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we discovered a novel anti-EV71 target—mTOR for the first time, and optimized 

the structure of a potent anti-EV71 inhibitor, Torin2, to obtain potent activity and 

better water solubility anti-EV71 agents. 
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ABSTRACT 

Due to the limitations of existing anti-EV71 targets, we have been eager to discover a new 

anti-EV71 agent based on mTOR (the mammalian target of rapamycin), which is an important 

target for finding antiviral agents based on host cells. Torin2 is a second-generation ATP 

competitive mTOR kinase inhibitor (IC50=0.25 nM). Our research team tested the anti-EV71 

activity of Torin2 in vitro for the first time. The result showed that Torin2 had significant 

anti-EV71 activity (IC50=0.01 µM). In this study, thirty novel Torin2 derivatives were 

synthesized and evaluated for anti-EV71 activity. Among them, 11a, 11b, 11d, 11e and 11m 

displayed similar activity to Torin2. 11e displayed the most potent activity, with an IC50 value of 

0.027 µM, which was closest to Torin2, and displayed potent mTOR kinase inhibitory activity. A 

molecular modeling study showed that 11e interacted with Val2240 and Lys2187 via hydrogen 

bonds and had a good match with the receptor. Additionally, a mechanism study showed that 

most of the compounds had significant inhibition for the mTOR pathway substrates p70S6K and 

Akt. The water solubility test of compounds with potent activity revealed that 11a and 11m were 

improved by approximately 5-15-fold compared to Torin2. These data suggest that 11a and 11m 

may be potential candidates for anti-EV71 treatment.  

 

Keywords: mTOR; anti-EV71 Inhibitor.  
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1. Introduction 

Hand-foot-and-mouth disease (HFMD) is an infectious disease caused by a variety of 

enteroviruses (EVs) that can be transmitted by direct contact with the gastrointestinal and 

respiratory systems. According to WHO statistics, a wide range of HFMD epidemics have been 

reported in various regions of the Western Pacific since 2010 [1, 2]. 

Enterovirus 71 (EV71) is the main pathogen that causes HFMD. At present, there are no 

effective antiviral drugs and preventive vaccines against EV71, and most of them are still in the 

preclinical research stage. The idea of EV71 antiviral therapy is mainly divided into two aspects. 

On the one hand, it directly targets the EV71 infection process, and the targets are mainly EV71 

RNA-dependent RNA polymerase, VP1, and nonstructural proteins (2A, 2B, 2C, 3A, 3C and 

3D). There are also some agents that block the replication process of the virus by cutting off the 

EV71 replication-related signaling pathways, including small molecule agents, natural products, 

and nucleotide therapy, but most of them lack a rigorous clinical trial basis, and the mechanism 

and effect need to be further clarified. Additionally, the long-term effects of certain drugs may 

also trigger viral resistance mutations [3-11].  

Due to the limitations of existing anti-EV71 virus targets, it is of particular importance to find 

new targets for high-efficiency and low-toxicity against EV71. The mammalian target of 

rapamycin (mTOR) is a highly conserved serine/threonine protein kinase that belongs to the 

phosphoinositide 3-kinase (PI3K)-related protein kinase (PIKK) family [12, 13]. mTOR is a key 

element in the PI3K/Akt/mTOR signaling pathway that controls cell growth in response to 

energy, nutrients, growth factors and other environmental cues [14]. It exists in two functionally 

distinct protein complexes, mTORC1 and mTORC2. The mTORC1 complex is composed of 

Raptor, LST8, PRAS40 and Deptor, and is responsible for regulated protein synthesis through 

phosphorylation of S6K1 and 4EBP1. The mTORC2 complex consists of Rictor, LST8, SIN1, 

Deptor, and Protor, and regulates cell proliferation and survival through phosphorylation of 

Akt/PKB. After the virus attaches and enters the host cell, it activates the PI3K/Akt/mTOR 

signaling pathway, upregulates the phosphorylation level of downstream functional factors S6K1 

and 4EBP1 of mTOR, reduces the host cell apoptosis caused by a viral infection, and makes the 

virus continue to infect the cell [15]. A manuscript describing the mechanism of action studies is 

in preparation and will be published elsewhere. 
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In recent years, studies to inhibit viruses by inhibiting mTOR of host cells have been widely 

reported [16-28]. We collected the existing mTOR inhibitors in the preclinical research stage and 

tested their activities against the EV71 in vitro [29-41]. Our experimental data showed that 

Torin2, which is a mTORC1 and mTORC2 dual inhibitor [42], exhibits potent activity against 

EV71 with an IC50 of 0.01 µM. Although Torin2 showed high activity and suitable 

bioavailability (F=51%), its water solubility is poor. We measured its solubility in water as 1.29 

µg/ml which is almost insoluble according to Ch.P. (Pharmacopoeia of The People's Republic of 

China). Moreover, as water solubility is an important physicochemical property affecting the 

absorption of oral drugs, we considered to improve the water solubility of Torin2 through 

structural modification while maintaining high activity. To overcome these deficiencies, we 

initiated a medicinal chemistry campaign that resulted in the identification of a highly potent 

anti-EV71 agent targeting mTOR.  

 

2. Results and Discussion 

2.1. Chemistry 

Based on the early studies [42, 43] and the analysis of Torin2 and mTOR protein 

cocrystallization, we optimized the structure of Torin2 and obtained the preliminary structural 

formula (1’) of the designed compounds. The heterocycle A and B was an essential part of the 

activity, and it needed to contain an electron-rich structure to form a hydrogen bond with the 

amino acid residue; a quinoline ring was selected as the core structure. Ring C was mainly used 

to maintain its pharmacokinetic properties, and a 3-trifluoromethylphenyl was selected. Part D 

filled the hydrophobic pocket region of the acceptor, primarily a five or six-membered aromatic 

heterocyclic ring or a flexible long-chain substitution. Therefore, we decided to retain the 

quinoline ring structure of Part A and B and the 3-trifluoromethylphenyl structure of Part C. We 

redesigned Part D and Part E and investigated its effect on the structure-activity relationship. We 

designed series 1, 2 and 3 compounds and investigated the effects of the lactam structure, the 

oxazolone structure and the ketene side chain structure of Part E on the activity. For Part D, we 

chose aromatic rings, aromatic heterocycles, spiro rings, and chain substituents to investigate the 

effect of different conjugated systems and different spatially oriented substitutions on activity. 

 

Figure 1 
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6-bromo-4-((3-(trifluoromethyl)phenyl)amino)quinoline-3-carbaldehyde (2) was synthesized 

according to a method previously reported in the literature [42]. The Horner-Wadsworth 

-Emmons olefination reaction of 2 with ethyl 2-(diethoxyphosphoryl) acetate in the presence of 

potassium carbonate provided the intermediate 3 [44]. The Suzuki coupling reaction of 

intermediate 3 with different boronic esters in the presence of Pd(PPh3)4 and potassium carbonate 

provided the compounds 4a-4b [42]. Intermediate 3 reacted with different substituted aromatic 

amines via a coupling reaction to afford compounds 4c-4d [45]. (Scheme 1). 

 

Scheme 1 

 

The oxidation reaction of 2 with MCPBA in the presence of potassium carbonate provided the 

intermediate 5, which was treated with NaOH (1N) to give intermediate 6. Then, intermediate 6 

reacted with N,N'-Carbonyldiimidazole via a condensation reaction to afford intermediate 7. The 

Suzuki coupling reaction of intermediate 7 with different boronic esters in the presence of 

Pd(PPh3)4 and potassium carbonate provided the compounds 8a-8c [46]. Intermediate 7 reacted 

with different enamides or olefins via a coupling reaction to afford compounds 8d-8f [47]. 

(Scheme 2). 

 

Scheme 2 

 

Compound 2 reacted with 1-(triphenylphosphoranylidene)propan-2-one via a coupling 

reaction to afford intermediate 9. The Suzuki coupling reaction of intermediate 9 with different 

boronic esters in the presence of Pd(PPh3)4 and potassium carbonate provided the compounds 

10a-10e [48]. (Scheme 3). 

 

Scheme 3 

 

Finally, considering the excellent anti-EV71 activity of compound 4b, a series of analogues, 

11a-11o, were synthesized with different substitutions at the R4, R5 and R6-position via different 

substituted pyridyl derivatives, such as alkyl, methoxy, fluoro, alkylamide, arylamide-substituted 
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pyridine, other ring-substituted pyridine and quinolone to improve activity and pharmacokinetic 

properties [42-44]. (Scheme 4). 

 

Scheme 4 

 

2.2. Biology 

2.2.1. Anti-EV71 Activities and the SARs 

Starting from the lead-compound Torin2, 4a-4d, 8a-8f, and 10a-10e were synthesized, and 

their anti-EV71 activities were evaluated in RD cell lines. The results listed in Table 1 indicated 

that compared to the compounds of series 2 and series 3, the series 1 compounds generally have 

certain antiviral activities, of which compound 4b displayed closer anti-EV71 activity to Torin2.  

 

Table 1 

 

To search for potential compounds that display better activity and pharmacokinetic properties, 

the reactions of intermediate 3 with different substituted pyridine derivatives were performed to 

obtain compounds 11a-11o. In this series of analogues, we mainly investigated the effects of the 

location, size, electronegativity of different substitutions on pyridyl, and obtained some obvious 

SARs. The results listed in Table 2 indicated that the position and size of the substitution on 

pyridine moiety was crucial for anti-EV71 activity. 

Compound 11a, which contained -F at the C-2 (R4) position of the pyridine moiety displayed 

some higher anti-EV71 activity compared to compound 11b, which contains -F at the C-6 (R6) 

position. Compound 11c, which contained -OCH3 at the C-2 (R4) position, lost activity (IC50 > 

200 µM). Moving the -OCH3 group from the C-2 position to the C-6 position significantly 

increased the anti-EV71 activity (Compound 11d: IC50 values of 0.04 µM). Therefore, when the 

substitution was an electron-donating group and located at the C-6 position, it displayed better 

activity. 

On the other hand, as shown in compound 11e-11o, when the C-6 (R6) position was 

substituted by a N derivative, the anti-EV71 activity of the compound can be maintained. 

Compound 11e, 11f and 11h were all substituted by a linear amide group. Among them, the 
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propionamide-substituted compound 11e displayed the best activity (IC50 values of 0.027 µM) 

close to the reference compound Torin2, but the activity gradually decreased with extension of 

the length of the substitution. When a linear substitution (compound 11f) is replaced by a 

branched substitution (compound 11g), the activity significantly decreased. The activity of 

compound 11i, which was obtained by replacing the terminal substitution with a phenyl group, 

was lower than that of compound 11e. Therefore, the SARs in the amide substituted compound 

was that the chain substituted compounds were superior to the aromatic ring substituted 

compounds. The length of the chain substitution had a significant influence on the activity, the 

shorter the substitution length was, the better the activity. 

