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Abstract—Selective inhibitors of neuronal nitric oxide synthase (nNOS) were shown to protect brain and may be useful in the treat-
ment of neurodegenerative diseases. In this context, our purpose has been to design and synthesize a new family of derivatives of
thiadiazoles as possible inhibitors of nNOS. To achieve it a supervised artificial neural network model has been developed for the
prediction of inhibition of Nitric Oxide Synthase using a dataset of 119 nNOS inhibitors. The definition of the molecules was
achieved from a not-supervised neural network using a home made program named CODES. Also, thiadiazole-based heterocycles,
previously predicted, were prepared as conformationally restricted analogues of a selective nNOS inhibitor, S-ethyl
N-phenylisothiourea.
� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Neuroprotection is one of the major challenges of mod-
ern medicine for the treatment of chronic, progressive
and neurodegenerative disorders such as Alzheimer’s
disease, Parkinson’s disease, and multiple sclerosis.
The protection of neurons and their synapses against
damage and death, and the preservation of their func-
tions could provide effective cure for these patholo-
gies.1–3

The brain is particularly vulnerable to oxidative damage
because of the high rate of oxygen utilization, the high
content of oxidizable polyunsaturated fatty acids, and
of redox-active transition metal ions that can generate
free radicals. Moreover, the relative dearth of antioxi-
dant protective defenses renders the central nervous sys-
tem (CNS) particularly prone to oxidative damage.4 It is
widely accepted that oxidative stress increases during
aging and recent evidences suggest its important role
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in the origin and in the development of neurodegenera-
tive diseases such as Alzheimer’s disease (AD).5 The fact
that the oxidative damage found in some biomolecules is
an event that precedes the characteristic lesions of AD
namely, senile plaques and neurofibrillary tangles, sup-
ports the idea that oxidative stress is an early event in
neurodegeneration.6,7 Thus, drugs that directly scavenge
free radicals or inhibit enzymes implicated in their pro-
duction could be therapeutically useful in AD.8 One of
these enzymes is nitric oxide synthase (NOS) which pro-
duces nitric oxide (NO). Excessive production of NO by
activated glial cells contributes to inflammation-related
neurodegenerative processes. In fact, expression and
activity of NOS play an important role in the mainte-
nance and increase of NO liberation in neurons which
makes it an attractive therapeutic objective in the search
of neuronal protective agents.9

There are three isoenzymes of NOS which include a neu-
ronal enzyme (nNOS), an endothelial enzyme (eNOS),
and an inducible enzyme (iNOS). Although these three
enzymes have cofactor requirements in common and
similar mechanism of action, they are structurally dis-
tinct from one another.10 The research and clinical util-
ity of NOS inhibitors are dependent on both their
specificity and their potency of inhibition. Selective
NOS isoform inhibition to regulate NO synthesis has re-
ceived much attention. Inhibitors with high isoform
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selectivity are required to further define the role of each
NOS isoform in various biological processes.11 The
majority of described inhibitors to date are analogues
of the endogenous substrate LL-arginine.12

Due to the fact that nNOS is the primary NO regulator
in neurons, selective inhibitors of this isoenzyme were
shown to protect brain and may be useful in the treat-
ment of neurodegenerative diseases.13,14 The aim of this
article is the study of new-design compounds based on
thiadiazole framework, conformationally restricted ana-
logues of a selective nNOS inhibitor S-ethyl N-phen-
yliosthiourea, as possible nNOS inhibitors. To achieve
this goal we developed a neural network model based
on known nNOS inhibitor to predict their activity.
The synthesis and evaluation of nNOS inhibitors of
thiadiazole derivatives with aryl substituents are also
presented here.
2. Results and discussions

2.1. Neural network model

The quantitative structure–activity relationship was per-
formed by means of artificial neural network system using
NOS inhibitor families previously described (Table 1).
This family is formed by isothioureas,15–17 bisisothioure-
as,15–17 arylisothioureas,18 aminoguanidines,19,20 nitro-
guanidines,21–24 arylamidines,25 ornitine derivatives,26

thiazole and thiazoline,17 imidazole,23,27–29 and pyra-
zole30 (see Fig. 1).

As a theoretical tool, the Artificial Neural Networks
(ANNs) are a modeling methodology whose application
in some areas of Medicinal Chemistry such as quantita-
tive structure–property relationship (QSPR), quantita-
tive structure–activity relationship (QSAR) and
prediction of pharmacokinetic properties has increased
spectacularly in recent years.31–35

The development of nonlinear modeling approaches,
such as artificial intelligence-based algorithms, opened
up the field to the concurrent analysis of a wider variety
of structures with potentially varying modes of action
and noncongeneric chemicals. These artificial systems
emulate the function of the brain, where a very high
number of information-processing neurons are intercon-
nected and are known for their ability to model a wide
set of functions, including linear and nonlinear, without
knowing the analytic forms in advance.

To overcome the first step, we used an original home-
made program called CODES�.36 CODES is an efficient
and easy-to-use program to encode chemical structures
by means of neural computing. The molecular descrip-
tors obtained from this method contain all the underly-
ing information of their chemical structure. The original
CODES program was created and developed by Prof.
Manfred Stud in Instituto de Quı́mica Médica (IQM,
Madrid, Spain). At present, CODES program continues
being further developed and optimized by our research
group in collaboration with Advanced Software Produc-
tion Line S.L. CODES program is available at http://
www.iqm.csic.es.

This singular way to encode chemical entities converts
CODES into an excellent tool to carry out QSAR and
QSPR studies.37–40 Thus, the numeric descriptors gener-
ated by CODES have been used as input data in feed-
forward back-propagation network to obtain a predict
model (see Section 4).

Using the strategy gathered in Figure 2, we have devel-
oped different neural network models for the prediction
of nNOS inhibition.

The first step in this procedure is the codification of the
whole dataset using CODES program, to define the mol-
ecules from a topological point of view. CODES gener-
ates for each molecule a dynamic matrix (A · R), where
A is the number of atoms of each structure and R is the
number of iterations necessary to achieve convergence in
the codification process. In order to have the same num-
ber of descriptors for each structure we developed two
different strategies (see Section 4). One of these two
strategies is using the whole matrix of each compound
and following of the data reduction process to obtain
the same descriptor number for each chemical structure
without losting any structural data (strategy 1). The
other strategy is used to choose the parameters from
the last step of the codification process generated by
CODES. We decided to employ the descriptors of the
four atoms more conserved in all the structures (Fig.
3) (see supporting information, Tables S1 and S2).

It is well-known that the quality of QSAR models is af-
fected by the dataset partition. Thus, the original data-
base was randomly divided into two sets, the training
set and the test set. Furthermore, to account for sam-
pling error, models were generated from different train-
ing/test set partitions. Thus, the training set of different
sizes (50–80 compounds) was generated randomly.
Regarding the architecture of the models, specially the
number of neurons in hidden layer was optimized in
each network. Unfortunately, the models developed
with quantitative data using both the strategies were
not statistically acceptable. The results in the training
process using strategy 1 were r values between 0.78
and 0.98, r2

cv values between 0.57 and 0.95, and the s val-
ues between 0.17 and 0.58. However, the prediction abil-
ity of the models was poor in the external validation
process. Regarding strategy 2, the results were analo-
gous (s = 0.33–0.46, r = 0.77–0.91, and r2

cv ¼ 0:59–0:80).

