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Palladium-Catalyzed Ortho- C−H Methylation of Benzoic Acids
Weiwei Lv, Si Wen, Jing Liu, Guolin Cheng*

College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China
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ABSTRACT: A palladium-catalyzed methylation of C–H bonds of benzoic acids with di-tert-butyl peroxide as the methylating 
reagent under external oxidant and ligand-free conditions has been achieved. The reaction is found to be directed by a weakly 
coordinating carboxyl group, offering a facile route for the synthesis of highly functionalized ortho-methyl benzoic acids. 

The methyl group as the smallest alkyl group plays a very 
important role in biologically active molecules.1 The introduction 
of a methyl group increases the hydrophobic character of organic 
compounds, thus can modulate the biological activity and physical 
property of a pharmacologically active molecule, which is the so-
called “magic methyl” effect. For example, the replacement of 
C−H by C−Me can significantly improve the IC50 value of a drug 
candidate.2

The transition metal-catalyzed C−H methylation reactions 
are the most straightforward methods to installation of a 
methyl group.3 Recently, a variety of monodentate and 
bidentatethe directing groups were developed to achieve 
ortho-methylation of benzamide derivatives using Mn,4 Fe,5 
Co,6 Ni,7 and Pd8 as catalysts (Scheme 1a). However, the 
requirement of installation and removal of an external 
directing group has hampered the use of simple benzoic acids, 
thus reducing their synthetic utility.9 The examples of 
methylation of benzoic acids are extremely limited to only two 
reports until date. The Pd-catalyzed methylation of simple 
benzoic acids pioneered by Yu use MeB(OH)2 and Ag2CO3 as 
the methylating reagent and oxidant, respectively (Scheme 
1b).10 In 2016, Nakamura described a tridentate phosphine 
ligand 4-(bis(2-(diphenylphosphanyl)phenyl)phosphanyl)-
N,N-dimethylaniline enabled Fe-catalyzed methylation of 
simple benzoic acids under oxidative conditions (Scheme 
1c).11 Despite the significant progress offered by the 
aforementioned methods, there are still certain limitations, 
including the requirement of external oxidant and 
sophisticated ligand. In 2008, li and coworkers reported the 
first example of palladium-catalyzed ortho-C−H methylation 
of 2-phenyl pyridines with dicumyl peroxide as methylating 
reagent (Scheme 1d).12a Inspired by Li’s work, herein, we 
reported a Pd-catalyzed ortho-methylation of benzoic acids 
using commercial available and low-cost di-tert-butyl 
peroxide (DTBP) as both the methylating reagent and 
hydrogen acceptor under external oxidant and ligand-free 
conditions (Scheme 1e).13

Initially, we began the studies with 3-methylbenzoic acid 1a 
and DTBP 2a to explore the reaction conditions. After 
systematic screening of the reaction conditions, the optimal 
conditions were achieved to be: Pd(OAc)2 (10 mol %), KOAc 
(2 equiv) in HFIP under air at 80 °C to yield the desired 
Scheme 1. Palladium-Catalyzed Ortho- C−H Methylation 
of Benzoic Acid Derivatives.
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methylation product 3a in 79% yield (Table 1, entry 1, see SI 
for details). Under other conditions, no desired product or only 
low yields were observed. No desired product 3a was formed 
in the absence of either the base or Pd catalyst (entries 2, 3). 
Replacing KOAc with NaOAc decreased the yield to 15% 
(entry 4). The use of Ac-Gly-OH as ligand afforded a lower 
yield (entry 5). Interestingly, other solvents, such as tAmylOH 
and toluene, inhibited the reaction completely (entries 6, 7). 
Dicumyl peroxide 2b also gave the methylation product in 23% 
yield. (entry 8). However, no reaction was observed when tert-
butyl hydroperoxide 2c instead of 2a was used (entry 9). Only 
trace of 3a was detected when tert-butyl peroxybenzoate 2d 
was used (entry 10).
Table 1. Role of Select Parametersa