The compound 11k substituted with an aryloxyamide displayed moderate activity, and when 

the substitution was replaced by a benzyloxyamide (compound 11l), the activity was greatly 

lower. Similarly, when replaced with a t-butoxyamide group, the activity of compound 11j 

decreased.  

If R6 was a heterocyclic substitution, the compound 11m, having a piperazine substitution, 

displayed moderate activity, and if the piperazine of the compound 11m was replaced by a 

morphine (compound 11n) or a pyrrolidine (compound 11o), the activity would be significantly 

reduced. Therefore, the SARs of the cyclic substituted compound was that the activity of the 

six-membered ring-substituted compound was superior to that of the five-membered 

ring-substituted compound, and the activity of the double-N-ring-substituted compound was 

superior to that of the single-N-ring-substituted compound. The SARs of all the synthesized 

compounds are summarized in Figure 2. 

 

Table 2 

 

Figure 2 

 

2.2.2. In vitro mTOR Kinase Inhibitory Activity 

To elucidate whether the synthesized compounds target the mTOR kinase, the in vitro mTOR 

kinase inhibitory activities of 8a, 10a and 11e, which were the representative compounds of the 

respective series, were evaluated in regard to their relatively better anti-EV71 activities among 
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all the tested compounds. The inhibitory concentrations that inhibited the mTOR kinase by 50% 

(IC50) of compounds 8a, 10a, and 11e were 256.80, 7766, and 29.24 nM, respectively. Figure 3. 

 

Figure 3 

 

2.2.3. Molecular Modeling Study 

Compound 11e displayed the best anti-EV71 activity and effective mTOR kinase inhibition in 

the initial screening, and we then selected it as the optimized compound for the following 

studies. To explore the binding modes of target compounds with the ATP-binding site of mTOR, 

molecular docking simulation studies were carried out by using the Libdock module of the 

Discovery Studio 2.5. When docking compound 11e, Figure 4A shows that compound 11e could 

be docked in the ATP-binding site in a similar conformation to that of the reference compound 

Torin2 in the crystal structure (PDB ID code: 4JSV). Since numerous studies have suggested that 

the interaction to the hinge region is crucial to mTOR inhibitory activity, the interaction with 

Val2240 is essential to many kinds of mTOR inhibitors [49-56]. Compound 11e and Torin2 

could overlap in the position of the ring structure. The nitrogen atom on the quinoline group and 

the oxygen atom on the carbonyl group of 11e and Torin2, respectively, bond to Val2240 and 

Lys2187 via a hydrogen bond. Moreover, the structure of quinoline in 11e and Torin2 is fixed on 

the central hydrophobic region of the ATP-binding site with a π-π conjugation effect with 

Trp2239. To elucidate the SARs that were concluded from the anti-EV71 activities above, 

molecular docking was also performed to study the binding mode of some representative 

compounds. Comparing the docking results of 11e and 8a (the representative compounds of 

series 2), compound 8a lost the hydrogen bond interaction with the Lys2187 (Figure 4B), which 

played a vital role in binding with the ATP-binding site. Similarly, In comparison with 11e, the 

decrease in the anti-EV71 activity of 10a might be due to the loss of the hydrogen bond with 

Lys2187 (Figure 4C). Moreover, the structure of 10a was reversed, and the interaction between 

the ketene side chain and the hydrophobic cavity was decreased compared to 11e. In comparison 

with 11e, compounds 11d, 11h and 11m formed the same hydrogen bonds with Val2240 and 

Lys2187 in the ATP-binding site. This might explain why their activity was close to 11e. 

However, due to the increase in the size of the long chain substitution of the compound 11h 

(Figure 4E) and the piperazine substitution of the compound 11m (Figure 4F), it was more 
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easily exposed to the solvent environment. On the other hand, compared with 11e, we found the 

activity decline of the -OCH3 substituted 11d (Figure 4D) because the -OCH3 substitution was 

not enough to occupy the hydrophobic cavity. Therefore, the size of the substitution was critical 

for activity. 

 

Figure 4 

 

2.2.4. Cell-based Enzyme Inhibition Assay 

As reported in the references, ATP competitive inhibitors of mTOR inhibit both mTORC1 and 

mTORC2 complexes and have a greater inhibitory function against mTORC2 than mTORC1 

single inhibitors [57-59]. We performed a mTORC1 and mTORC2 cell-based assay to evaluate 

inhibitory activity and the molecular mechanism of the synthesized compounds in RD cells. 

mTORC1 activates the activity of P70S6K1 by phosphorylating the Thr389 site of P70S6K1, 

mTORC2 activates Akt by phosphorylating the Ser473 site of Akt. Therefore, the degree of 

phosphorylation of the Thr389 site of P70S6K1 and the Ser473 site of Akt in the test cells can be 

detected to reflect the inhibition of intracellular mTORC1 and mTORC2 by the compound. In 

this study, both p70 and Akt phosphorylation levels were evaluated in the mTORC1 and 

mTORC2 pathways of the RD cell line with the treatment of 20 µM of the compounds in the 

medium containing 167 nM of insulin for 2 h. Meanwhile, there were decreasing expression 

levels of p70 phosphorylation due to the Rapamycin (a mTORC1 single inhibitor) treatment 

under the same assay condition. The results are shown in Figure 5. Based on these observations, 

we concluded that compounds 4a, 4b, 4c, 4d, 11a, 11b, 11d, 11e, 11f, 11g, 11h, 11i, 11j, 11k, 

11l, 11m, 11n, and 11o could downregulate p70 phosphorylation expression levels. Compounds 

4b, 4c, 4d, 11a, 11b, 11d, 11e, 11f, 11g, 11h, 11i, 11j, 11k, 11l, 11n, and 11o significantly 

decreased the expression levels of phosphorylated Akt. The assay results showed that most series 

3 compounds had dual inhibition of the mTORC1 and mTORC2 pathways. However, 

compounds 8a and 8d of series 2 and compound 10a of series 3 can inhibit neither mTORC1 nor 

mTORC2, which was consistent with the lower mTOR kinase inhibitory activity of compounds 

8a and 10a. 

 

Figure 5 
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2.2.4. Absorption Properties and Water Solubility 

As the poor absorption properties of Torin2 are the main factors that restrict its druggability, 

the absorption properties of compounds 11a, 11b, 11d, 11e, and 11m, which displayed potent 

activity, attracted our attention and were predicted using software ADMET Predictor version 8.5 

(Simulations Plus Inc., Lancaster, CA, USA) [60]. The computer simulation results listed in 

Table 3 revealed that the absorption properties of compounds 11a, 11b, 11d, 11e and 11m were 

all in a reasonable range, which suggested that 11a, 11b, 11d, 11e and 11m were excellent 

candidates for potential anti-EV71 agents. 

 

Table 3 

 

As the poor absorption of Torin2 may be due to the limited water solubility [42]. We measured 

the water solubility of 11a, 11b, 11d, 11e and 11m. The results are listed in Table 4. The water 

solubility of 11b, 11d and 11e were worse than Torin2. However, compared to Torin2, the water 

solubility of 11a was improved by approximately 5-fold, of which 11m was improved by 

approximately 15-fold, which suggested that 11a and 11m may display better absorption 

properties than Torin2 for potential anti-EV71 agents and have the potential to become 

candidates with good druggability. 

 

Table 4 

 

3. Conclusions  

Due to the limitations of existing anti-EV71 targets, it is especially urgent to find new safe and 

efficient targets. The past few years witnessed the rapid development of the novel mTOR 

inhibitors as antiviral agents. Torin2 analogues are one of the most representative classes 

displaying mTOR kinase inhibition. On the basis of our previous work, we focused the study on 

the Torin2 derivatives derived from different core structures, including six-membered ring 

compounds (series 1), five-membered ring compounds (series 2) and open-loop compounds 

(series 3). The comprehensive and detailed SARs we acquired might provide some information 

for the design and synthesis of new anti-EV71 agents. In the present work, we evaluated the 
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inhibitory activities of the newly synthesized 30 compounds toward EV71 in RD cell lines. 

Notably, compound 11e displayed the most potent in vitro anti-EV71 activity. To elucidate the 

SARs, we conducted molecular docking studies on representative compounds. The docking 

results displayed that compound 11e showed the best anti-EV71 activity and effective mTOR 

kinase inhibition in the initial screening and interacted with Val2240 and Lys2187 via the 

hydrogen bond, with a good match with the receptor. We therefore conclude that the necessary 

hydrogen bonding and appropriate substitution size promoted the activity. To evaluate the 

molecular mechanism of the compounds of the examples in RD cells, we performed mTORC1 

and mTORC2 cell-based assays. Most compounds had dual inhibition of the mTORC1 and 

mTORC2 pathways. As water solubility is an important physicochemical property affecting the 

absorption of oral drugs, and water solubility is the main factor hindering Torin2’s druggability, 

we predicted the absorption properties and measured the water solubility of synthesized 

compounds with potent activity. The results revealed that the absorption properties of the 

compounds were all in a reasonable range, and compared to Torin2, the water solubility of 11a 

and 11m, which displayed similar anti-EV71 activity to Torin2, was improved by approximately 

5-15-fold. All together, we developed anti-EV71 agents based on the mTOR target for the first 

time, and found some potential candidates with better water solubility and potent activity. 

Research on these compounds is ongoing, and further efforts are in process to find excellent 

candidates for potential anti-EV71 agents. 

 

4. Experiment Section 

4.1. Chemistry  

All reagents and solvents were used as received from commercial sources. 1H-NMR and 
13C-NMR spectra were recorded at 400 MHz and 100 MHz on a JNM-ECA-400 instrument 

(JEOL Ltd., Tokyo, Japan) in DMSO-D6. Chemical shifts are expressed in δ (ppm), with 

tetramethylsilane (TMS) functioning as the internal reference. Coupling constants (J) were 

expressed in Hz. High-resolution mass spectra were obtained using a TOF G6230A LC/MS 

(Agilent Technologies, New York, NY, USA) with an ESI source. Melting points were 

determined using an RY-1 apparatus (Yutong Company, Shanghai, China). Reagents and 

solvents were commercially available without further purification. The 1H-NMR, 13C-NMR and 

HRMS spectra of the compounds in this article can be found in Supporting Information. 
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General Procedure for the Preparation of 4a-4d, 8a-8f, 10a-10e and 11a-11o. 