To overcome these results, we re-addressed the problem
from a qualitative point of view. Thus, the compounds
were clustered into three groups, active (1), moderate
(0), or inactive (�1) (Section 4). The statistical results to-
gether with the results of the internal validation are
gathered in Table 2 for different training sets and both
the strategies.

At the first glance, these results indicate that the best
models are model 2 (strategy 1) and model 6 (strategy
2), which show the highest values of r and r2

cv and
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Table 1. Ki values of nNOS dataset

Inhibitor (I) R nNOS

(Ki, lM)

Lit.

I–1 CH3 0.16 15–17

I–2 CH2CH3 0.029 15–17

I–3 CH(CH3)2 0.037 15–17

I–4 C(CH3)3 0.62 15–17

I–5 CH2CH2CH3 0.63 15–17

I–6 CH2Ph 14 15–17

I–7 CH2CH2Ph 0.80 15–17

I–8 CH2CH2CH2Ph 14 15–17

I–9 CH2CH2NH2 1.80 15–17

I–10 CH2CH@C(CH3)2 2.00 15–17

I–11 –(CH2)2-(1,3-Ph)–(CH2)2– 0.25 15–17

I–12 –(CH2)2-(1,4-Ph)–(CH2)2– 0.016 15–17

I–13 –(CH2)-(1,4-Ph)–(CH2)– 0.1 15–17

I–14 –(CH2)3-(1,3-Ph)–(CH2)3– 4.8 15–17

I–15 H 0.12 18

I–16 2-Br 0.25 18

I–17 2-Cl 0.17 18

I–18 3-Cl 0.45 18

I–19 4-Cl 0.14 18

I–20 2-OCH3 0.17 18

I–21 3-OCH3 0.56 18

I–22 4-OCH3 0.29 18

I–23 4-OCF3 0.70 18

I–24 4-OPh 0.19 18

I–25 4-OCH2Ph 0.21 18

I–26 4-OH 0.34 18

I–27 4-COOEt 1.6 18

I–28 3-COOH 11 18

I–29 4-CH3 0.18 18

I–30 2-iPr 1.1 18

I–31 4-iPr 0.33 18

I–32 4-c-C6H11 1.5 18

I–33 2-CF3 1.4 18

I–34 3-CF3 1.1 18

I–35 4-CF3 0.32 18

I–36 4-NO2 0.66 18

I–37 4-N(CH3)2 1.4 18

I–38 Ar = 2-pyridil 4.8 18

I–39 Ar = 3-pyridil 1.0 18

I–40 Ar = 4-pyridil 0.8 18

I–41 H 3.3 19,20

I–42 CH3 14 19,20

I–43 CH2CH3 1.0 19,20

I–44 OH 0.68 19,20

I–45 Ph 4.0 19,20

I–46 — 0.10 21–24

I–47 — 1.1 21–24

I–48 — 0.13 21–24

I–49 — 0.5 21–24

I–50 3-CH2NH2 0.04 25

I–51 4-CH2NH2 1.5 25

I–52 3-NH2 14 25

I–53 3-CH2CH2NH2 1 25

I–54 3-CH2NHMe 0.056 25

I–55 3-CH2NMe2 0.17 25

I–56

3-

O

N
2.8 25

I–57 3-CH2NHOH 2.1 25

I–58 3-CH2NHC(NH)Me 0.37 25

I–59

3-

NH

N
H

0.042 25

Table 1 (continued)

Inhibitor (I) R nNOS

(Ki, lM)

Lit.

I–60 3-CH2SC(NH)NH2 0.36 25

I–61 3-SO2NH2 29 25

I–62 3-NHNH2 1.1 25

I–63 3-C(NH)NH2 0.57 25

I–64 3-NHC(NH)Me 1.5 25

I–65 R1 = CH2NH2, R2 = Me 0.04 25

I–66 R1 = CH2NH2, R2 = CH2NH2 0.19 25

I–67 R1 = CH2NH2, R2 = CH2SMe 0.011 25

I–68 R1 = CH2NH2, R2 = CH2F 0.011 25

I–69 R1 = CH2OH, R2 = CH2F 0.30 25

I–70 R1 = CH2NH2, R2 = 2-pyridiyl 0.33 25

I–71 R1 = CH2NH2, R2 = 2-furanyl 0.0063 25

I–72 R1 = CH2NH2, R2 = 2-thienyl 0.0087 25

I–73 H 1.7 26

I–74 –CH@CH2 0.1 26

I–75 Me 3 26

I–76 –CH2CH3 5.3 26

I–77 R1, R2 = H 12 17

I–78 R1 = Me, R2 = H 10 17

I–79 R1 = H, R2 = Me 1.1 17

I–80 R1, R2 = Me 0.38 17

I–81 R1 = –CH2CH2Ph, R2 = H 0.89 17

I–82 — 0.41 17

I–83 n = 3, R = 4-Br 125 23

I–84 n = 4, R = 4-Br 32 23

I–85 n = 6, R = 4-Br 57 23

I–86 n = 3, R = 4-CF3 75 23

I–87 n = 4, R = 4-CF3 94 23

I–88 n = 6, R = 4-CF3 35 23

I–89 n = 4, R = 2-Br 180 23

I–90 n = 4, R = 3-Br 60 23

I–91 n = 2, R = 4-Br 125 23

I–92 n = 2, R = 4-CF3 45 23

I–93 n = 0, R = H 170 27

I–94 n = 1, R = H 2 27

I–95 n = 2, R = H 65 27

I–96 n = 3, R = H 2 27

I–97 n = 4, R = H 150 27

I–98 n = 1, R = Ph 80 27

I–99 n = 2, R = Ph 100 27

I–100 n = 3, R = Ph 70 27

I–101 — 74 28,29

I–I02 — 105 28,29

I–103 — 375 28,29

I–104 — 175 28,29

I–105 — 125 28,29

I–106 — 175 28,29

I–107 — 430 28,29

I–108 H 0.4 30

I–109 Propyl 3 30

I–110 Butyl 14 30

I–111 Pentyl 60 30

I–112 Cyclopropyl 50 30

I–113 Cyclopropylmethyl 10 30

I–114 Isobutyl 45 30

I–115 R1 = CH3, R2 = H, R3 = H 8 30

I–116 R1 = H, R2 = CH3, R3 = H 12 30

I–117 R1 = CH3, R2 = H, R3 = CH3 350 30

I–118 — 6 30

I–119 — 2 30
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regarding internal validation, in both cases, the predic-
tion is 100% (4/4). However, according to the statistical
indexes (Table 3), the models obtained with strategy 1
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Figure 1. NOS inhibitor families.
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(models 1, 2, 3, and 4) show lower values of index frac-
tion correct (FC) the probability of detection (POD) and
higher values of false alarm rate (FAR) than the models
obtained with strategy 2 (models 5, 6, and 7) pointing
out that there is a high percentage of misclassified inac-
tive compounds (classified as active compounds) and
therefore, these models seem not to detect real inhibitors
(see Section 4).

The models obtained using the strategy 2 show better
values of FC, FAR, and POD, with the model 7, the best
one, showing the highest values of FC and POD and the
lowest value of FAR.