Me CO2H
+

Pd(OAc)2 (10mol%)
KOAc (2 equiv)

HFIP, air, 80 °C, 24 h Me CO2H

Me
1a 2a, 2 equiv 3a

O O PhPh tBu O OH tBu O O

2b
Ph

O

2c 2d

tBu O O tBu

entry deviation from standard conditions yield (%)b

1 none 79
2 no KOAc 0
3 no Pd(OAc)2 0
4 NaOAc instead of KOAc 15
5 Ac-Gly-OH (10 mol %) as ligand 63
6 tAmylOH instead of HFIP 0
7 toluene instead of HFIP 0
8 2b instead of 2a 23
9 2c instead of 2a 0
10 2d instead of 2a trace

aReaction conditions: 1a (0.3 mmol), 2a (0.6 mmol), Pd(OAc)2 
(10 mol%), KOAc (0.6 mmol) in HFIP (0.8 mL) at 80 °C under 
air atmosphere for 24 h. bIsolated yields. HFIP = 1,1,1,3,3,3-
hexafluoro-2-propanol.

Next, the generality of this Pd-catalyzed methylation 
reaction was examined under the optimized reaction 
conditions (Scheme 2). In all tested cases, the desired 
methylation reaction proceeded smoothly. In general, the 
reaction process can be extended to various meta-, ortho-, 
para-, as well as disubstituted benzoic acids, thus giving the 
corresponding methyl substituted benzoic acids (3a−s) in 
28−79% yields. Various valuable functional groups were 
tolerated, including trifluoromethyl, fluoro, chloro, bromo, 
iodo, and methoxyl. For meta-substituted benzoic acids, the 
C−H methylation occurred regioselectively at the sterically 
less hindered position (3a, 3b, 3h−o). Importantly, 1-
naphthoic acid was found to be an applicable substrate, 
providing the desired 2-methyl (3p) and 8-methyl (3p`) 
products in 40% combined yield. The reactions of para-
substituted benzoic acids resulted in 1:1.2 mixtures of mono- 
and dimethylated products (3q/3e; 3r/3s).
To demonstrate the utility of this chemistry, the C−H 

methylation reactions were conducted on a gram-scale. The 

reaction of 1a and 2a was complete within 24 h, generating the 
desired 
Scheme 2. Scope of Benzoic acidsa
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aReaction conditions: 1a (0.3 mmol), 2a (0.6 mmol), Pd(OAc)2 
(10 mol%), KOAc (0.6 mmol) in HFIP (0.8 mL) at 80 °C under 
air atmosphere for 24 h.
products (3a) in 54% yield (Scheme 3a). The reaction of 1j 
and 2a was carried out under standard conditions for 24 h, 
giving the desired products (3a) in 34% yield, and 1j could be 
recovered in 60% yield (Scheme 3b). 

To gain insight into the mechanism of this reaction, a 
radical trapping experiment was implemented. It was observed 
that the addition of 2 equiv of 2,2,6,6-tetramethylpiperidine-1-
oxyl (TEMPO) inhibited the reaction completely. This result 
suggested that a radical process might be involved in this 
transformation (Scheme 3c). The putative palladacycle A was 
independently prepared9c and resubmitted to the reaction 
conditions with or without 1 equiv KOAc. The desired product 
3a was not detected, which indicated that it is unlikely for 
palladacycle A to serve as an intermediate in this methylation 
reaction (Scheme 3d). We also performed kinetic isotope 
effects study. The competition reaction between benzoic acid 
1t and deuterated benzoic acid 1t-d5 was managed in one-pot. 
After reacting 24 h, a mixture of 3t and 3t-d4 was obtained in 
23% total yield and 1.86:1 ratio. The observation of KIE effect 
demonstrated that the C−H cleavage step is not obvious 
participated in the rate-determining step (Scheme 3e). 