9-bromo-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (3) Intermediate 

2 was synthesized according to a method previously reported in the literature [42]. To a solution 

of compound 2 (3.95 g, 10 mmol), K2CO3 (4.15 g, 30 mmol) and ethyl 2-(diethoxyphosphoryl) 

acetate (6.73 g, 30 mmol) in dry EtOH was added. The resulting mixture was heated to 100°C 

for 12 h before cooling to room temperature. Upon removal of the solvents under a vacuum, the 

residue was diluted with water followed by extraction with EtOAc. Purification of the residue by 

ISCO (hexanes/EtOAc 5:1) provided compound 3, a yellow solid. (2.87 g, 68.6% yield). 1H 

NMR (400 MHz, DMSO-D6)  δ(ppm): 9.19 (s, 1H), 8.34 (d, J = 9.5 Hz, 1H), 8.07 (dd, J = 9.3, 

8.8 Hz, 2H), 7.95 (dd, J = 17.2, 8.4 Hz, 2H), 7.86 – 7.79 (m, 2H), 6.98 (d, J = 9.5 Hz, 1H), 6.58 

(d, J = 2.0 Hz, 1H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 162.92, 152.05, 148.04, 148.02, 

141.58, 141.26, 140.64, 134.03, 133.15, 132.87, 132.02, 131.70, 131.37, 127.70, 126.83, 122.86, 

119.21, 118.84, 114.21. HR-MS (ESI) m/z: calcd. for C19H10BrF3N2O [M + H]+: 418.9929, 

found: 419.0001. Mp 192–195 °C. 

9-(2-oxoindolin-5-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (4a) 

To a solution of compound 3 (4.18 g, 10 mmol) in 1,4-dioxane at room temperature, we 

subsequently added Pd(PPh3)4 (1.16 g, 1 mmol), K2CO3 (2.76 g, 20 mmol), and (2-oxoindolin-5 

-yl)boronic acid (2.12 g, 12 mmol). After degassing, the resulting mixture was heated to 80 °C 

for 4 h before cooling to room temperature. The solution was extracted with EtOAc. The organic 

layer was washed with water and brine, dried (MgSO4), filtered, and evaporated to dryness as a 

yellow solid. (3.89 g, 82.6% yield) 1H NMR (400 MHz, DMSO-D6) δ(ppm): 10.53 (s, 1H), 9.15 

(s, 1H), 8.34 (d, J = 9.5 Hz, 1H), 8.13 (dd, J = 25.1, 8.2 Hz, 3H), 8.05 – 7.87 (m, 2H), 7.83 (d, J 

= 7.9 Hz, 1H), 7.15 (d, J = 7.7 Hz, 1H), 6.98 (dd, J = 22.7, 5.5 Hz, 2H), 6.64 – 6.47 (m, 2H), 

3.51 (s, 2H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 177.18, 163.10, 151.41, 148.69, 144.94, 

142.53, 141.91, 140.81, 139.01, 137.60, 133.90, 132.15, 131.99, 131.69, 131.42, 129.27, 127.01, 

126.31, 125.01, 123.10, 122.90, 122.28, 120.36, 117.81, 114.09, 107.60, 36.04. HR-MS (ESI) 

m/z: calcd. for C27H16F3N3O2 [M + H]+: 472.1195, found: 472.1268. Mp 281–282 °C. 

9-(6-(dimethylamino)pyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(

1H)-one (4b) The title compound was obtained similarly to 4a. The boronic acid was replaced 

with (6-(dimethylamino)pyridin-3-yl)boronic acid. (yellow solid, yield: 82.4%). 1H NMR (400 

MHz, DMSO-D6) δ(ppm): 9.10 (s, 1H), 8.32 (d, J = 9.5 Hz, 1H), 8.13 (s, 1H), 8.06 (dd, J = 8.1, 
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3.5 Hz, 2H), 8.00 (d, J = 2.4 Hz, 1H), 7.96 (dd, J = 8.7, 1.8 Hz, 1H), 7.90 (t, J = 7.9 Hz, 1H), 

7.80 (d, J = 8.0 Hz, 1H), 7.06 (dd, J = 8.9, 2.6 Hz, 1H), 6.93 (t, J = 5.6 Hz, 2H), 6.57 (d, J = 8.9 

Hz, 1H), 3.05 (s, 6H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 163.12, 158.83, 150.85, 148.29, 

146.25, 142.17, 141.98, 140.82, 135.40, 135.28, 133.89, 132.03, 131.59, 131.39, 131.26, 128.31, 

127.14, 126.64, 122.30, 122.18, 121.11, 117.99, 114.08, 105.82, 38.10. HR-MS (ESI) m/z: calcd. 

for C26H19F3N4O [M + H]+: 461.1511, found: 461.1585. Mp 220–222 °C. 

General procedure for the preparation of 9-((3-aminophenyl)amino)-1-(3-(trifluoromethyl) 

phenyl)benzo[h][1,6]naphthyridin-2(1H)-one(4c) To a solution of compound 3 (4.18 g, 10 

mmol) in 1,4-dioxane at room temperature, we subsequently added Pd(dba)3 (0.23 g, 0.25 mmol), 

CsCO3 (4.88 g, 15 mmol), 1,3-phenylenediamineand (1.62 g, 15 mmol) and 4,5-Bis 

(diphenylphosphino)-9,9-dimethylxanthene (0.14 g, 0.25 mmol). The resulting mixture was 

heated to 100 °C for 2 h under a N2 atmosphere. The solution was extracted with EtOAc. The 

organic layer was washed with water and brine, dried (MgSO4), filtered, and evaporated to 

dryness as a yellow solid. (3.52 g, 78.8% yield). 1H NMR (400 MHz, DMSO-D6) δ(ppm): 8.85 

(s, 1H), 8.22 (d, J = 9.5 Hz, 1H), 7.94 (s, 1H), 7.86 (d, J = 9.0 Hz, 1H), 7.78 (d, J = 8.1 Hz, 1H), 

7.63 (dd, J = 14.4, 6.4 Hz, 2H), 7.53 (d, J = 7.9 Hz, 1H), 7.29 (dd, J = 9.0, 2.4 Hz, 1H), 6.89 – 

6.80 (m, 2H), 6.43 (d, J = 2.3 Hz, 1H), 6.21 (dd, J = 7.9, 1.3 Hz, 1H), 6.07 (t, J = 2.0 Hz, 1H), 

5.87 – 5.75 (m, 1H), 5.15 (s, 2H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 163.08, 149.72, 

147.18, 144.29, 142.66, 142.42, 140.96, 140.81, 140.76, 133.62, 131.57, 131.43, 130.78, 130.47, 

130.08, 125.39, 123.80, 122.80, 121.75, 118.98, 114.25, 108.69, 107.17, 105.64, 105.16. HR-MS 

(ESI) m/z: calcd. for C25H17F3N4O [M + H]+: 447.1354, found: 447.1427. Mp 217–218 °C. 

9-((6-aminopyridin-2-yl)amino)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1

H)-one (4d) The title compound was obtained similarly to 4c. 1,3-phenylenediamineand was 

replaced with pyridine-2,6-diamine. (yellow solid, yield: 81.3%). 1H NMR (400 MHz, 

DMSO-D6) δ(ppm): 8.91 (s, 1H), 8.50 (s, 1H), 8.25 (d, J = 9.5 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 

7.87 (d, J = 9.0 Hz, 1H), 7.66 (dt, J = 13.4, 7.8 Hz, 3H), 7.52 (dd, J = 9.0, 2.3 Hz, 1H), 7.22 – 

7.11 (m, 2H), 6.86 (d, J = 9.4 Hz, 1H), 5.91 (d, J = 7.9 Hz, 1H), 5.71 (t, J = 14.5 Hz, 3H). 13C 

NMR (101 MHz, DMSO-D6) δ(ppm): 163.02, 148.31, 141.68, 141.18, 140.71, 134.17, 131.40, 

130.91, 130.87, 130.58, 125.83, 125.80, 125.66, 125.63, 125.51, 125.11, 122.80, 122.05, 120.74, 

118.47, 114.24, 114.22, 100.00, 97.26. HR-MS (ESI) m/z: calcd. for C24H16F3N5O [M + H]+: 

448.1307, found: 448.1380. Mp 259–261 °C. 
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6-bromo-4-((3-(trifluoromethyl)phenyl)amino)quinolin-3-yl formate (5) To a solution of 

compound 2 (3.95 g, 10 mmol) in DCM at room temperature, we added 3-chloroperoxybenzoic 

acid (3.45 g, 20 mmol). The resulting mixture was stirred at room temperature for 1 h. Upon 

removal of the solvents, the residue was subjected to column purification (DCM/MeOH 10:1) to 

furnish the desired compound 5 as a yellow solid. (3.25 g, 79.2% yield). 1H NMR (400 MHz, 

DMSO-D6) δ(ppm): 9.07 (s, 1H), 8.85 (s, 1H), 8.03 – 7.87 (m, 3H), 7.79 – 7.75 (m, 1H), 7.70 

(ddd, J = 4.5, 2.1, 1.0 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.40 (dd, J = 23.0, 6.1 Hz, 1H). 13C NMR 

(101 MHz, DMSO-D6) δ(ppm): 166.63, 163.07, 148.84, 146.18, 142.35, 141.86, 133.26, 132.09, 

131.44, 131.20, 130.20, 129.37, 128.46, 125.23, 124.19, 123.54, 122.24. HR-MS (ESI) m/z: 

calcd. for C17H10BrF3N2O2 [M + H]+: 410.9878, found: 410.9950. Mp 176–179 °C. 

6-bromo-4-((3-(trifluoromethyl)phenyl)amino)quinolin-3-ol (6) A solution of compound 5 

(4.10 g, 10 mmol) in NaOH (1 N) at room temperature was heated to 50 °C for 4 h. After the 

mixture was cooled to room temperature, a solution of AcOH (1 N) was added to neutralize the 

solution followed by dilution with water and extraction with EtOAc. After the organic layer was 

dried with Na2SO4, the solvents were removed and the residue was purified by ISCO 

(hexanes/EtOAc 5:1) to furnish compound 6 as a yellow solid. (3.27 g, 85.6% yield). 1H NMR 

(400 MHz, DMSO-D6) δ(ppm): 10.47 (s, 1H), 8.68 (d, J = 22.9 Hz, 2H), 8.25 – 8.14 (m, 1H), 

7.93 – 7.85 (m, 1H), 7.67 (dd, J = 8.9, 2.2 Hz, 1H), 7.37 (t, J = 7.9 Hz, 1H), 7.07 (d, J = 7.7 Hz, 

1H), 6.98 (s, 1H), 6.92 – 6.83 (m, 1H). 13C NMR (101 MHz, DMSO-D6) δ(ppm):145.27, 144.95, 

144.83, 142.65, 131.99, 130.00, 129.71, 127.31, 126.45, 126.30, 124.90, 123.60, 120.17, 119.17, 

115.00, 111.79. HR-MS (ESI) m/z: calcd. for C16H10BrF3N2O [M + H]+: 382.9929, found: 

383.0001. Mp 184–186 °C. 

8-bromo-1-(3-(trifluoromethyl)phenyl)oxazolo[5,4-c]quinolin-2(1H)-one (7) To a solution of 

compound 6 (3.82 g, 10 mmol) in dry THF at room temperature, we added 

N,N'-Carbonyldiimidazole (2.43 g, 15 mmol). The resulting mixture was stirred at room 

temperature for 4 h. Upon removal of the solvents, the residue was subjected to column 

purification (DCM/MeOH 10:1) to furnish the desired compound 7 as a yellow solid. (3.10 g, 

75.9% yield). 1H NMR (400 MHz, DMSO-D6) δ(ppm): 9.18 (s, 1H), 8.31 (d, J = 1.9 Hz, 1H), 

8.15 (ddd, J = 8.6, 1.7, 0.6 Hz, 2H), 8.07 – 7.99 (m, 2H), 7.83 (dd, J = 9.1, 2.2 Hz, 1H), 7.65 (s, 

1H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 153.07, 144.44, 137.15, 135.69, 135.17, 134.88, 
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133.47, 133.16, 132.17, 132.05, 131.92, 131.07, 127.84, 126.17, 122.60, 120.55, 116.46. HR-MS 

(ESI) m/z: calcd. for C17H8BrF3N2O2 [M + H]+: 408.9721, found: 408.9793. Mp 193–195 °C. 