From these results, the best net is model 7, which uses
the static vector as definition of the structures (strategy
2). The model shows a good overall classification per-
centage of 91 in the training set. A total of 89% of
the compounds in the external prediction set were
correctly identified by the model. The results of the
training and test sets are gathered in Tables 4 and 5,
respectively.



Figure 2. General methodology to develop an inhibition NOS model.

N
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X = C, N, S
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Figure 3. Atom template to static set descriptor.

Table 3. Test statistical indices

Models FC (%) FAR (%) POD (%)

1 43.33 84.61 72.72

2 43.33 92.30 66.66

3 62.06 33.33 72.22

4 62.06 27.77 75.00

5 70.58 25.00 81.81

6 76.47 15.38 81.81

7 89.47 5.88 92.85

8 72.00 22.22 78.57
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The percentages of correct classifications for the three
categories in the training set and test set are shown in
Figures 4 and 5. Analysis of the classification by cate-
gory shows that the model correctly evaluates 100%
for active compounds (1), 33% for moderates and 91%
for inactive (�1) in training sets and 92% for active com-
pounds (1), 50% for moderates and 100% for inactives
(�1) in test sets.
Table 2. nNOS model statistical parameters

Models Strategy Architecture ntraining

1 1 4:7:1 77

2 1 4:7:1 68

3 1 4:7:1 69

4 1 4:7:1 71

5 2 4:5:1 59

6 2 4:5:1 57

7 2 4:5:1 55

8 2 4:7:1 68

a Correct prediction of the randomly excluded data.
Once the neural model was developed, we used it to pre-
dict the activity of new design compounds. Griffith41

and Furfine18 have reported that LL-thiocitrulline (1)
and S-ethyl N-phenylisothiourea (2) are potent NOS
inhibitors with selectivity for the neuronal isoform.
s r r2
cv Internal validationa

0.22 0.96 0.92 3/4

0.08 0.99 0.98 4/4

0.25 0.95 0.91 3/4

0.37 0.90 0.80 3/4

0.26 0.93 0.87 4/4

0.20 0.96 0.92 4/4

0.36 0.89 0.78 4/4

0.36 0.89 0.79 3/4



Table 4. Training set of model 7

Compound Ki, (lM) Groupa Predicted group

I–3 0.037 1 1

I–4 0.62 1 1

I–5 0.63 1 1

I–6 14 �1 �1

I–7 0.8 1 1

I–8 14 �1 1

I–10 2 0 0

I–11 0.25 1 1

I–12 0.016 1 1

I–13 0.1 1 1

I–15 0.12 1 1

I–16 0.25 1 1

I–18 0.45 1 1

I–20 0.17 1 1

I–21 0.56 1 1

I–22 0.29 1 1

I–23 0.7 1 1

I–24 0.19 1 1

I–26 0.34 1 1

I–29 0.18 1 1

I–31 0.33 1 1

I–35 0.32 1 1

I–36 0.66 1 1

I–40 0.8 1 1

I–41 3.3 0 1

I–49 0.5 1 1

I–50 0.04 1 1

I–51 1.5 0 1

I–53 1 1 1

I–55 0.17 1 1

I–58 0.37 1 1

I–59 0.042 1 1

I–60 0.36 1 1

I–62 1.1 0 1

I–63 0.57 1 1

I–65 0.04 1 1

I–66 0.19 1 1

I–67 0.011 1 1

I–68 0.011 1 1

I–69 0.3 1 1

I–72 0.0087 1 1

I–74 0.1 1 1

I–77 12 �1 �1

I–78 10 �1 �1

I–81 0.89 1 1

I–101 74 �1 �1

I–108 0.4 1 1

I–109 3 0 �1

I–110 14 �1 �1

I–111 60 �1 �1

I–114 45 �1 �1

I–116 12 �1 �1

I–117 350 �1 �1

I–118 6 �1 �1

I–119 2 0 0

a Active (1), moderate (0) or inactive (�1).

Table 5. Test set of model 7

Compound Ki, (lM) Groupa Predicted group

I–1 0.16 1 1

I–2 0.029 1 1

I–17 0.17 1 1

I–19 0.14 1 1

I–25 0.21 1 1

I–39 1 1 1

I–43 1 1 1

I–46 0.1 1 1

I–47 1.1 0 1

I–48 0.13 1 1

I–52 14 �1 �1

I–54 0.056 1 1

I–56 2.8 0 0

I–70 0.33 1 1

I–71 0.0063 1 1

I–80 0.38 1 �1

I–112 50 �1 �1

I–113 10 �1 �1

I–115 8 �1 �1

a Active (1), moderate (0) or inactive (�1).

1 9% 50% 100% 

Predicted
0

- 33% - 

-1 91% 17% - 

-1 0 1 

Real

Figure 4. Analysis of the classification by category in training set of

model 7.

1
- 50% 92% 

Predicted
0

- 50% - 

-1 100% - 8% 

-1 0 1 

Real

Figure 5. Analysis of the classification by category in test set of model
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Figure 6. Structure of S-ethyl N-phenylisothiourea.
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Taking into account these results we proposed the syn-
thesis of thiadiazole derivatives with aryl substituents
(3), which can be considered as conformationally re-
stricted analogues of S-ethyl N-phenylisothiourea (2)
(Fig. 6). This scaffold should not only be able to donat
hydrogen bonds (assuming that the ring nitrogen re-
mains protonated at physiological pH), but also make
non-polar contacts. These two interactions have been
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shown as important requirements for the NOS inhibi-
tory activity of isothioureas.42 Departing from the
framework 2 (Fig. 6) we proposed several aminothia-
diazoles in order to predict their activity as nNOS inhib-
itors. All the considered compounds were predicted as
active except when the amino at position 5 is not substi-
tuted, pointing out that it is necessary for the activity
that the amino in this position will be substituted. In
addition, these initial structures could be functionalized
subsequently in order to obtain an extensive family of
compounds.

2.2. Synthesis and NOS evaluation

The 5-amino-1,2,4-thiadiazole-3-ones 4, 5, and 6 de-
scribed as GSK-3b inhibitors43 were obtained by oxida-
tive cyclization of thiobiurets 7, 8, and 9 via N–S bond
formation with N-bromosuccinimide44 (Scheme 1). Previ-
ously, the thiobiurets 7, 8 and 9 were prepared by conden-
sation of isothiocyanates with urea45 or methylurea.46

The diversification of 5-benzylamino-2-methyl-3-oxo-2,3-
dihydro-1,2,4-thiadiazole (6) by addition of isocyanates
and isothiocyanates in the presence of triethylamine
yielded the imino derivatives, 10–13, the structures of
which were elucidated on the basis of NMR experi-
ments. These thiadiazoles were obtained after an addi-
tion–rearrangement reaction,47 and the presence of an
amide group should allow the molecule to establish
N

NS

ON
H

Me

6

a
N

X

NH
R

Scheme 2. Reagents and condition: (a) RNCX, Et3N, DMF, 80 �C, 5–48 h
hydrogen bonds in the NOS active site (Scheme 2). Ben-
zoylamino derivatives 4 and 5 did not react in these con-
ditions due to the coordination between the hypervalent
sulfur and the carbonyl group, which has been postu-
lated in similar heterocycles,48 and that would imply
the blockade of the atom of sulfur for the addition
reaction.