On the basis of these results and the literature reports,12 we 
proposed a catalytic cycle in Scheme 4. Initially, PdII complex 
B is formed through coordination of benzoic acid 1a with 
Pd(OAc)2. Then B is oxidized by tert-butoxy radical, 
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generated from the peroxide 2a, through a single-electron 
transfer (SET) process giving the PdIV species C. Next, β -
methyl 
Scheme 3. Gram-Scale Reaction and Control Experiments
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elimination of C gives PdIV species D, followed by ortho- 
C−H activation to deliver intermediate E. Finally, reductive 
elimination of E giving the methylation product 3a and 
regenerating Pd(OAc)2. However, the pd0/PdII catalytic cycle 
could not be ruled out.12a

Scheme 4. Proposed Catalytic Cycle
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CONCLUSION
In conclusion, we have developed a palladium-catalyzed 

C−H ortho-methylation reaction of benzoic acids with DTBP 
as the methylating reagent. This methodology provides a utility 

approach for the synthesis of methyl substituted benzoic acids 
with efficient. This approach is compatible with a wide 
spectrum of readily available functionalized benzoic acids.

EXPERIMENTAL SECTION
General Information. All the solvents were used without 
further purification. The other commercial chemicals were 
used without further purification. All reactions were 
performed under an inert atmosphere of nitrogen in flame-
dried glassware, unless otherwise stated. Analytical thin layer 
chromatography was performed on 0.25 mm silica gel 60-
F254. Visualization was carried out with UV light and Vogel’s 
permanganate. Preparative TLC was performed on 1.0 mm 
silica gel. 1H NMR spectra were recorded on Bruker DRX-500 
instrument (500 MHz). 13C NMR spectra were recorded on 
Bruker DRX-500 instrument (126 MHz) were fully decoupled 
by broad band proton decoupling. High-resolution mass 
spectra (HRMS) were recorded on an Agilent 1290 Mass 
spectrometer using ESI-TOF (electrospray ionization-time of 
flight). NMR spectra were recorded in CDCl3. 1H NMR 
spectra were referenced to residual CHCl3 at 7.26 ppm, and 
13C NMR spectra were referenced to the central peak of CDCl3 
at 77.0 ppm. Chemical shifts (δ) are reported in ppm, and 
coupling constants (J) are in Hertz (Hz). Multiplicities are 
reported using the following abbreviations: s = singlet, d = 
doublet, t = triplet, q = quartet, m = multiplet.
Procedure for Preparation of 3. 
A dried 10 mL Schlenk tube was charged with 1 (40.8 mg, 0.3 
mmol), 2a (87.6 mg, 0.6 mmol), Pd(OAc)2 (6.8 mg, 10 mol %), 
KOAc (58.8 mg, 0.6 mmol) in HFIP (0.8 mL) under air. This 
mixture was heated to 80 °C in a heating plate for 24 h. Upon 
completion, the reaction mixture was cooled to room 
temperature, diluted with ethyl acetate, and filtered through a 
pad of celite. The filtrate was concentrated under vacuum, and 
the resulting residue was purified by preparative thin layer 
chromatography (PTLC) with ethyl acetate: hexane:AcOH 
(1:4:0.03) to give the corresponding products 3. 
2,5-dimethylbenzoic acid (3a)14 (35.5 mg, 79%) as white 
solid. 1H NMR (500 MHz, CDCl3) δ 7.93 (s, 1H), 7.32 – 7.27 
(m, 1H), 7.19 (d, J = 7.7 Hz, 1H), 2.65 (s, 3H), 2.40 (s, 3H); 
13C{1H} NMR (126 MHz, CDCl3) δ 173.7, 138.2, 135.4, 133.7, 
132.0, 131.8, 128.1, 21.6, 20.7.
2-methyl-5-(trifluoromethyl)benzoic acid (3b) (33 mg, 54%) 
as white solid. 1H NMR (500 MHz, CDCl3) δ 8.34 (s, 1H), 
7.70 (dd, J = 8.1, 1.9 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 2.73 (s, 
3H); 13C{1H} NMR (126 MHz, CDCl3) δ 171.8, 145.4, 132.6, 
129.3 (q, J = 3.5 Hz), 128.9 (q, J = 28.1 Hz), 128.7 (q, J = 5.1 
Hz), 128.6 (q, J = 4.2 Hz), 123.7 (q, J = 272.0 Hz), 22.1; 
HRMS (ESI-TOF) m/z: calcd for C9H6F3O2