8-(6-methylpyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)oxazolo[5,4-c]quinolin-2(1H)-one (8a) 

To a solution of compound 7 (4.08 g, 10 mol) in 1,4-dioxane at room temperature, we 

subsequently added Pd(PPh3)4 (1.16 g, 1 mmol), K2CO3 (2.76 g, 20 mmol), and 

(6-methylpyridin-3-yl)boronic acid (1.64 g, 12 mmol). After degassing, the resulting mixture 

was heated to 80 °C for 4 h before cooling to room temperature. The solution was extracted with 

EtOAc. The organic layer was washed with water and brine, dried (MgSO4), filtered, and 

evaporated to dryness. As a yellow solid (3.59 g, 85.3% yield). 1H-NMR (400 MHz, DMSO-D6) 

δ (ppm): 9.36 (s, 1H), 8.82 (d, J = 2.0 Hz, 1H), 8.42 – 8.35 (m, 2H), 8.28 (ddd, J = 15.9, 8.6, 4.5 

Hz, 3H), 8.12 (d, J = 8.0 Hz, 1H), 8.03 (t, J = 7.9 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 

1.8 Hz, 1H), 2.77 (s, 3H). 13C NMR (101 MHz, DMSO-D6) δ (ppm): 154.29, 153.07, 143.94, 

142.35, 140.01, 137.09, 135.01, 134.77, 133.92, 133.47, 133.21, 132.16, 131.37, 131.04, 130.01, 

129.06, 128.13, 127.94, 126.13, 125.40, 119.51, 115.11, 19.81. HR-MS (ESI) m/z: calcd. for 

C23H14F3N3O2 [M + H]+: 422.1038, found: 422.1111. Mp 299–300 °C. 

8-(5-methoxypyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)oxazolo[5,4-c]quinolin-2(1H)-one 

(8b) The title compound was obtained similarly to 8a. The boronic acid was replaced with 

(5-methoxypyridin-3-yl)boronic acid. (yellow solid, yield: 83.1%). 1H-NMR (400 MHz, 

DMSO-D6) δ(ppm): 9.17 (s, 1H), 8.38 (s, 1H), 8.28 (d, J = 2.7 Hz, 1H), 8.22 (d, J = 8.9 Hz, 2H), 

8.18 – 8.11 (m, 3H), 8.01 (t, J = 7.9 Hz, 1H), 7.32 – 7.29 (m, 1H), 7.15 (d, J = 1.8 Hz, 1H), 3.84 

(s, 3H). 13C NMR (101 MHz, DMSO-D6) δ (ppm): 156.10, 153.20, 145.50, 139.82, 138.08, 

137.03, 135.46, 135.28, 134.94, 133.72, 132.94, 132.12, 131.75, 131.42, 131.10, 128.13, 127.75, 

126.40, 125.41, 118.26, 118.16, 115.49, 56.08. HR-MS (ESI) m/z: calcd. for C23H14F3N3O3 [M + 

H]+: 438.0987, found: 438.1060. Mp 257–258 °C. 

8-(quinolin-3-yl)-1-(3-(trifluoromethyl)phenyl)oxazolo[5,4-c]quinolin-2(1H)-one (8c) The title 

compound was obtained similarly to 8a. The boronic acid was replaced with quinolin-3 

-ylboronic acid. (gray solid, yield: 82.2%). 1H-NMR (400 MHz, DMSO-D6) δ (ppm): 9.19 (s, 

1H), 8.85 (d, J = 2.4 Hz, 1H), 8.44 – 8.40 (m, 2H), 8.30 – 8.23 (m, 3H), 8.19 (d, J = 8.0 Hz, 1H), 

8.08 – 8.02 (m, 2H), 7.96 (d, J = 7.3 Hz, 1H), 7.83 – 7.78 (m, 1H), 7.71 – 7.67 (m, 1H), 7.29 (s, 

1H).13C-NMR (101 MHz, DMSO-D6) δ (ppm): 153.19, 148.99, 147.48, 145.45, 137.09, 135.53, 

135.29, 134.94, 133.77, 132.96, 132.21, 131.94, 131.84, 131.41, 131.09, 130.70, 129.23, 128.77, 
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128.14, 128.03, 127.87, 127.80, 126.37, 125.47, 118.32, 115.62. HR-MS (ESI) m/z: calcd. for 

C26H14F3N3O2 [M + H]+: 458.1038, found: 458.1111. Mp 242–244 °C. 

(E)-1-(3-(2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2-dihydrooxazolo[5,4-c]quinolin-8-yl)allyl)ur

ea (8d) To a solution of compound 7 (4.08 g, 10 mmol) in DMF at room temperature, we added 

Pd(OAc)2 (0.45 g, 2 mmol), 1-allylurea (2.00 g, 20 mmol), Tri(o-tolyl)phosphine (1.22 g, 4 

mmol) and Et3N(10.12 g, 100 mmol). The resulting mixture was heated to 100 °C for 2 h under 

N2 atmosphere. The residue was diluted with water followed by extraction with EtOAc. The 

organic layer was washed with water and brine, dried (MgSO4), filtered, and evaporated to 

dryness, yellow solid (3.64g, 84.9% yield). 1H NMR (400 MHz, DMSO-D6) δ(ppm): 9.06 (s, 

1H), 8.30 (s, 1H), 8.17 – 8.09 (m, 2H), 8.05 – 7.96 (m, 2H), 7.86 (d, J = 9.1 Hz, 1H), 6.78 (s, 

1H), 6.25 – 6.11 (m, 3H), 5.51 (s, 2H), 3.70 (t, J = 5.4 Hz, 2H). 13C NMR (101 MHz, DMSO-D6) 

δ(ppm): 158.96, 153.22, 145.27, 136.96, 135.64, 135.22, 133.80, 133.40, 132.65, 132.21, 131.99, 

131.07, 130.65, 128.48, 127.67, 126.85, 126.22, 117.52, 115.55, 115.17, 113.65. HR-MS (ESI) 

m/z: calcd. for C21H15F3N4O3 [M + H]+: 429.1096, found: 429.1169. Mp 158–160 °C. 

(E)-4-(2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2-dihydrooxazolo[5,4-c]quinolin-8-yl)but-3-enen

itrile (8e) The title compound was obtained similarly to 8d. 1-allylurea was replaced with 

acrylonitrile. (yellow solid, yield: 82.7%). 1H NMR (400 MHz, DMSO-D6) δ(ppm): 9.16 (d, J = 

3.0 Hz, 1H), 8.25 (s, 1H), 8.12 (t, J = 8.1 Hz, 3H), 8.05 (dd, J = 9.1, 1.7 Hz, 1H), 8.01 – 7.95 (m, 

1H), 7.51 (d, J = 16.6 Hz, 1H), 7.09 (s, 1H), 6.42 (d, J = 16.6 Hz, 1H). 13C NMR (101 MHz, 

DMSO-D6) δ(ppm): 153.18, 149.82, 148.24, 146.64, 137.23, 135.43, 134.83, 133.26, 133.03, 

132.43, 132.08, 131.74, 128.30, 127.76, 125.87, 125.50, 122.53, 118.88, 115.22, 99.21. HR-MS 

(ESI) m/z: calcd. for C20H10F3N3O2 [M + H]+: 382.0725, found: 382.0798. Mp 235–237 °C. 

methyl(E)-3-(2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2-dihydrooxazolo[5,4-c]quinolin-8-yl)acr

ylate (8f) The title compound was obtained similarly to 8d. 1-allylurea was replaced with methyl 

acrylate. (yellow solid, yield: 82.3%). 1H NMR (400 MHz, DMSO-D6) δ(ppm): 9.17 (d, J = 11.8 

Hz, 1H), 8.31 (s, 1H), 8.15 (d, J = 8.0 Hz, 2H), 8.11 (s, 2H), 8.01 (t, J = 7.9 Hz, 1H), 7.37 (d, J = 

16.0 Hz, 1H), 7.08 (s, 1H), 6.50 (d, J = 16.0 Hz, 1H), 3.71 (s, 3H). 13C NMR (101 MHz, 

DMSO-D6) δ(ppm): 166.73, 153.17, 146.48, 143.43, 137.17, 135.26, 135.06, 133.39, 133.14, 

132.67, 132.22, 132.14, 132.08, 131.63, 129.21, 127.75, 127.13, 121.89, 120.20, 115.33, 52.25. 

HR-MS (ESI) m/z: calcd. for C21H13F3N2O4 [M + H]+: 415.0827, found: 415.0900. Mp 243–245 

°C. 
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(E)-4-(6-bromo-4-((3-(trifluoromethyl)phenyl)amino)quinolin-3-yl)but-3-en-2-one (9) To a 

solution of compound 2 (3.95 g, 10 mmol) in DMSO, then 

1-(triphenylphosphoranylidene)propan-2-one (3.18 g, 10 mmol) was added. The resulting 

mixture was heated to 120 °C for 4 h before cooling to room temperature. The residue was 

diluted with water followed by extraction with EtOAc. Purification of the residue by ISCO 

(hexanes/EtOAc 5:1) provided compound 9 as a yellow solid. (3.79 g, 87.3% yield). 1H NMR 

(400 MHz, DMSO-D6) δ(ppm): 9.46 (s, 1H), 9.13 (s, 1H), 8.47 (d, J = 1.9 Hz, 1H), 7.94 (dt, J = 

8.9, 5.4 Hz, 2H), 7.45 (t, J = 8.3 Hz, 1H), 7.35 (d, J = 16.5 Hz, 1H), 7.23 (d, J = 7.7 Hz, 1H), 

7.12 (d, J = 5.7 Hz, 2H), 6.89 (d, J = 16.5 Hz, 1H), 1.98 (s, 3H). 13C NMR (101 MHz, 

DMSO-D6) δ(ppm): 198.15, 151.28, 148.24, 145.30, 144.10, 138.46, 134.00, 132.24, 132.07, 

131.98, 130.76, 129.35, 129.24, 128.30, 126.43, 124.78, 121.43, 120.32, 118.81, 27.19. HR-MS 

(ESI) m/z: calcd. for C20H14BrF3N2O [M + H]+: 435.0242, found: 435.0313. Mp 115–119 °C. 