In order to introduce a cyano functionality in the het-
erocycles, the alkylation of compounds 4 and 5 with
chloroacetonitrile was performed following the de-
scribed procedures for related compounds.45 The best
results were achieved by using potassium carbonate as
a base in anhydrous dimethylformamide followed by
condensation with chloroacetonitrile. Starting from 5-
benzoylamino-3-oxo-2,3-dihydro-1,2,4-thiadiazole (4),
a mixture of mono- and dialkylated derivatives (14
and 15, respectively) was obtained. Obviously, when
the starting material was 5-benzoylamino-2-methyl-3-
oxo-2,3-dihydro-1,2,4-thiadiazole (5), only the mono-
alkylated product 16 was formed (Scheme 3).

Taking into account that amidine group appears to be a
common pharmacophore of NOS inhibitors,12 we took
advantage of the nitrile group reactivity present in the
thiadiazol framework to prepare different related ana-
logues as amidoxime 17, imido ester 18, or amidines
20 and 21 from 5-benzoylimino-4-cyanomethyl-2-
methyl-3-oxo-2,3,4,5-tetrahydro-1,2,4-thiadiazole (16).
In order to generate amidoxime 17, hydroxylamine
was added to the cyano group of 16 according to a pre-
viously described procedure.49 On the other hand, com-
pound 16 was transformed into the imido esther 18 by
the Pinner synthesis,50,51 where also traces of the hydro-
lysis by-product 19 were also identified. Finally, amidine
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derivatives 20 and 21 were obtained by reaction with
aniline and hydrazine, respectively51 (Scheme 4), but
unfortunately they decomposed after their
characterization.

The inhibition of nNOS isoform was determined by
monitoring the conversion of LL-[3H]arginine to LL-[3H]cit-
rulline as previously described.52

All the compounds reported here, with the exception of
20 and 21 which were unstable, were tested but none of
them showed any significant activity (IC50 > 100 lM).

2.3. Refined neural network model

The low-capacity prediction of the model 7 regarding
the new derivatives would be due to a lack of data of
new compounds during the learning process. Trying to
correctly address the model, we decided to refine it. Fol-
lowing the same strategy as for model 7 (strategy 2), we
developed model 8 with the 119 inhibitors previously
used, plus the seven new synthesized derivatives. This
new dataset of compounds was randomly divided in to
two sets. According to this distribution, compounds 5,
6, 14, 17 and 18 were included in the training set and
compounds 10 and 19 in the test set during model vali-
dation. The new model shows acceptable statistical
parameters (Tables 2 and 3, entry 8).

Analysis of the classification by category shows that the
model 8 correctly evaluates 92.5% for active compounds
(1), 50% for moderates, and 93% for inactives (�1) in
training sets and 82% for active compounds (1), 40%
for moderates, and 75% for inactives (�1) in test
sets.

The results of the training and test sets are gathered in
Tables 6 and 7 respectively. This model correctly predicts
our compounds according to the experimental data.
3. Conclusions

In summary, we have performed a QSAR study based
on different inhibitor families that are able to predict
the activity of new compounds. It is interesting to
emphasize that CODES is an efficient and easy way to
encode structures and it does not need 3D information,
thus avoiding the risky choice of the appropriate physi-
cochemical descriptors and problems associated with the
conformation.

On the other hand, in relation to the strategies used in
the dimension-reduction process, we can conclude that
the best results were obtained when the static vector of
the four atoms more conserved in all the structures
was considered (strategy 2).

Regarding the new-design family, we can conclude that
the conformational restriction of the isothiourea group
causes a lack of activity, although the synthesized mole-
cules provide nitrogen-containing functional groups as
hydrogen-bond donators and alkyl groups for interac-
tion with a hydrophobic site. Probably, the rigidity of
the molecules prevents their assuming the appropriate
discriminatory-binding orientations.



Table 6. Training set of model 8

Compound Ki (lM) Groupa Predicted group

I–1 0.16 1 1

I–3 0.037 1 1

I–4 0.62 1 1

I–5 0.63 1 1

I–6 14 �1 �1

I–7 0.8 1 1

I–11 0.25 1 1

I–12 0.016 1 1

I–13 0.1 1 1

I–14 4.8 0 1

I–15 0.12 1 1

I–16 0.25 1 1

I–18 0.45 1 1

I–20 0.17 1 1

I–21 0.56 1 1

I–22 0.29 1 1

I–23 0.7 1 1

I–24 0.19 1 1

I–25 0.21 1 1

I–26 0.34 1 1

I–29 0.18 1 1

I–30 1.1 0 0

I–33 1.4 0 1

I–34 1.1 0 1

I–35 0.32 1 1

I–37 1.4 0 0

I–40 0.8 1 1

I–44 0.68 1 1

I–45 4 0 1

I–49 0.5 1 1

I–50 0.04 1 0

I–51 1.5 0 0

I–53 1 1 1

I–55 0.17 1 1

I–56 2.8 0 1

I–57 2.1 0 1

I–58 0.37 1 1

I–59 0.042 1 1

I–60 0.36 1 1

I–62 1.1 0 1

I–63 0.57 1 1

I–64 1.5 0 1

I–65 0.04 1 0

I–66 0.19 1 1

I–67 0.011 1 1

I–68 0.011 1 1

I–69 0.3 1 1

I–70 0.33 1 1

I–72 0.0087 1 1

I–73 1.7 0 0

I–74 0.1 1 1

I–77 12 �1 0

I–79 1.1 0 0

I–81 0.89 1 1

I–82 0.41 1 0

I–101 74 �1 �1

I–110 14 �1 �1

I–111 60 �1 �1

I–114 45 �1 �1

I–116 12 �1 �1

I–117 350 �1 �1

I–118 6 �1 �1

I–119 2 0 0

5 — �1 �1

6 — �1 �1

Table 6 (continued)

Compound Ki (lM) Groupa Predicted group

14 — �1 �1

17 — �1 �1

18 — �1 �1

a Active (1), moderate (0) or inactive (�1).

Table 7. Test set of model 8

Compound Ki (lM) Groupa Predicted group

I–2 0.029 1 1

I–8 14 �1 1

I–10 2 0 0

I–17 0.17 1 1

I–19 0.14 1 1

I–38 4.8 0 1

I–39 1 1 1

I–41 3.3 0 -0

I–43 1 1 1

I–46 0.1 1 1

I–47 1.1 0 1

I–48 0.13 1 1

I–52 14 �1 1

I–54 0.056 1 0

I–71 0.0063 1 1

I–78 10 �1 �1

I–80 0.38 1 �1

I–108 0.4 1 �1

I–109 3 0 �1

I–112 50 �1 �1

I–113 10 �1 �1

I–115 8 �1 �1

10 — �1 �1

19 — �1 �1

a Active (1), moderate (0) or inactive (�1).
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4. Experimental

4.1. Development of neural models

The following strategy was pursued to develop a neuro-
nal network model to predict nNOS inhibition:

4.1.1. Database. A series of 119 inhibitors were collected
from the literature and their biological activity is ex-
pressed as Ki (lM) (see Fig. 1 and Table 1). This data-
base is formed by different families, which show Ki

values in nNOS. The original database was divided ran-
domly into training sets and test sets of different sizes.