-: 203.0325 (M - 
H)-, found: 203.0320.
2,6-dimethylbenzoic acid (3c)10 (21.6 mg, 48%) as white 
solid. 1H NMR (500 MHz, CDCl3) δ 7.28 – 7.23 (m, 1H), 7.10 
(d, J = 7.6 Hz, 2H), 2.48 (s, 6H); 13C{1H} NMR (126 MHz, 
CDCl3) δ 175.7, 135.6, 132.4, 129.9, 127.9, 20.1.
3-iodo-2,6-dimethylbenzoic acid (3d)15 (24.8 mg, 30%) as 
white solid. 1H NMR (500 MHz, CDCl3) δ 7.77 (dd, J = 8.1, 
1.4 Hz, 1H), 6.78 (d, J = 8.1 Hz, 1H), 2.49 (s, 3H), 2.34 (s, 
3H); 13C{1H} NMR (126 MHz, CDCl3) δ 174.3, 140.2, 137.1, 
134.9, 134.0, 129.4, 98.6, 26.0, 19.5.
4-fluoro-2,6-dimethylbenzoic acid (3e) (37.8 mg, 75%) as 
white solid. 1H NMR (500 MHz, CDCl3) δ 6.78 (d, J = 9.3 Hz, 
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2H), 2.44 (s, 6H); 13C{1H} NMR (126 MHz, CDCl3) δ 174.7, 
163.0 (d, J = 249.6 Hz), 139.2 (d, J = 8.9 Hz), 128.2 (d, J = 
2.9 Hz), 114.8 (d, J = 21.5 Hz), 20.5 (d, J = 1.5 Hz) ; HRMS 
(ESI-TOF) m/z: calcd for C9H8FO2

-: 167.0514 (M - H)-, found: 
167.0510.
4-chloro-2,6-dimethylbenzoic acid (3f) (37 mg, 67%) as 
white solid. 1H NMR (500 MHz, CDCl3) δ 7.08 (s, 2H), 2.42 
(s, 6H); 13C{1H} NMR (126 MHz, CDCl3) δ 174.1, 137.9, 
135.6, 127.9, 127.8, 20.2; HRMS (ESI-TOF) m/z: calcd for 
C9H8ClO2

-: 183.0218 (M - H)-, found: 183.0218.
4-bromo-2,6-dimethylbenzoic acid (3g)16 (30.8 mg, 45%) as 
white solid. 1H NMR (500 MHz, CDCl3) δ 7.25 (s, 2H), 2.41 
(s, 6H); 13C{1H} NMR (126 MHz, CDCl3) δ 173.9, 138.0, 
131.1, 130.8, 124.1, 20.1.
2,4,5-trimethylbenzoic acid (3h)17 (23.1 mg, 47%) as white 
solid. 1H NMR (500 MHz, CDCl3) δ 7.86 (s, 1H), 7.04 (s, 1H), 
2.59 (s, 3H), 2.28 (s, 3H), 2.27 (s, 3H); 13C{1H} NMR (126 
MHz, CDCl3) δ 173.3, 142.4, 138.8, 134.0, 133.3, 132.7, 
125.5, 21.6, 19.8, 19.1.
4-fluoro-2,5-dimethylbenzoic acid (3i) (16.6 mg, 33%) as 
white solid. 1H NMR (500 MHz, CDCl3) δ 7.95 (d, J = 8.1 Hz, 
1H), 6.91 (d, J = 10.4 Hz, 1H), 2.61 (s, 3H), 2.28 (d, J = 1.7 
Hz, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 172.2, 163.8 (d, 
J = 253.4 Hz), 142.1 (d, J = 9.1 Hz), 135.5 (d, J = 7.1 Hz), 
123.9 (d, J = 2.9 Hz), 122.4 (d, J = 17.6 Hz), 118.3 (d, J = 
22.5 Hz), 21.9, 14.0 (d, J = 3.0 Hz); HRMS (ESI-TOF) m/z: 
calcd for C9H8FO2