(E)-4-(6-(6-aminopyridin-3-yl)-4-((3-(trifluoromethyl)phenyl)amino)quinolin-3-yl) but-3 

-en-2-one(10a) To a solution of compound 9 (4.34 g, 10 mmol) in 1,4-dioxane at room 

temperature, Pd(PPh3)4 (1.16 g, 1 mmol), K2CO3 (2.76 g, 20 mmol), and (4-aminophenyl) 

boronic acid (1.64 g, 12 mmol) were subsequently added. After degassing, the resulting mixture 

was heated to 80 °C for 4 h before cooling to room temperature. The solution was extracted with 

EtOAc. The organic layer was washed with water and brine, dried (MgSO4), filtered, and 

evaporated to dryness as a yellow solid (3.69 g, 82.6% yield). 1H-NMR (400 MHz, DMSO-D6) δ 

(ppm): 9.52 (s, 1H), 9.12 (s, 1H), 8.43 (d, J = 1.6 Hz, 1H), 8.10 (d, J = 8.7 Hz, 1H), 8.02 (dd, J = 

8.7, 1.8 Hz, 1H), 7.48 (d, J = 4.1 Hz, 1H), 7.45 (d, J = 4.4 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H), 7.19 

– 7.14 (m, 3H), 6.98 (d, J = 1.7 Hz, 1H), 6.94 – 6.88 (m, 2H), 6.65 (dd, J = 8.0, 1.4 Hz, 1H), 5.24 

(s, 2H), 2.03 (s, 3H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 198.13, 150.31, 149.74, 148.90, 

145.80, 145.10, 140.66, 139.75, 138.83, 130.73, 130.46, 130.12, 130.04, 127.79, 125.98, 123.54, 

121.33, 118.50, 117.20, 115.32, 114.16, 113.82, 112.95, 27.17. HR-MS (ESI) m/z: calcd. for 

C26H20F3N3O [M + H]+: 448.1558, found: 448.1632. Mp 183–185 °C. 

(E)-4-(6-(3-aminophenyl)-4-((3-(trifluoromethyl)phenyl)amino)quinolin-3-yl)but-3-en-2-one(1

0b) The title compound was obtained similarly to 10a. The boronic acid was replaced with 

(3-aminophenyl)boronic acid. (yellow solid, yield: 84.7%). 1H-NMR (400 MHz, DMSO-D6) 

δ(ppm): 9.49 (s, 1H), 9.10 (s, 1H), 8.39 (s, 1H), 8.08 (d, J = 8.7 Hz, 1H), 8.00 (dd, J = 8.7, 1.5 

Hz, 1H), 7.45 (dd, J = 15.8, 7.0 Hz, 2H), 7.22 (d, J = 7.7 Hz, 1H), 7.13 (dd, J = 7.9, 4.5 Hz, 3H), 
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6.90 (dd, J = 24.7, 8.4 Hz, 3H), 6.61 (d, J = 6.7 Hz, 1H), 5.22 (s, 2H), 2.01 (s, 3H). 13C NMR 

(101 MHz, DMSO-D6) δ(ppm): 198.13, 150.33, 149.75, 148.88, 145.79, 145.10, 140.64, 139.75, 

138.80, 130.76, 130.46, 130.14, 130.04, 128.69, 127.82, 125.98, 123.54, 123.27, 121.31, 118.52, 

117.21, 115.28, 114.14, 113.81, 112.92, 27.21. HR-MS (ESI) m/z: calcd. for C26H20F3N3O [M + 

H]+: 448.1558, found: 448.1630. Mp 184–186 °C. 

(E)-4-(6-(5-methoxypyridin-3-yl)-4-((3-(trifluoromethyl)phenyl)amino)quinolin-3-yl)but-3-en-

2-one (10c) The title compound was obtained similarly to 10a. The boronic acid was replaced 

with (5-methoxypyridin-3-yl)boronic acid. (green solid, yield: 88.5%). 1H-NMR (400 MHz, 

DMSO-D6) δ(ppm): 9.51 (s, 1H), 9.12 (s, 1H), 8.58 (dd, J = 25.3, 1.4 Hz, 2H), 8.35 (d, J = 2.7 

Hz, 1H), 8.20 (dd, J = 8.7, 1.7 Hz, 1H), 8.12 (d, J = 8.7 Hz, 1H), 7.74 – 7.65 (m, 1H), 7.53 – 

7.38 (m, 2H), 7.26 (d, J = 7.7 Hz, 1H), 7.18 (d, J = 6.9 Hz, 2H), 6.89 (d, J = 16.4 Hz, 1H), 3.92 

(s, 3H), 2.01 (s, 3H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 198.13, 156.14, 151.01, 149.16, 

145.48, 145.31, 140.70, 138.79, 137.25, 136.10, 135.29, 130.75, 130.44, 130.06, 127.88, 123.23, 

123.16, 122.46, 122.03, 119.22, 118.13, 117.66, 114.50, 114.47, 56.25, 27.17. HR-MS (ESI) 

m/z: calcd. for C26H20F3N3O2 [M + H]+: 464.1508, found: 464.1580. Mp 164–167 °C. 

(E)-4-(4'-((3-(trifluoromethyl)phenyl)amino)-[3,6'-biquinolin]-3'-yl)but-3-en-2-one (10d) The 

title compound was obtained similarly to 10a. The boronic acid was replaced with 

quinolin-3-ylboronic acid. (yellow solid, yield: 90.9%). 1H-NMR (400 MHz, DMSO-D6) 

δ(ppm): 9.57 (s, 1H), 9.38 (d, J = 2.1 Hz, 1H), 9.13 (s, 1H), 8.75 (d, J = 7.3 Hz, 2H), 8.34 (d, J = 

8.6 Hz, 1H), 8.18 (d, J = 8.7 Hz, 1H), 8.13 – 8.02 (m, 2H), 7.81 (t, J = 7.7 Hz, 1H), 7.68 (t, J = 

7.5 Hz, 1H), 7.54 – 7.35 (m, 2H), 7.28 (d, J = 7.8 Hz, 1H), 7.22 (d, J = 1.9 Hz, 2H), 6.89 (d, J = 

16.4 Hz, 1H), 2.00 (s, 3H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 198.12, 151.01, 150.08, 

149.07, 147.47, 145.48, 145.40, 138.91, 135.49, 133.87, 132.53, 130.92, 130.78, 130.39, 130.14, 

129.26, 128.95, 128.08, 127.85, 127.77, 125.96, 123.35, 123.25, 122.47, 122.14, 118.04, 117.71, 

114.58, 27.12. HR-MS (ESI) m/z: calcd. for C29H20F3N3O [M + H]+: 484.1558, found: 484.1631. 

Mp 173–176 °C. 

(E)-4-(6-(6-fluoropyridin-3-yl)-4-((3-(trifluoromethyl)phenyl)amino)quinolin-3-yl)but-3-en-2-

one (10e) The title compound was obtained similarly to 10a. The boronic acid was replaced with 

(6-fluoropyridin-3-yl)boronic acid. (yellow solid, yield: 89.3%). 1H-NMR (400 MHz, 

DMSO-D6) δ(ppm): 10.22 (s, 1H), 9.08 (s, 1H), 8.87 – 8.71 (m, 2H), 8.51 (td, J = 8.3, 2.7 Hz, 

1H), 8.24 (dd, J = 8.8, 1.8 Hz, 1H), 8.13 (d, J = 8.7 Hz, 1H), 7.54 (t, J = 7.8 Hz, 1H), 7.45 – 7.26 
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(m, 4H), 7.20 (d, J = 16.4 Hz, 1H), 6.79 (d, J = 16.4 Hz, 1H), 1.92 (d, J = 3.9 Hz, 3H). 13C NMR 

(101 MHz, DMSO-D6) δ(ppm): 197.97, 162.22, 149.07, 147.65, 146.57, 146.42, 144.28, 141.27, 

141.19, 138.71, 134.70, 133.55, 130.74, 128.03, 125.85, 123.76, 123.14, 122.56, 122.46, 119.10, 

116.46, 116.28, 110.51, 110.14, 26.83. HR-MS (ESI) m/z: calcd. for C25H17F4N3O [M + H]+: 

452.1308, found: 452.1381. Mp 133–134 °C. 

9-(2-fluoropyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one 

(11a) The title compound was obtained similarly to 4a. The boronic acid was replaced with 

(2-fluoropyridin-3-yl)boronic acid. (white solid, yield: 89.9%). 1H NMR (400 MHz, DMSO-D6) 

δ(ppm): 9.22 (s, 1H), 8.36 (d, J = 9.5 Hz, 1H), 8.29 – 8.22 (m, 1H), 8.16 (d, J = 8.7 Hz, 1H), 

8.09 (s, 1H), 7.99 – 7.89 (m, 2H), 7.89 – 7.77 (m, 2H), 7.53 – 7.45 (m, 1H), 7.44 – 7.35 (m, 1H), 

6.98 (dd, J = 9.5, 3.8 Hz, 1H), 6.89 (d, J = 1.7 Hz, 1H). 13C NMR (101 MHz, DMSO-D6) 

δ(ppm): 163.07, 160.88, 158.52, 152.23, 148.89, 147.72, 147.57, 142.59, 141.67, 141.39, 140.79, 

133.83, 132.02, 131.21, 130.99, 130.65, 126.98, 126.59, 125.99, 122.94, 122.48, 122.26, 117.64, 

114.15. HR-MS (ESI) m/z: calcd. for C24H13F4N3O [M + H]+: 436.0995, found: 436.1068. Mp 

158–161 °C. 

9-(6-fluoropyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one 

(11b) The title compound was obtained similarly to 4a. The boronic acid was replaced with 

(6-fluoropyridin-3-yl)boronic acid. (white solid, yield: 87.6%). 1H NMR (400 MHz, DMSO-D6) 

δ(ppm): 9.19 (s, 1H), 8.36 (d, J = 9.5 Hz, 1H), 8.15 (d, J = 8.7 Hz, 2H), 8.09 – 8.00 (m, 2H), 

7.97 – 7.86 (m, 2H), 7.84 (d, J = 8.0 Hz, 1H), 7.69 (td, J = 8.2, 2.7 Hz, 1H), 7.23 (dd, J = 8.5, 2.8 

Hz, 1H), 6.96 (dd, J = 14.4, 5.6 Hz, 2H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 163.05, 

151.97, 148.96, 145.77, 145.61, 142.48, 141.89, 140.80, 140.60, 140.52, 134.08, 133.70, 133.13, 

132.14, 131.75, 129.11, 127.14, 126.70, 123.55, 122.47, 117.79, 114.19, 110.36, 109.99. HR-MS 

(ESI) m/z: calcd. for C24H13F4N3O [M + H]+: 436.0995, found: 436.1068. Mp 264–266 °C. 