Regarding the output (values of the activity) we used for
the training of the neural net: quantitative values to
measure the inhibition of logKi and qualitative values
that refer to assess whether the compounds are active
(1), moderate (0) or inactive (�1). Active compounds
(1) represent the compounds the activity of which com-
prises the values until 1 lM, moderate compounds (0)
represent the compounds with activity between 1.1 and
5 lM and inactive compounds (�1) represent the com-
pounds with activity higher than 5 lM.
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4.1.2. Input data. The first step is to draw the selected
compounds using CHEMDRAW software (v8.0) and
encode them using SMILES system (see Table S1 in sup-
porting information) that denotes a molecular structure
as a graph.53 This is included in CHEMDRAW software
(v8.0). Subsequently, the molecular descriptors are ob-
tained using CODES� software (v1.0, revision 3).
CODES encodes each molecule into a dynamic matrix.
CODES consists of two levels, topological and neural,
and its philosophy relies on a Gestalt isomorphism54 be-
tween both the levels. While the topological space is the
chemical structure by itself, the neural one consists of an
interactive and competitive network. Each point or
atom of the topological space corresponds with each
unit or neuron of the neural space, and each type of
atom takes a different initial value based on the atom
nature, the number of atom bonds, the connectivity with
the rest of the molecule, and chirality (if applicable).
Attending to connectivity, CODES considers both
bonding and not bonding interactions between atoms.
If atoms are not bonded in the topological space, it
means an inhibitory connection in the neural level (value
�1), otherwise the neural space considers an excitatory
connection and the value depends on bond type (values:
1 for X–X; 2 for X@X; 3 for X„X; 1 + 1/2 for aromatic
bonds). The stereochemistry is also taken into account
during the codification process and R or S configuration
is expressed by a corrective non-linear function.

The neural network employs a sigmoideal function in
the codification process and the network is characterized
by a non-supervised learning. In the learning process,
CODES records all the activities reached in every cycle
(or iteration) of the network. This process finishes when
the equilibrium state is reached, so, all activity values of
each atom of the structure during each cycle or iteration
are gathered in a matrix from the initial to the final steps
forming the dynamic matrix, which contains the whole
codification process.

It is interesting to emphasize that CODES does not need
three-dimensional information because the topological
space and its conversion to a neural space only need de-
tails about points (atoms) and the relationships between
them (bonds); that is, the chemical structure by itself.
Thus, CODES avoids the risky choice of appropriate
physicochemical descriptors and problems associated
with the conformation.

Based on the topological matrix, we have developed two
different strategies for obtaining the molecular descriptors:

One of these is using the whole previous matrix of each
compound. The next step is reduction of dimension of
matrices of each chemical in order to have the same
number of descriptors or variables.

Reduction of dimension (RD) philosophy resides in
reducing the complexity of any system without loss of
any intrinsic characteristics or information about the
chemical nature. High-dimensional data can be con-
verted to low-dimensional codes by training a supervized
multilayer neural network namely ReNDeR (Reversible
Non-linear Dimension Reduction). The network consists
of five layers of neurons: an input layer, a first hidden
layer (coding), a central layer of two or three neurons,
a third hidden layer (decoding) and the output layer.
The input and output layers contain the same informa-
tion and therefore the same number of neurons, and
the coding and decoding layers are of the same size and
the central layer contains a number of neurons equal to
the dimensionality of the ReNDer plot required (usually
2 or 3).55 In the developed model, the process of dimen-
sion-reduction is carried out in order to compress the dy-
namic matrix data to a set of four numeric codes for each
molecule (hidden neurons: A, B, C, and D; see support-
ing information, Table S1). RD process is carried out
using TSAR� program55 which applies Monte Carlo
algorithm. Convergence parameters are 0.005 RMS
(Root Mean Square) of convergence, 1000 cycles past
best, 3000 iterations/cycle, and data excluding of 1%.
The process is finished when Best RMS and Test RMS
are constant and their values are not higher than 0.02.
If the values were higher, the reductions settings would
be 0.0005 RMS of convergence, 4000 cycles past best,
20000 iterations/cycle and 1% of excluded data for test-
ing. The neural network is considered trained when the
lines diagrams of the convergence plot are unchanging.

The second one is choice of four parameters per mole-
cule from the last step of the codification process
generated by CODES, which correspond to descriptors
of the four atoms more conserved in all the structures
(Fig. 3). In this way, a static set of four descriptors is
obtained (see Supporting information, Table S2).

4.1.3. Development of neural network model. This proce-
dure is carried out by a standard feed-forward network
with back-propagation using TSAR software (v3.0)55

with an architecture 4 � n � 1, where four is the param-
eter above described, n is the hidden neurons, and one is
the output value (Ki).

In each training set established, we performed a system-
atic study of the neural network learning process. In the
first approach, we evaluated the suitable number of hid-
den neurons attending to q factor, thus, several initial
trainings were carried out with the appropriate architec-
ture. Models were evaluated using statistical parameters
and internal validation method (described below) and
the best ones were retrained in the second learning stage.
We used two different approaches in this second learning
phase (see Fig. 2). Via 1 consists in retraining the se-
lected model several times while the second approach,
via 2, consists also in several retrainings but in this case,
each retraining is used as the previous model in the fol-
lowing one.

4.1.4. Validation of the models. All models were evalu-
ated using some statistical indices: as fraction correct
(FC), false alarm rate (FAR), and probability of detec-
tion (POD). Before calculating such indices, TA (num-
ber of cases that were truly classified as active), TM
(number of cases that were truly classified as moderate),
TI (number of cases that were truly classified as inac-
tive), FA (number of cases that were wrongly recognized
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as active), and FI (number of cases that were wrongly
recognized as inactive) should have been counted by
each final model.

Fraction correct (FC) is the fraction of compounds that
were classified correctly.

FC ¼ TAþ TMþ TI

No
total

� 100

False alarm rate (FAR) represents the fraction of inac-
tive compounds that were wrongly classified.

FAR ¼ FA

TAþ TMþ TI
� 100

Probability of detection (POD) is another index by
which we evaluated our models. It represents the frac-
tion of active cases that were truly classified.56

POD ¼ TAþ TM

TAþ TMþ FI
� 100

Moreover, we carried out an internal validation by regres-
sion data like s, r, cross-validation expressed by r2

cv data
that is carried out by leave-group-out method and inter-
nal prediction of four randomly excluded structures.

On the other hand, we carried out an external validation
by test-set prediction.

4.2. Chemical procedures

Substrates were either purchased from commercial
sources or used without further purification. Melting
points were determined with a Reichert–Jung Thermovar
apparatus and are uncorrected. Flash column chroma-
tography was carried out at medium pressure using silica
gel (E. Merck, Grade 60, particle size 0.040–0.063 mm,
230–240 mesh ASTM) with the indicated solvents as elu-
ents. Compounds were detected with UV light (254 nm).
1HNMR spectra were obtained on Varian INOVA-400,
Bruker AVANCE-300, and Varian-Gemini-200 spec-
trometers working at 400, 300 and 200 MHz, respec-
tively. Typical spectral parameters: spectral width
10 ppm, pulse width 9 ls (57�), and data size 32 K. 13C
NMR experiments were carried out on the Varian INO-
VA-400, Bruker AVANCE-300, and Varian-Gemini-200
spectrometers operating at 100, 75, and 50 MHz, respec-
tively. The acquisition parameters: spectral width
16 kHz, acquisition time 0.99 s, pulse width 9 ls (57�),
and data size 32 K. Chemical shifts are reported in values
(ppm) relative to internal Me4Si and J values are re-
ported in Hertz. IR (infrared-spectroscopy) was mea-
sured on a Perkin-Elmer Spectrum One Spectrometer.
EI (electronic ionization mass spectroscopy), MSD
5973 Hewlett Packard and ESI (electrospray ionization
mass spectroscopy), and LC/MSD-Serie 100 Hewlett
Packard. Elemental analyses were performed by the ana-
lytical department at CENQUIOR (CSIC).