-: 167.0514 (M - H)-, found: 167.0515.
4-bromo-2,5-dimethylbenzoic acid (3j) (41 mg, 60%) as 
white solid. 1H NMR (500 MHz, CDCl3) δ 8.22 (s, 1H), 7.14 
(s, 1H), 2.57 (s, 3H), 2.41 (s, 3H); 13C{1H} NMR (126 MHz, 
CDCl3) δ 171.8, 143.4, 140.5, 135.3, 134.3, 127.2, 121.7, 22.9, 
21.6; HRMS (ESI-TOF) m/z: calcd for C9H8BrO2

-: 226.9713 
(M - H)-, found: 226.9717.
5-methoxy-2,4-dimethylbenzoic acid (3k) (31.3 mg, 58%) as 
white solid. 1H NMR (500 MHz, CDCl3) δ 7.52 (s, 1H), 7.03 
(s, 1H), 3.86 (s, 3H), 2.56 (s, 3H), 2.24 (s, 3H); 13C{1H} NMR 
(126 MHz, CDCl3) δ 173.2, 155.5, 134.3, 133.7, 132.7, 126.0, 
112.3, 55.5, 21.2, 16.2; HRMS (ESI-TOF) m/z: calcd for 
C9H12O3

+: 180.0786 (M)+, found: 180.0784.
4,5-dimethoxy-2-methylbenzoic acid (3l)14 (18.8 mg, 32%) 
as white solid. 1H NMR (500 MHz, CDCl3) δ 7.61 (s, 1H), 
6.72 (s, 1H), 3.94 (s, 3H), 3.91 (s, 3H), 2.63 (s, 3H); 13C{1H} 
NMR (126 MHz, CDCl3) δ 172.7, 152.6, 146.5, 136.4, 119.7, 
114.2, 114.0, 56.0, 55.9, 22.1.
5-chloro-2,4-dimethylbenzoic acid (3m)18 (28.7 mg, 52%) as 
white solid. 1H NMR (500 MHz, CDCl3) δ 8.00 (s, 1H), 7.11 
(s, 1H), 2.56 (s, 3H), 2.37 (s, 3H); 13C{1H} NMR (126 MHz, 
CDCl3) δ 172.1, 141.2, 139.5, 134.3, 131.8, 131.6, 127.6, 21.4, 
20.1.
5-bromo-2,4-dimethylbenzoic acid (3n) (31.5 mg, 46%) as 
white solid. 1H NMR (500 MHz, CDCl3) δ 8.22 (s, 1H), 7.14 
(s, 1H), 2.57 (s, 3H), 2.41 (s, 3H); 13C{1H} NMR (126 MHz, 
CDCl3) δ 171.8, 143.4, 140.5, 135.3, 134.3, 127.2, 121.7, 22.9, 
21.6; HRMS (ESI-TOF) m/z: calcd for C9H12O3

+: 180.0786 
(M)+, found: 180.0784.
4,5-dichloro-2-methylbenzoic acid (3o) (17.1 mg, 28%) as 
white solid. 1H NMR (500 MHz, CDCl3) δ 8.10 (s, 1H), 7.36 
(s, 1H), 2.58 (s, 3H); 13C{1H} NMR (126 MHz, CDCl3) δ 
171.3, 141.0, 137.1, 133.5, 133.1, 130.0, 128.1, 21.4; HRMS 
(ESI-TOF) m/z: calcd for C9H8BrO2

-: 227.9713 (M - H)-, 
found: 227.9714.