9-(2-methoxypyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one 

(11c) The title compound was obtained similarly to 4a. The boronic acid was replaced with 

(2-methoxypyridin-3-yl)boronic acid. (white solid, yield: 88.2%). 1H NMR (400 MHz, 

DMSO-D6) δ(ppm): 9.18 (s, 1H), 8.35 (d, J = 9.5 Hz, 1H), 8.17 (dd, J = 4.8, 2.1 Hz, 1H), 8.11 – 

8.05 (m, 2H), 7.96 – 7.88 (m, 2H), 7.87 – 7.76 (m, 2H), 7.05 – 6.92 (m, 3H), 6.80 (d, J = 1.7 Hz, 

1H), 3.81 (s, 3H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 163.10, 160.34, 151.69, 148.64, 

147.02, 142.48, 141.86, 140.83, 138.76, 134.06, 133.95, 131.99, 131.42, 131.11, 130.30, 126.99, 
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126.49, 125.75, 123.11, 122.82, 122.24, 117.62, 117.51, 113.99, 53.90. HR-MS (ESI) m/z: calcd. 

for C25H16F3N3O2 [M + H]+: 448.1195, found: 448.1268. Mp 272–275 °C. 

9-(6-methoxypyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one 

(11d) The title compound was obtained similarly to 4a. The boronic acid was replaced with 

(6-methoxypyridin-3-yl)boronic acid. (white solid, yield: 87.4%). 1H NMR (400 MHz, 

DMSO-D6) δ(ppm): 9.16 (s, 1H), 8.34 (d, J = 9.5 Hz, 1H), 8.16 – 8.08 (m, 2H), 8.07 – 7.96 (m, 

3H), 7.89 (t, J = 7.9 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.28 (dd, J = 8.7, 2.6 Hz, 1H), 6.94 (dd, J 

= 10.5, 5.6 Hz, 2H), 6.80 (dd, J = 8.6, 0.4 Hz, 1H), 3.88 (s, 3H). 13C NMR (101 MHz, 

DMSO-D6) δ(ppm): 163.76, 163.08, 151.50, 148.67, 145.35, 142.37, 141.95, 140.81, 137.55, 

134.32, 133.93, 132.12, 131.57, 131.28, 128.83, 128.61, 127.20, 126.68, 125.58, 122.70, 122.34, 

117.88, 114.13, 110.92, 53.90. HR-MS (ESI) m/z: calcd. for C25H16F3N3O2 [M + H]+: 448.1195, 

found: 448.1267. Mp 211–216 °C. 

N-(5-(2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2-dihydrobenzo[h][1,6]naphthyridin-9-yl)pyridin

e-2-yl) propionamide (11e) The title compound was obtained similarly to 4a. The boronic acid 

was replaced with (6-propionamidopyridin-3-yl)boronic acid. (white solid, yield: 90.9%). 1H 

NMR (400 MHz, DMSO-D6)  δ(ppm): 10.64 (s, 1H), 9.18 (s, 1H), 8.35 (d, J = 9.5 Hz, 1H), 8.07 

(ddd, J = 16.3, 11.5, 5.5 Hz, 6H), 7.96 – 7.83 (m, 2H), 7.49 (dd, J = 8.7, 2.5 Hz, 1H), 6.99 (dd, J 

= 22.2, 5.5 Hz, 2H), 2.43 (q, J = 7.5 Hz, 2H), 1.08 (t, J = 7.5 Hz, 3H). 13C NMR (101 MHz, 

DMSO-D6) δ(ppm): 173.64, 163.08, 152.34, 151.49, 148.56, 145.94, 142.49, 141.94, 140.82, 

136.41, 134.14, 132.06, 131.63, 131.52, 131.31, 130.07, 128.94, 128.78, 127.07, 126.56, 125.58, 

122.44, 117.89, 114.14, 113.41, 29.80, 9.89. HR-MS (ESI) m/z: calcd. for C27H19F3N4O2 [M + 

H]+: 489.1460, found: 489.1533. Mp 249–250 °C. 

N-(5-(2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2-dihydrobenzo[h][1,6]naphthyridin-9-yl)pyridin

-2-yl)butyramide (11f) The title compound was obtained similarly to 4a. The boronic acid was 

replaced with (6-butyramidopyridin-3-yl)boronic acid. (white solid, yield: 81.9%). 1H NMR (400 

MHz, DMSO-D6) δ(ppm): 10.65 (s, 1H), 9.16 (s, 1H), 8.34 (d, J = 9.5 Hz, 1H), 8.12 (d, J = 8.8 

Hz, 3H), 8.08 – 7.97 (m, 3H), 7.96 – 7.82 (m, 2H), 7.49 (dd, J = 8.7, 2.5 Hz, 1H), 6.99 (dd, J = 

24.4, 5.5 Hz, 2H), 2.40 (t, J = 7.3 Hz, 2H), 1.69 – 1.55 (m, 2H), 0.92 (t, J = 7.4 Hz, 3H). 13C 

NMR (101 MHz, DMSO-D6) δ(ppm): 172.82, 163.08, 152.30, 151.60, 148.78, 145.94, 142.37, 

141.96, 140.82, 136.40, 134.08, 132.05, 131.68, 131.30, 130.13, 128.87, 127.05, 126.54, 125.58, 
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122.86, 122.41, 122.35, 117.88, 114.14, 113.46, 38.43, 18.86, 14.13. HR-MS (ESI) m/z: calcd. 

for C28H21F3N4O2 [M + H]+: 503.1617, found: 503.1689. Mp 279–280 °C. 

N-(5-(2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2-dihydrobenzo[h][1,6]naphthyridin-9-yl)pyridin

-2-yl)isobutyramide (11g) The title compound was obtained similarly to 4a. The boronic acid 

was replaced with (6-isobutyramidopyridin-3-yl)boronic acid. (white solid, yield: 82.8%). 1H 

NMR (400 MHz, DMSO-D6) δ(ppm): 10.64 (s, 1H), 9.17 (s, 1H), 8.35 (d, J = 9.4 Hz, 1H), 8.17 

– 8.09 (m, 3H), 8.09 – 8.00 (m, 3H), 7.95 – 7.84 (m, 2H), 7.48 (dd, J = 8.7, 2.5 Hz, 1H), 7.03 (d, 

J = 1.5 Hz, 1H), 7.00 – 6.93 (m, 1H), 2.79 (dt, J = 13.6, 6.8 Hz, 1H), 1.11 (d, J = 6.8 Hz, 6H). 
13C NMR (101 MHz, DMSO-D6) δ(ppm): 176.90, 163.09, 152.43, 151.62, 148.79, 145.94, 

142.39, 141.97, 140.83, 136.38, 134.17, 134.07, 132.06, 131.70, 131.63, 131.30, 130.14, 128.88, 

127.08, 126.56, 122.40, 120.17, 117.90, 114.14, 113.53, 34.97, 19.91. HR-MS (ESI) m/z: calcd. 

for C28H21F3N4O2 [M + H]+: 503.1617, found: 503.1689. Mp 213–215 °C. 

N-(5-(2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2-dihydrobenzo[h][1,6]naphthyridin-9-yl)pyridin

-2-yl)pentanamide (11h) The title compound was obtained similarly to 4a. The boronic acid was 

replaced with (6-pentanamidopyridin-3-yl)boronic acid. (white solid, yield: 86.3%). 1H NMR 

(400 MHz, DMSO-D6) δ(ppm): 10.64 (s, 1H), 9.17 (s, 1H), 8.35 (d, J = 9.5 Hz, 1H), 8.12 (dd, J 

= 8.5, 6.3 Hz, 3H), 8.08 – 7.97 (m, 3H), 7.96 – 7.83 (m, 2H), 7.49 (dd, J = 8.7, 2.5 Hz, 1H), 7.03 

(d, J = 1.6 Hz, 1H), 6.96 (d, J = 9.4 Hz, 1H), 2.42 (t, J = 7.4 Hz, 2H), 1.63 – 1.51 (m, 2H), 1.32 

(dq, J = 14.6, 7.3 Hz, 2H), 0.97 – 0.85 (m, 3H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 

172.97, 163.08, 152.31, 151.62, 148.79, 145.95, 142.39, 141.97, 140.83, 136.41, 134.15, 134.10, 

132.06, 131.70, 131.62, 131.30, 130.14, 128.90, 127.06, 126.58, 122.43, 122.36, 117.90, 114.15, 

113.46, 36.25, 27.56, 22.30, 14.29. HR-MS (ESI) m/z: calcd. for C29H23F3N4O2 [M + H]+: 

517.1773, found: 517.1846. Mp 274–277 °C. 

N-(5-(2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2-dihydrobenzo[h][1,6]naphthyridin-9-yl)pyridin

-2-yl)-2-phenylacetamide (11i) The title compound was obtained similarly to 4a. The boronic 

acid was replaced with (6-(2-phenylacetamido)pyridin-3-yl)boronic acid. (white solid, yield: 

83.7%). 1H NMR (400 MHz, DMSO-D6) δ(ppm): 10.94 (s, 1H), 9.17 (s, 1H), 8.34 (d, J = 9.5 

Hz, 1H), 8.18 – 7.99 (m, 6H), 7.94 – 7.82 (m, 2H), 7.49 (dd, J = 8.7, 2.5 Hz, 1H), 7.43 – 7.29 (m, 

4H), 7.30 – 7.22 (m, 1H), 7.02 (d, J = 1.7 Hz, 1H), 6.96 (d, J = 9.4 Hz, 1H), 3.76 (s, 2H).13C 

NMR (101 MHz, DMSO-D6) δ(ppm): 170.78, 163.08, 152.21, 151.64, 148.77, 146.02, 142.41, 

141.96, 140.83, 136.50, 136.23, 134.15, 134.01, 132.07, 131.68, 131.30, 130.41, 129.77, 128.86, 
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127.16, 127.08, 126.55, 125.58, 122.87, 122.49, 122.37, 117.90, 114.14, 113.47, 43.44. HR-MS 

(ESI) m/z: calcd. for C32H21F3N4O2 [M + H]+: 551.1617, found: 551.1689. Mp 143–145 °C. 