4.2.1. 4-Benzyl-2-ethyl-5-methylcarbamoylimino-3-oxo-
2,3,4,5-tetrahydro-1,2,4-thiadiazole (10). To a solution of
643 (0.20 g, 0.90 mmol) in DMF (9.0 mL), triethylamine
(0.2 mL, 1.53 mmol) and ethylisocyanate (0.1 mL,
1.42 mmol) were added and the mixture was heated at
80 �C. After 5 h, the reaction mixture was cooled to
room temperature and the solvent was removed under
reduced pressure. The residue was purified by silica gel
column chromatography using dichloromethane/metha-
nol (90:1) as eluent to give a colorless oil. Yield: 0.20 g
(79%). Purity >99% (by HPLC). 1H NMR (200 MHz,
CDCl3): d 7.43–7.38 (m, 2H, Ar-H), 7.32–7.23 (m, 3H,
Ar-H), 5.54–5.52 (br m, 1H, NH), 5.00 (s, 2H, CH2Ph),
3.58 (c, 2H, J = 7.2 Hz, CH2), 2.97 (d, 0.3H, J = 5.2 Hz,
anti-MeNH), 2.85 (d, 2.7H, J = 5.2 Hz, syn-MeNH),
1.23 (t, 3H, J = 7.2 Hz, Me). 13C NMR (50 MHz,
CDCl3): d 165.8 (C-5), 165.2 (CONH), 152.5 (C-3),
135.6 (Ar-C), 128.4 (2C, Ar-C), 128.4 (2C, Ar-C),
127.8 (Ar-C), 47.4 (CH2Ph), 38.9 (CH2), 27.2 (MeNH),
14.0 (Me). MS (ESI): m/z 293 (M+H)+. Anal. Calcd
for C13H16N4O2S: C, 53.41; H, 5.52; N, 19.16; S,
10.97. Found: C, 53.36; H, 5.73; N, 19.24; S, 10.68.

4.2.2. 4-Benzyl-2-ethyl-5-methylcarbamoylimino-3-thioxo-
2,3,4,5-tetrahydro-1,2,4-thiadiazole (11). To a solution of
643 (0.20 g, 0.90 mmol) in DMF (9.0 mL), triethylamine
(0.2 mL, 1.50 mmol) and ethylisothiocyanate (0.1 mL,
1.42 mmol) were added and the mixture was heated at
80 �C. After 15 h, the reaction mixture was cooled to
room temperature and the solvent was removed under re-
duced pressure. The residue was purified by silica gel col-
umn chromatography using hexane/ethyl acetate (3:1) as
eluent to give a colorless oil. Yield: 0.13 g (46%). Purity
>99% (by HPLC). 1H NMR (400 MHz, DMSO-d6): d
8.15 (c, 1H, J = 4.8 Hz, NH), 7.38–7.24 (m, 5H, Ph),
5.46 (s, 2H, CH2Ph), 3.98 (c, 2H, J = 7.2 Hz, CH2),
2.79 (d, 0.3H, J = 4.8 Hz, anti-MeNH), 2.67 (d, 2.7H,
J = 4.8 Hz, syn-MeNH), 1.24 (t, 3H, J = 7.2 Hz, Me).
13C NMR (100 MHz, DMSO-d6): d 172.1 (C-3), 165.8
(C-5), 164.3 (CONH), 135.4 (Ar-C), 128.3 (2C, Ar-C),
127.4 (2C, Ar-C), 127.3 (Ar-C), 50.7 (CH2Ph), 43.0
(CH2), 27.9 (anti-MeNH), 26.9 (syn-MeNH), 12.9 (Me).
MS (ESI): m/z 309 (M+H)+. Anal. Calcd for
C13H16N4OS2: C, 50.63; H, 5.23; N, 18.17; S, 20.79.
Found: C, 50.37; H, 5.15; N, 18.26; S, 20.86. IR: t
3338 (m, NH), 1621 (s, C@O), 1213 (s, C@S) cm�1.

4.2.3. 4-Benzyl-2-(2-methoxy-4-nitrophenyl)-5-methylcarba-
moylimino-3-thioxo-2,3,4,5-tetrahydro-1,2,4-thiadiazole (12).
To a solution of 643 (50.0 mg, 0.22 mmol) in DMF
(2.2 mL), triethylamine (53.5 lL, 0.38 mmol) and 4-nitro-2-
methoxyphenylisothiocyanate (75.0 mg, 0.35 mmol) were
added and the mixture was heated at 80 �C. After 48 h, the
reaction mixture was cooled to room temperature and the
solvent was removed under reduced pressure. The residue
was purified by silica gel column chromatography using hex-
ane/ethyl acetate (3:1) as eluent to give a yellow solid. Yield:
25.2 mg (26%). Mp: 180-182 �C. Purity: 97% (by HPLC). 1H
NMR (300 MHz, CDCl3): d 7.86 (dd, 1H, J = 8.5, 2.1 Hz,
Ar-H), 7.79 (d, 1H, J = 2.1 Hz, Ar-H), 7.52 (dd, 2H,
J = 7.3, 2.1 Hz, Ar-H), 7.34–7.32 (br m, 3H, Ar-H), 6.93
(d, 1H, J = 8.5 Hz, Ar-H), 5.56–5.54 (br m, 1H, NH), 5.46
(s, 2H, CH2Ph), 3.89 (s, 3H, MeO), 3.00 (d, 0.3H,
J = 4.9 Hz, anti-MeNH), 2.90 (d, 2.7H, J = 4.9 Hz, syn-
MeNH). 13C NMR (75 MHz, CDCl3): d 167.9 (C-3), 163.8
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(CONH), 156.2 (C-5), 150.8 (NO2-C), 145.1 (MeO-C), 144.4
(Ar-C), 135.3 (Ar-C), 128.5 (2C, Ar-C), 128.3 (2C, Ar-C),
127.9 (Ar-C), 121.3 (Ar-C), 117.2 (Ar-C), 107.2 (Ar-C),
56.1 (MeO), 51.7 (CH2Ph), 29.6 (anti-MeNH), 27.3 (syn-
MeNH). MS (ESI): m/z 432 (M+H)+, 885 (2M+Na)+.

