�1; 1H NMR (CDCl3)
d¼ 0.94 (t, 3H, CH3), 1.32 (m, 2H, CH2CH3), 1.95 (m, 2H, SCH2 �CH2),

One-Pot Synthesis of Dithiocarbazates 1277
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2.02 (br, H, NH), 2.83 (t, 2H, SCH2), 4.04 (br, N, NHArNO2), 7.19–9.50
(m, 3H, Ar-H); 13C NMR (CDCl3) d¼ 13.8, 21.9, 32.3, 33.8, 113.6, 119.2,
130.2, 132.8, 139.7, 143.3, 222.5 ppm; MS: m=z¼ 330.

N0-Naphthalen-2-yl Hydrazine Carbodithioc Acid Butyl Ester
(9, C15H18N2S2)

Yield: 83%, yellow oil; IR (neat) €tt¼ 677, 1209 cm�1; 1H NMR (CDCl3)
d¼ 0.95 (t, 3H, CH3), 1.33 (m, 2H, CH2CH3), 1.97 (m, 2H,
SCH2 �CH2), 2.05 (br, H, NH), 2.84 (t, 2H, SCH2), 4.05 (br, N,
NHArNO2), 6.76–7.55 (m, 7H, Ar-H); 13C NMR (CDCl3) d¼ 13.9,
22.1, 32.5, 33.9, 107.4, 117.2, 121.3, 124.5, 126.6, 127.2, 133.5, 142.6,
224.1 ppm; MS: m=z¼ 290.

N0-Phenyl-hydrazine Carbodithioc Acid 1-Butyl Pentyl Ester
(10, C16H26N2S2)

Yield: 89%; yellow oil; IR (neat) €tt¼ 677, 1212 cm�1; 1H NMR (CDCl3)
d¼ 0.96 (t, 6H, CH3), 1.29 (m, 4H, CH2CH2CH), 1.33 (m, 4H, CH2CH3),
1.92 (m, 4H, CHCH2), 2.05 (br, H, NH), 2.52 (t, H, SCH), 4.05 (br,
H, NHAr), 6.66–7.18 (m, 5H, Ar-H); 13C NMR (CDCl3) d¼ 14.2, 23.1,
28.5, 36.2, 41.4, 112.2, 119.3, 129.0, 142.4, 223.3 ppm; MS: m=z¼ 310.

N0-Phenyl-hydrazine Carbodithioc Acid 1,1-Dibutyl Pentyl Ester
(11, C20H34N2S2)

Yield: 87%; yellow oil; IR (neat) €tt¼ 669, 1210 cm�1; 1H NMR (CDCl3)
d¼ 0.96 (t, 6H, CH3), 1.29 (m, 4H, CH2CH2C), 1.33 (m, 4H, CH2CH3),
1.88 (m, 4H, CHCH2), 2.04 (br, H, NH), 4.0 (br, H, NH-Ar), 6.67–7.19
(m, 5H, Ar-H); 13C NMR (CDCl3) d¼ 14.1, 23.4, 26.7, 39.6, 41.1,
112.5, 119.3, 129.6, 142.2, 223.5 ppm; MS: m=z¼ 366.

N0-Butyl-hydrazine Carbodithioc Acid Hexyl Ester (12, C11H24N2S2)

Yield: 96%; yellow oil; IR (neat) €tt¼ 674, 1208 cm�1; 1H NMR (CDCl3)
d¼ 0.96 (t, 6H, CH3), 1.29 (m, 4H, CH2CH2CH2CH3), 1.33 (t, 2H,
CH2CH3), 1.55 (m, 2H, NHCH2CH2), 1.96 (m, 2H, SCH2CH2), 2.0
(br, 2H, NH), 2.65 (t, 2H, NHCH2), 2.87 (t, 2H, SCH2); 13C NMR
(CDCl3) d¼ 13.7, 14.1, 20.2, 23.1, 28.6, 31.5, 32.6, 49.9, 223.1 ppm;
MS: m=z¼ 248.
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N0-Phenyl-hydrazine Carbodithioc Acid n-Octyl Ester
(13, C15H24N2S2)

Yield: 97%; yellow oil; IR (neat) €tt¼ 679, 1211 cm�1; 1H NMR (CDCl3)
d¼ 0.96 (t, 3H, CH3), 1.29 (m, 8H, CH2), 1.33 (m, 2H, CH2CH3), 1.96
(m, 2H, SCH2CH2), 2.0 (br, H, NH), 2.88 (t, 2H, SCH2), 4.0 (br, H,
Ph �NH), 6.65–7.20 (m, 5H, Ar-H); 13C NMR (CDCl3) d¼ 14.5, 23.10,
28.9, 30.5, 31.5, 32.5, 112.2, 129.6, 118.9, 142.2, 223.6 ppm; MS: m=z¼ 296.

N0-Butyl Hydrazine Carbodithioc Acid Decyl Ester (14, C15H32N2S2)

Yield: 98%; yellow oil; IR (neat) €tt¼ 673, 1220 cm�1; 1H NMR (CDCl3),
d¼ 0.97 (s, 3H, CH3), 0.99 (s, 3H, CH3), 1.29 (m, 12H, CH2), 1.34 (m, 4H,
CH2CH3), 1.55 (m, 2H, CH2CH2CH3), 1.96 (m, 2H, SCH2CH2), 2.0 (br,
2H, NH �NH), 2.65 (m, 2H, NHCH2), 2.87 (t, 2H, SCH2); 13C NMR
(CDCl3) � d¼ 13.7, 14.5, 20.3, 23.1, 28.9, 30.6, 30.9, 31.5, 32.5,
222.1 ppm; MS: m=z¼ 304.

N0-Phenyl Hydrazine Carbodithioc Acid 1-Propyl Butyl Ester
(15, C14H22N2S2)

Yield: 86%; yellow oil; IR (neat) €tt¼ 675, 1210 cm�1; 1H NMR (CDCl3)
d¼ 0.97 (s, 3H, CH3), 1.33 (m, 4H, CH2CH3), 1.92 (m, 4H, CHCH2),
2.0 (br, H, NH), 2.52 (m, H, CH-S), 4.1 (br, H, NH-Ar), 6.66–7.22 (m,
5H, Ar-H); 13C NMR (CDCl3) d¼ 14.5, 20.1, 38.4, 40.8, 112.5, 118.3,
129.6, 143.3, 222.1 ppm; MS: m=z¼ 282.

N0-Phenyl Hydrazine Carbodithioc Acid 1-Phenyl Ethyl Ester
(16, C15H16N2S2)

Yield: 83%; yellow oil; IR (neat) €tt¼ 678, 1210 cm�1; 1H NMR (CDCl3)
d¼ 1.69 (d, 3H, CH3), 2.2 (br, H, NH), 3.98 (m, H, CH-S), 4.2 (br, H,
NH-Ar), 6.66–7.22 (m, 10H, Ar-H), 13C NMR (CDCl3) d¼ 23.4, 41.1,
112.5, 118.9, 126.5, 128.5, 129.7, 141.3, 142.5, 222.1 ppm; MS: m=z¼ 288.
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