Tert-butyl(5-(2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2-dihydrobenzo[h][1,6]naphthyridin-9-yl)

pyridin-2-yl)carbamate (11j) The title compound was obtained similarly to 4a. The boronic acid 

was replaced with (6-((tert-butoxycarbonyl)amino)pyridin-3-yl)boronic acid. (white solid, yield: 

85.6%). 1H NMR (400 MHz, DMSO-D6) δ(ppm): 10.02 (s, 1H), 9.16 (s, 1H), 8.35 (d, J = 9.5 

Hz, 1H), 8.12 (dd, J = 11.2, 2.3 Hz, 3H), 8.04 (dt, J = 8.8, 4.4 Hz, 2H), 7.91 (t, J = 7.8 Hz, 1H), 

7.82 (dd, J = 17.8, 8.4 Hz, 2H), 7.33 (dd, J = 8.8, 2.5 Hz, 1H), 6.98 (dd, J = 14.7, 5.6 Hz, 2H), 

1.50 (s, 9H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 163.08, 153.22, 152.68, 151.55, 148.76, 

146.11, 142.37, 141.94, 140.83, 136.10, 134.19, 134.10, 132.07, 131.81, 131.65, 131.28, 129.32, 

128.81, 127.09, 126.60, 122.89, 122.41, 117.91, 114.14, 112.28, 80.30, 28.54. HR-MS (ESI) 

m/z: calcd. for C29H23F3N4O3 [M + H]+: 533.1722, found: 533.1795. Mp 234–236 °C. 

Phenyl(5-(2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2-dihydrobenzo[h][1,6]naphthyridin-9-yl)pyr

idin-2-yl)carbamate (11k) The title compound was obtained similarly to 4a. The boronic acid 

was replaced with (6-((phenoxycarbonyl)amino)pyridin-3-yl)boronic acid. (white solid, yield: 

83.3%). 1H NMR (400 MHz, DMSO-D6) δ(ppm): 10.98 (s, 1H), 9.19 (d, J = 10.9 Hz, 1H), 8.35 

(dt, J = 11.1, 5.6 Hz, 1H), 8.22 – 8.10 (m, 3H), 8.08 – 8.02 (m, 1H), 7.90 (ddd, J = 14.7, 13.6, 

7.7 Hz, 3H), 7.47 (ddd, J = 11.5, 9.8, 5.8 Hz, 3H), 7.38 – 7.21 (m, 4H), 7.03 (d, J = 1.9 Hz, 1H), 

6.97 (dd, J = 9.4, 1.3 Hz, 1H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 163.08, 152.54, 152.07, 

151.66, 150.82, 150.60, 150.53, 148.83, 147.05, 146.22, 142.41, 141.96, 140.83, 137.51, 136.51, 

134.10, 132.10, 131.70, 130.30, 130.01, 128.87, 127.13, 126.24, 122.57, 121.87, 117.91, 115.72, 

114.16, 112.60. HR-MS (ESI) m/z: calcd. for C31H19F3N4O3 [M + H]+: 553.1409, found: 

553.1482. Mp 150–152 °C. 

Benzyl(5-(2-oxo-1-(3-(trifluoromethyl)phenyl)-1,2-dihydrobenzo[h][1,6]naphthyridin-9-yl)pyr

idin-2-yl)carbamate (11l) The title compound was obtained similarly to 4a. The boronic acid was 

replaced with (6-(((benzyloxy)carbonyl)amino)pyridin-3-yl)boronic acid. (yellow solid, yield: 

82.7%). 1H NMR (400 MHz, DMSO-D6) δ(ppm): 10.49 (s, 1H), 9.19 (d, J = 14.3 Hz, 1H), 8.35 

(d, J = 9.5 Hz, 1H), 8.27 – 7.94 (m, 5H), 7.94 – 7.73 (m, 3H), 7.61 – 7.19 (m, 6H), 7.08 – 6.88 

(m, 2H), 5.21 (s, 2H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 163.08, 153.99, 152.38, 151.60, 

148.79, 148.72, 146.14, 142.39, 141.95, 140.82, 137.01, 136.37, 134.10, 132.08, 131.67, 131.28, 

129.74, 128.99, 128.84, 128.55, 128.38, 128.00, 127.11, 126.59, 122.54, 122.36, 117.91, 114.15, 
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112.32, 66.44. HR-MS (ESI) m/z: calcd. for C32H21F3N4O3 [M + H]+: 567.1566, found: 567.1639. 

Mp 150–153 °C. 

9-(6-(4-methylpiperazin-1-yl)pyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthy

ridin-2(1H)-one (11m) The title compound was obtained similarly to 4a. The boronic acid was 

replaced with (6-(4-methylpiperazin-1-yl)pyridin-3-yl)boronic acid. (yellow solid, yield: 85.1%). 
1H NMR (400 MHz, DMSO-D6) δ(ppm): 9.12 (s, 1H), 8.33 (d, J = 9.5 Hz, 1H), 8.12 (s, 1H), 

8.09 – 8.02 (m, 2H), 8.02 – 7.94 (m, 2H), 7.90 (t, J = 7.9 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.11 

(dd, J = 8.9, 2.6 Hz, 1H), 6.94 (dd, J = 5.6, 3.8 Hz, 2H), 6.78 (d, J = 8.9 Hz, 1H), 3.56 – 3.46 (m, 

4H), 2.45 – 2.31 (m, 4H), 2.23 (s, 3H).13C NMR (101 MHz, DMSO-D6) δ(ppm): 163.12, 158.84, 

151.02, 148.40, 146.18, 142.22, 141.98, 140.83, 135.75, 134.98, 133.97, 132.04, 131.61, 131.46, 

131.28, 128.41, 127.09, 126.64, 123.77, 122.22, 121.39, 117.98, 114.10, 107.06, 54.84, 46.35, 

44.95. HR-MS (ESI) m/z: calcd. for C29H24F3N5O [M + H]+: 516.1933, found: 516.2006. Mp 

161–162 °C. 

9-(6-morpholinopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-

one (11n) The title compound was obtained similarly to 4a. The boronic acid was replaced with 

(6-morpholinopyridin-3-yl)boronic acid. (yellow solid, yield: 84.2%). 1H NMR (400 MHz, 

DMSO-D6) δ(ppm): 9.12 (s, 1H), 8.33 (d, J = 9.5 Hz, 1H), 8.13 (s, 1H), 8.06 (dd, J = 8.2, 5.0 Hz, 

2H), 8.03 – 7.95 (m, 2H), 7.90 (t, J = 7.9 Hz, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.15 (dd, J = 8.9, 2.6 

Hz, 1H), 6.94 (dd, J = 5.6, 3.9 Hz, 2H), 6.79 (d, J = 8.9 Hz, 1H), 3.81 – 3.65 (m, 4H), 3.57 – 

3.42 (m, 4H). 13C NMR (101 MHz, DMSO-D6) δ(ppm): 163.11, 158.98, 151.06, 148.42, 146.13, 

142.23, 141.98, 140.83, 135.80, 134.89, 133.95, 132.05, 131.94, 131.46, 131.29, 128.44, 127.08, 

126.61, 124.29, 122.23, 121.48, 117.97, 114.10, 107.05, 66.42, 45.45. HR-MS (ESI) m/z: calcd. 

for C28H21F3N4O2 [M + H]+: 503.1617, found: 503.1689. Mp 286–287 °C. 

9-(6-(pyrrolidin-1-yl)pyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(

1H)-one (11o) The title compound was obtained similarly to 4a. The boronic acid was replaced 

with (6-(pyrrolidin-1-yl)pyridin-3-yl)boronic acid. (yellow solid, yield: 83.3%). 1H NMR (400 

MHz, DMSO-D6) δ(ppm): 9.10 (s, 1H), 8.32 (d, J = 9.5 Hz, 1H), 8.13 (s, 1H), 8.10 – 7.98 (m, 

3H), 7.98 – 7.85 (m, 2H), 7.79 (d, J = 8.0 Hz, 1H), 7.02 (dd, J = 8.8, 2.6 Hz, 1H), 6.92 (dd, J = 

10.8, 5.6 Hz, 2H), 6.36 (d, J = 8.8 Hz, 1H), 3.40 (t, J = 6.5 Hz, 4H), 1.95 (t, J = 6.6 Hz, 4H). 13C 

NMR (101 MHz, DMSO-D6) δ(ppm): 163.12, 156.77, 150.79, 148.24, 146.66, 142.15, 141.98, 

140.83, 135.49, 135.13, 133.86, 132.03, 131.57, 131.37, 131.24, 128.29, 127.15, 126.64, 122.16, 
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122.07, 120.98, 118.01, 114.08, 106.46, 46.96, 25.51. HR-MS (ESI) m/z: calcd. for 

C28H21F3N4O [M + H]+: 487.1667, found: 487.1741. Mp 252–254 °C. 

4.2. Biological Evaluations 

4.2.1. In vitro Antiviral Assay  

The test compound and the positive compound were dissolved in DMSO to 100 mM 

depending on the mass and molecular weight of the test compound and positive compound. The 

test compound was diluted to a concentration of 800 µM using a cell maintenance solution and 

then diluted by a dilution factor of 3 times for a total of 10 concentrations. The cell maintenance 

medium (DMEM medium with 2% FBS) was used to serially dilute the positive drug Torin2 to 

the same dilution as the compound to be tested. The diluted compound was then added to a 

white-walled clear bottom 96-well plate at 50 µl per well. An equal volume of cell maintenance 

medium was added to both the cell control group and the virus control group. The EV71 virus 

strains were removed from -80 °C and equilibrated to room temperature. The virus was diluted to 

100 TCID50 using the maintenance medium and was then added to the above 96-well plate cells 

at 50 µl per well. The cell control group was added with an equal volume of maintenance 

medium. The RD cells were seeded at a concentration of 1ⅹ105 / ml in a 96-well plate with a 

white-walled clear bottom, 100 µl per well, and finally a volume of 200 µl per well, and the final 

concentration of the drug was 0.25 times that of the pretreatment concentration. The plates were 

cultured at 37 °C for 4 days. The buffer and substrate of the CellTiter-Glo® Chemiluminescent 

Cell Viability Assay reagent (Promega) were mixed in the dark to prepare a working solution, 

and cell viability assay were performed according to the manufacturer’s protocol. The IC50 (50% 

inhibitory concentration) was calculated using software Origin 8.0.  

4.2.2. mTOR Enzyme Assay  

The mTOR kinase activities of all the compounds were determined using a LanthaScreen 

Kinase Activity Assay (Invitrogen) following the manufacturer’s instructions, with compound 

Torin 2 as a positive control. Briefly, the mTOR enzyme (0.5 µg/mL, Invitrogen), ATP (3 µM, 

Sigma), GFP-4E-BP1 peptide (0.4 µM, Invitrogen) and test compounds were diluted in kinase 

buffer (50 mM HEPES pH 7.5, 1 mM EGTA, 10 mM MnCl2, 2 mM DTT and 0.01% Tween-20). 