4.2.4. 4-Benzyl-2-tert -butyl-5-methylcarbamoylimino-3-
thioxo-2,3,4,5-tetrahydro-1,2,4-thiadiazole (13). To a
solution of 643 (50.0 mg, 0.22 mmol) in DMF (2.2 mL),
triethylamine (53.5 lL, 0.38 mmol) and tert-butylisothi-
ocyanate (45.2 lL, 0.35 mmol) were added and the mix-
ture was heated at 80 �C. After 48 h, the reaction
mixture was cooled to room temperature and the solvent
was removed under reduced pressure. The residue was
purified by silica gel column chromatography using hex-
ane/ethyl acetate (3:1) as eluent to give a colorless oil.
Yield: 15.0 mg (20%). Purity >99% (by HPLC). 1H
NMR (200 MHz, CDCl3): d 7.45 (dd, 2H, J=7.4,
2.2 Hz, Ar-H), 7.32–7.25 (m, 3H, Ar-H), 5.57 (s, 2H,
CH2Ph), 5.51–5.49 (br m, 1H, NH), 2.96 (d, 0.3H,
J = 5.0 Hz, anti-MeNH), 2.87 (d, 2.7H, J = 5.0 Hz,
syn-MeNH), 1.81 (s, 9H, Me3). 13C NMR (75 MHz,
CDCl3): d 172.2 (C-3), 166.0 (C-5), 165.0 (CONH),
135.6 (Ar-C), 128.2 (2C, Ar-C), 128.2 (2C, Ar-C),
127.5 (Ar-C), 50.4 (CH2Ph), 29.5 (C-tBu), 28.0 (3C,
Me3), 27.4 (MeNH). MS (EI): m/z 336 (M+, 30).

4.2.5. 5-Benzoylimino-4-cyanomethyl-3-oxo-2,3,4,5-tetra-
hydro-1,2,4-thiadiazole (14). To a solution of 443 (0.15 g,
0.67 mmol) in anhydrous DMF (6.7 mL), K2CO3

(58.1 mg, 0.42 mmol) was added and the mixture was
stirred at room temperature. After 1 h, chloroacetonitri-
le (26.5 lL, 0.42 mmol) was added and the reaction mix-
ture was heated at 60 �C. After 63 h, the reaction
mixture was cooled to room temperature and cold dis-
tilled water (10.0 mL) was added. The resulting precipi-
tate was isolated by filtration and the solid was purified
by silica gel column chromatography using hexane/ethyl
acetate (3:2) as eluent to give the monoalkylated product
as a white solid. Yield: 0.10 g (60%). Mp: 129–131 �C.
1H NMR (300 MHz, DMSO-d6): d 8.22 (d, 2H,
J = 7.1 Hz, Ar-H), 7.62–7.49 (m, 3H, Ar-H), 4.99 (s,
2H, CH2), 3.50 (br s, 1H, NH). 13C NMR (75 MHz,
DMSO-d6): d 175.3 (PhCO), 173.5 (C-5), 154.3 (C-3),
135.0 (Ar-C), 132.4 (Ar-C), 129.1 (2C, Ar-C), 128.5
(2C, Ar-C), 115.6 (CN), 31.3 (CH2). MS (EI): m/z 260
(M+, 9). Anal. Calcd for C11H8N4O2S: C, 50.76; H,
3.10; N, 21.53; S, 12.32. Found: C, 50.39; H, 3.17; N,
21.28; S, 12.47.

4.2.6.5-Benzoylimino-2,4-bis(cyanomethyl)-3-oxo-2,3,4,5-
tetrahydro-1,2,4-thiadiazole (15). To a solution of 443

(0.15 g, 0.67 mmol) in anhydrous DMF (6.7 mL),
K2CO3 (58.1 mg, 0.42 mmol) was added and the mixture
was stirred at room temperature. After 1 h, chloroaceto-
nitrile (26.5 lL, 0.42 mmol) was added and the reaction
mixture was heated at 80 �C. After 22 h, the reaction
mixture was cooled to room temperature and cold dis-
tilled water (10.0 mL) was added. The resulting precipi-
tate was isolated by filtration and the solid was purified
by silica gel column chromatography using hexane/ethyl
acetate (3:2) as eluent to give the dialkylated product as
a white solid. Yield: 0.15 g (75%). Mp: 150–152 �C. 1H
NMR (300 MHz, DMSO-d6): d 8.28 (d, 2H,
J = 7.1 Hz, Ar-H), 7.72 (t, 1H, J = 7.3 Hz, Ar-H), 7.61
(dd, 2H, J = 7.3, 7.1 Hz, Ar-H), 5.19 (s, 2H, CH2-4),
4.89 (s, 2H, CH2-2). 13C NMR (75 MHz, DMSO-d6):
d 178.1 (PhCO), 169.4 (C-5), 150.8 (C-3), 134.0 (Ar-C),
132.2 (Ar-C), 129.5 (2C, Ar-C), 129.0 (2C, Ar-C),
115.6 (CN-2), 114.5 (CN-4), 32.2 (CH2-4), 31.5 (CH2-
2). MS (EI): m/z 299 (M+, 8). Anal. Calcd for
C13H9N5O2S: C, 52.17; H, 3.03; N, 23.40; S, 10.71.
Found: C, 52.23; H, 3.17; N, 23.76; S, 10.50.

4.2.7. 5-Benzoylimino-4-cyanomethyl-2-methyl-3-oxo-
2,3,4,5-tetrahydro-1,2,4-thiadiazole (16). To a solution
of 543 (0.15 g, 0.63 mmol) in anhydrous DMF
(6.3 mL), K2CO3 (54.6 mg, 0.39 mmol) was added
and the mixture was stirred at room temperature.
After 1 h, chloroacetonitrile (24.9 lL, 0.39 mmol)
was added and the reaction mixture was heated at
80 �C. After 2.5 h, the reaction mixture was cooled
to room temperature and cold distilled water
(10.0 mL) was added. The resulting precipitate was
isolated by filtration to give a white solid. Yield:
0.17 g (97%). Mp: 219–221 �C. 1H NMR (300 MHz,
DMSO-d6): d 8.27 (d, 2H, J = 7.1 Hz, Ar-H), 7.69 (t,
1H, J = 7.3 Hz, Ar-H), 7.59 (dd, 2H, J = 7.3, 7.1 Hz,
Ar-H), 5.16 (s, 2H, CH2), 3.17 (s, 3H, Me). 13C
NMR (75 MHz, DMSO-d6): d 177.4 (PhCO), 168.7
(C-5), 150.8 (C-3), 133.7 (Ar-C), 132.8 (Ar-C), 129.4
(2C, Ar-C), 128.9 (2C, Ar-C), 114.8 (CN), 32.1
(CH2), 30.2 (Me). MS (EI): m/z 274 (M+, 14). Anal.
Calcd for C12H10N4O2S: C, 52.54; H, 3.67; N, 20.43;
S, 11.69. Found: C, 52.31; H, 3.74; N, 20.64; S. 11.88.