The reactions were performed in black 384-well proxiplates (PerkinElmer) at room temperature 

for 1 h and stopped by adding EDTA to 10 mM. Tb-p4E-BP1 (pThr46) antibody (Invitrogen) 

was then added to each well to a final concentration of 2 nM, and the mixture was incubated at 
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room temperature for 30 min. The intensity of the light emission was measured with an Envision 

2104 reader (PerkinElmer) in TR-FRET mode (excitation at 340 nm and emission at 495 nm/520 

nm). All of the compounds were tested in duplicate, and the results were expressed as IC50. 

4.2.3. Western Blot Analysis  

Cell lysates were prepared in loading buffer (Beyotime) and heated at 100 °C for 10 min, and 

proteins were then separated by gel electrophoresis using the NuPAGE Novex 4−12% Bis-Tris 

gel system. Proteins were then transferred onto a PVDF membrane using the Bio-Rad 

transmembrane system. The PVDF membranes were then probed with a rabbit anti-p70 S6 

antibody (CST, 2708), a rabbit anti-phospho-p70 S6 antibody (CST, 9234), a rabbit anti-Akt 

antibody (CST, 4691), a rabbit anti- phosphor-Akt antibody (CST, 4058), or a rabbit anti-Actin 

antibody (CST, 4970) and visualized using the corresponding IRDye anti-rabbit antibody 

(LI-COR, 926-32211). The membrane was then scanned using the LI-COR Odyssey. 

4.2.4. Molecular Modeling 

The molecular docking process was as follows: first, crystal structures of mTOR were 

downloaded from the RCSB Protein Data Bank (http://www.rcsb.org). The selected protein Data 

Bank (PDB) ID was mTOR (4JSV, resolution 3.5 Å). Next, the water molecules in the crystal 

were cleared, and hydrogen atoms and electric charges were added. Subsequently, molecule 

structures of ligands were drawn by ChemBioDraw 12.0 (PerkinElmer) and introduced into 

protein crystal cells. Finally, the molecular docking was carried out by using the LIB-DOCK 

module of the Discovery Studio 2.5 package. After the docking process was finished, the best 

conformation (Figure 4) was selected and the hydrogen bonds were displayed according to the 

docking result. 
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Figure 1. Design strategy of Torin2 derivatives. 

Scheme 1. Synthesis of 4a-4da. a Reagents and conditions: (a) ethyl 2-(diethoxyphosphoryl) 

acetate, K2CO3, EtOH, 100 °C; (b) 4a-4b: boronic ester, K2CO3, Pd(PPh3)4, 1,4-dioxane, 100°C; 

4c-4d: Pd(dba)3, CsCO3, 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene, 1,4-dioxane, 100°C  

Scheme 2. Synthesis of 8a-8fa. aReagents and conditions: (c) MCPBA, K2CO3, DCM, rt; (d) 

NaOH (1N), 60 °C; (e) di(1H-imidazol-1-yl)methanone, THF, rt; (f) 8a-8c: boronic ester, 

K2CO3, Pd(PPh3)4, 1,4-dioxane, 100 °C; 8d-8f: Pd(OAc)2, enamide, Tri(o-tolyl)phosphine, Et3N, 

DMF, 100 °C. 

Scheme 3. Synthesis of 10a-10ea. aReagents and conditions: (g) 1-(triphenyl-l5-phosphany 

-lidene), DMSO, 120 °C; (h) boronic ester, K2CO3, Pd(PPh3)4, 1,4-dioxane, 100 °C. 

Scheme 4. Synthesis of 11a-11oa. aReagents and conditions: (i) boronic ester, K2CO3, Pd(PPh3)4, 

1,4-dioxane, 100 °C. 

Table 1. Anti-EV71 activities of 4a-4d, 8a-8f, and 10a-10e 

Table 2. Anti-EV71 activities of 11a-11o 

Figure 2. Summarized SARs of the synthesized compounds.  

Figure 3. In vitro mTOR kinase inhibitory activity. 

Figure 4. Molecular docking results of the superimposed conformation for the optimized 

compounds (A) Torin2 (shown in purple) and 11e (shown in blue); (B) 11e and 8a (shown in 

yellow); (C) 11e and 10a (shown in green); (D) 11e and 11d (shown in pink); (E) 11e and 11h 

(shown in orange); (F) 11e and 11m (shown in brown) with the mTOR kinase complex (PDB ID 

code: 4JSV). 

Figure 5. Western blot test results for the compounds 

Table 3. Absorption properties of 11a, 11b, 11d, 11e and 11m 

Table 4. Water solubility of 11a, 11b, 11d, 11e and 11m 
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Table 1. Anti-EV71 activities of 4a-4d, 8a-8f, and 10a-10e 

 

Compd. R1 R2 R3 IC50(µM)a CC50(µM)b 

4a 
 

- - 7.40±0.18 10.27±7.81 

4b 
 

- - 0.27±0.05 0.17±0.06 

4c 
 

- - 0.89±0.07 7.58±0.23 

4d HN
N

H2N  
- - 2.47±0.11 5.19±0.08 

8a - 
 

- 4.78±0.14 16.88±5.46 

8b - 
 

- >200 68.52±0.42 

8c - 
 

- >200 68.88±0.13 

8d - 
 

- 48.90±1.26 66.64±1.17 

8e -  - >200 >200 

8f - 
 

- >200 71.99±0.78 

10a - - 
 

5.14±0.54 5.14±1.92 

10b - - 
 

>200 >200 

10c - - 
 

>200 >200 

10d - - 
 

>200 0.68±0.21 

10e - - 
 

>200 2.23±0.08 

Torin2 - - - 0.01±0 0.04±0 
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a The compound concentration required to reduce the virus-induced cell death by 50% was 

defined as IC50. 
b The compound concentration required to reduce the cell viability to 50% of the 

tested control culture was defined as CC50. 

Table 2. Anti-EV71 activities of 11a-11o 

 

Compd. R4 R5 R6 IC50(µM) a CC50(µM)  b 

11a F H H 0.059±0 1.23±1.20 

11b H H F 0.07±0.01 0.23±0.33 

11c OCH3 H H >200 >200 

11d H H OCH3 0.04±0.01 0.13±0.03 

11e H H CH3CH2(CO)NH 0.027±0.02 0.04±0.02 

11f H H CH3(CH2)2(CO)NH 0.17±0.01 0.75±0.36 

11g H H (CH3)2CH(CO)NH 0.82±0.12 0.46±0.03 

11h H H CH3(CH2)3(CO)NH 0.20±0.02 0.70±0.48 

11i H H C6H5CH2(CO)NH 0.56±0.08 0.74±0.72 

11j H H (CH3)3CO(CO)NH 2.47±0.13 0.69±0.50 

11k H H C6H5OOCNH 0.09±0.01 0.20±0.09 

11l H H C6H5CH2OOCNH 23.72±1.02 1.00±0.81 

11m H H 
 

0.09±0.02 0.18±0.15 

11n H H 
 

2.63±0.14 2.91±1.16 

11o H H  2.47±0.09 1.79±0.67 

Torin2 - - - 0.01±0 0.04±0 
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a The compound concentration required to reduce the virus-induced cell death by 50% was 

defined as IC50. 
b The compound concentration required to reduce the cell viability to 50% of the 

tested control culture was defined as CC50. 

Table 3. Absorption properties of 11a, 11b, 11d, 11e and 11m 

 

Compd. 

Property of Absorption 

MlogPa S+logPb S+Peffc S+MDCKd Absn_Riske 

11a 4.024 4.346 7.883 1344.773 2.012 

11b 4.024 4.422 8.009 1302.577 2.088 

11d 3.744 4.381 6.418 1252.891 2.214 

11e 3.707 4.001 4.058 977.619 1.334 

11m 3.754 4.473 3.366 1282.295 1.683 

Torin2 3.541 3.499 3.433 892.816 1.167 
aOil-water partition coefficient, suggested values: -1.0 ≤ MlogP ≤ 4.15. bOil-water partition 

coefficient, suggested values: -1.0 ≤ S+logP ≤ 5.0. cEffective permeability in the human jejunum, 

suggested values: S+Peff ≥ -1.0. dApparent permeability coefficient in the Madin-Darby canine 

kidney cell model, suggested values: S+MDCK ≥ 30. eDruggability risk about absorption, 

suggested values: Absn Risk ≤ 3. 

Table 4. Water solubility of 11a, 11b, 11d, 11e and 11m 

Compd. Torin2 11a 11b 11d 11e 11m 

Water solubility 

(µg/ml) 
1.29 5.88 0.42 0.61 0.39 18.64 
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Figure 1. Design strategy of Torin2 derivatives. 

 

 

Figure 2. Summarized SARs of the synthesized compounds.  
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Figure 3. In vitro mTOR kinase inhibitory activity. 
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Figure 4. Molecular docking results of the superimposed conformation for the optimized 

compounds (A) Torin2 (shown in purple) and 11e (shown in blue); (B) 11e and 8a (shown in 

yellow); (C) 11e and 10a (shown in green); (D) 11e and 11d (shown in pink); (E) 11e and 11h 

(shown in orange); (F) 11e and 11m (shown in brown) with the mTOR kinase complex (PDB ID 

code: 4JSV). 

 

 

Figure 5. Western blot test results for the compounds 
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Scheme 1. Synthesis of 4a-4da 
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aReagents and conditions: (a) ethyl 2-(diethoxyphosphoryl) acetate, K2CO3, EtOH, 100°C; (b) 

4a-4b: K2CO3, Pd(PPh3)4, 1,4-dioxane, 100°C; 4c-4d: Pd(dba)3, CsCO3, 

4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene, 1,4-dioxane, 100°C.  
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Scheme 2. Synthesis of 8a-8fa 

 

aReagents and conditions: (c) MCPBA, K2CO3, DCM, r.t.; (d) NaOH (1N), 60°C; (e) 

N,N'-Carbonyldiimidazole, THF, r.t.; (f) 8a-8c: K2CO3, Pd(PPh3)4, 1,4-dioxane, 100°C; 8d-8f: 

Pd(OAc)2, Tri(o-tolyl)phosphine, Et3N, DMF, 100°C. 
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Scheme 3. Synthesis of 10a-10ea 

 
aReagents and conditions: (g) 1-(triphenylphosphoranylidene)propan-2-one, DMSO, 120°C; (h) 

K2CO3, Pd(PPh3)4, 1,4-dioxane, 100°C. 
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Scheme 4. Synthesis of 11a-11oa 

 

aReagents and conditions: (i) K2CO3, Pd(PPh3)4, 1,4-dioxane, 100°C. 
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� Synthesis of novel Compd targeting mTOR for anti-EV71. 

� Preliminary explore the new mechanism of anti-EV71 based on mTOR. 

 