4.2.8. 4-Aminocarbohydroxymoylmethyl-5-benzoylimino-
2-methyl-3-oxo-2,3,4,5-tetrahydro-1,2,4-thiadiazole (17).
To a suspension of hydroxylamine hydrochloride
(0.12 g, 1.82 mmol) in DMSO (2.0 mL), triethylamine
(0.2 mL, 1.82 mmol) was added and the resulting salts
were filtered off and washed with THF. The filtrate
was concentrated in vacuo to remove THF and 16
(0.10 g, 0.36 mmol) was added to the DMSO solution
of hydroxylamine. The reaction mixture was stirred at
75 �C for 8 h and distilled water (4.0 mL) was added.
The resulting precipitate was isolated by filtration to
give a white solid. Yield: 95.7 mg (85%). Mp: 244–
246 �C. 1H NMR (300 MHz, DMSO-d6): d 9.23 (s,
1 H, OH), 8.18 (dd, 2H, J = 7.1, 1.4 Hz, Ar-H), 7.65
(t, 1H, J = 7.4 Hz, Ar-H), 7.55 (dd, 2H, J = 7.4,
7.1 Hz, Ar-H), 5.63 (br s, 2H, NH2), 4.65 (s, 2H,
CH2), 3.15 (s, 3H, Me). 13C NMR (75 MHz, DMSO-
d6): d 177.3 (PhCO), 169.6 (C-5), 151.9 (C-3), 146.7
(C@NOH), 133.3 (Ar-C), 133.2 (Ar-C), 129.2 (2C, Ar-
C), 128.8 (2C, Ar-C), 43.6 (CH2), 29.8 (Me). MS
(ESI): m/z 308 (M+H)+, 637 (2M+Na)+. Anal. Calcd
for C12H13N5O3S: C, 46.90; H, 4.26; N, 22.79; S,
10.43. Found: C, 47.03; H, 3.99; N, 22.58; S, 10.78.

4.2.9. 5-Benzoylimino-4-methoxycarbonimidoylmethyl-2-
methyl-3-oxo-2,3,4,5-tetrahydro-1,2,4-thiadiazole (18)
and 5-benzoylimino-4-hydroxycarbonimidoylmethyl-2-
methyl-3-oxo-2,3,4,5-tetrahydro-1,2,4-thiadiazole (19).
To a solution of 16 (75.0 mg, 0.27 mmol) in MeOH
(2.7 mL), MeONa was added (1.4 mg, 0.02 mmol) and
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the mixture was stirred at room temperature. After 4 h,
the product 18 was obtained as a precipitate, being iso-
lated by filtration to give a white solid. Sometimes,
traces of the hydrolysis by-product, 19, were identified.
Then, the purification employing silica gel column chro-
matography with ethyl acetate/hexane (2:1) as eluent,
produced the hydrolysis of 18 into 19 and allowed the
isolation of compound 19 as a white solid. First fraction,
yield of compound 18, 77.0 mg (92%). Mp: 182–184 �C.
Purity >99% (by HPLC). 1H NMR (300 MHz, CDCl3):
d 8.22 (d, 2H, J = 7.1 Hz, Ar-H), 7.56 (t, 1H, J = 7.3 Hz,
Ar-H), 7.46 (dd, 2H, J = 7.3, 7.1 Hz, Ar-H), 7.32 (br s,
1H, NH), 4.78 (s, 2H, CH2), 3.80 (s, 3H, OMe), 3.22
(s, 3H, Me). 13C NMR (75 MHz, CDCl3): d 178.6
(PhCO), 169.2 (C-5), 165.8 (C@NH), 151.8 (C-3),
133.3 (Ar-C), 133.0 (Ar-C), 129.7 (2C, Ar-C), 128.4
(2C, Ar-C), 53.8 (OMe), 46.1 (CH2), 30.0 (Me). MS
(ESI): m/z 307 (M+H)+, 329 (M+Na)+, 635
(2M+Na)+. Anal. Calcd for C13H14N4O3S: C, 50.97;
H, 4.61; N, 18.29; S, 10.47. Found: C, 50.69; H, 4.48;
N, 18.07; S, 10.75. Second fraction, yield compound
19, Mp: 277–279 �C. Purity >99% (by HPLC). 1H
NMR (300 MHz, DMSO-d6): d 8.17 (dd, 2H, J = 7.1,
1.3 Hz, Ar-H), 7.81 (br s, 1H, OH), 7.65 (t, 1H,
J = 7.3 Hz, Ar-H), 7.54 (dd, 2H, J = 7.3, 7.1 Hz, Ar-
H), 7.35 (br s, 1H, NH), 4.60 (s, 2H, CH2), 3.17 (s,
3H, Me). 13C NMR (75 MHz, DMSO-d6): d 177.2
(PhCO), 169.5 (C-5), 167.1 (C@NH), 152.0 (C-3),
133.4 (Ar-C), 133.1 (Ar-C), 129.2 (2C, Ar-C), 128.8
(2C, Ar-C), 46.4 (CH2), 29.9 (Me). MS (ESI): m/z 293
(M+H)+, 315 (M + Na)+, 607 (2M+Na)+.

4.2.10. 5-Benzoylimino-2-methyl-3-oxo-4-(N1-phenylamidi-
nomethyl)-2,3,4,5-tetrahydro-1,2,4-thiadiazole hydrochlo-
ride (20). To a solution of 18 (50.0 mg, 0.16 mmol) in
MeOH (1.6 mL), distilled aniline (15.0 lL, 0.17 mmol)
was added and the mixture was stirred at 40 �C. After
32 h, the reaction mixture was cooled to room tempera-
ture, saturated with dry hydrogen chloride gas and stirred
for a few minutes to remove the excess of hydrogen chlo-
ride gas. The solvent was evaporated under reduced pres-
sure and dichloromethane was added to the residue. The
resulting precipitate was isolated by filtration to give a
white solid. Yield: 4.0 mg (6%). 1H NMR (400 MHz,
DMSO-d6): d 11.73 (br s, 1H, PhNH), 9.77 (br s, 1H,
C@NH2Cl), 8.97 (br s, 1H, C@NH2Cl), 8.20 (d, 2H,
J = 7.2 Hz, Ar-H), 7.66 (t, 1H, J = 7.4 Hz, Ar-H), 7.57–
7.50 (m, 4H, Ar-H), 7.41 (t, 1H, J = 7.2 Hz, Ar-H),
7.27 (d, 2H, J = 7.6 Hz, Ar-H), 5.18 (s, 2H, CH2), 3.19
(s, 3H, Me). MS (EI): m/z 367 (M+�HCl, 12).

4.2.11. 5-Benzoylimino-4-hydrazinocarbonimidoylmethyl-
2-methyl-3-oxo-2,3,4,5-tetrahydro-1,2,4-thiadiazole (21).
To a solution of 16 (50.0 mg, 0.18 mmol) in MeOH
(1.8 mL), MeONa (9.8 mg, 0.18 mmol) was added and
the mixture was stirred for 2 h until the imido ester 18
was obtained. Hydrazine Hydrochloride (13.7 mg,
0.20 mmol) was added to the reaction mixture and stir-
red at 45 �C. After 72 h, the reaction mixture was cooled
to room temperature and the resulting precipitate was
filtered to give a white solid. Yield: 27.0 mg (48%). 1H
NMR (200 MHz, DMSO-d6): d 8.36 (br s, 1H, NH),
8.12 (br m, 2H, Ar-H), 7.64–7.49 (m, 3H, Ar-H), 6.27
(br s, 1H, C@NH), 5.75 (s, 2H, CH2), 5.40 (br s, 1H,
NH2), 4.59 (br s, 1H, NH2), 3.15 (s, 3H, Me). 13C
NMR (75 MHz, CDCl3): d 177.4 (PhCO), 169.5 (C-5),
150.2 (C-3), 149.7 (C@NH), 133.4 (Ar-C), 133.0 (Ar-
C), 129.2 (2C, Ar-C), 128.7 (2C, Ar-C), 55.1 (CH2),
30.1 (Me). MS (EI): m/z 306 (M+, 1).
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28, 1645–1649.
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