2-methyl-1-naphthoic acid (3p)14 and 8-methyl-1-naphthoic 
acid (3p`)19 (24.8 mg, 40%) as white solid. 1H NMR (500 
MHz, CDCl3) δ 8.14 (d, J = 8.4 Hz, 1H), 7.85 (dd, J = 8.4, 2.0 
Hz, 2H), 7.55 (t, J = 7.3 Hz, 1H), 7.51 – 7.47 (m, 1H), 7.37 (d, 
J = 8.4 Hz, 1H), 2.67 (s, 3H); 13C{1H} NMR (126 MHz, 
CDCl3) δ 175.6, 173.4, 134.5, 134.4, 133.8, 132.4, 131.7, 
130.3, 130.3, 130.0, 128.9, 128.7, 128.5, 128.1, 127.8, 127.7, 
127.2, 127.2, 126.3, 125.5, 124.7, 123.9, 22.2, 20.6.
4-fluoro-2-methylbenzoic acid (3q)20 (12.8 mg, 25%) as 
white solid. 1H NMR (500 MHz, CDCl3) δ 8.15 – 8.08 (m, 
1H), 7.02 – 6.93 (m, 2H), 2.67 (s, 3H); 13C{1H} NMR (126 
MHz, CDCl3) δ 171.9, 165.2 (d, J = 254.4 Hz), 145.1 (d, J = 
9.2 Hz), 134.4 (d, J = 9.6 Hz), 124.3 (d, J = 2.9 Hz), 118.7 (d, 
J = 21.4 Hz), 113.0 (d, J = 21.4 Hz), 22.4.
4-fluoro-2,6-dimethylbenzoic acid (3e) (17.4 mg, 31%) as 
white solid. 
2-methyl-4-(trifluoromethyl)benzoic acid (3r)21 (23.8 mg, 
35%) as white solid. 1H NMR (500 MHz, CDCl3) δ 8.17 (d, J 
= 8.5 Hz, 1H), 7.60 – 7.51 (m, 2H), 2.72 (s, 3H); 13C{1H} 
NMR (126 MHz, CDCl3) δ 172.3, 142.1, 134.3 (q, J = 32.5 
Hz), 132.0, 131.5, 128.7 (q, J = 3.8 Hz), 123.5 (q, J = 272.8 
Hz), 122.73 (q, J = 3.7 Hz), 22.04.
2,6-dimethyl-4-(trifluoromethyl)benzoic acid (3s)22 (29.9 
mg, 42%) as white solid. 1H NMR (500 MHz, CDCl3) δ 7.31 (s, 
2H), 2.43 (s, 6H); 13C{1H} NMR (126 MHz, CDCl3) δ 173.9, 
153.6, 136.4 (q, J = 3.7 Hz ), 136.0, 131.5 (q, J = 32.0 Hz), 125.8 
(q, J = 272.7 Hz), 124.5 (q, J = 3.8 Hz), 19.9.
Procedure for Preparation of A.
3-Methylbenzoic acid 1a (68 mg, 0.5 mmol) was treated with 
KOH (16 mg, 0.4 mmol) in water (0.5 mL) at room 
temperature for 1 h. Then solvent was removed in a rotary 
evaporator, and the white solid was washed with CH2Cl2 (1.0 
mL × 3) and dried under vacuum at 100 °C to get potassium 
m-toluate (50 mg, 57% yield). Palladium acetate (56 mg, 0.25 
mmol) was added to a suspension of potassium m-toluate (43.5 
mg, 0.25 mmol) in 1,4-dioxane (3.0 mL), then the mixture was 
heated at reflux temperature in a heating plate for 2 h. The 
reaction mixture was filtered, and the residue was washed with 
CH2Cl2 (3 mL × 3) and dried under vacuum to get the 
palladacycle A (43.2 mg, 51% yield). 1H NMR (500 MHz, 
DMSO – d6) δ 7.46 (d, J = 7.9 Hz, 1H), 6.93 (s, 1H), 6.88 (d, 
J = 7.9 Hz, 1H), 2.21 (s, 3H), 1.76 (s, 3H); 13C{1H} NMR (126 
MHz, DMSO – d6) δ 178.2, 175.9, 143.1, 143.0, 133.5, 131.5, 
131.0, 129.5, 25.2, 20.9.
Gram-Scale reaction experiment

A dried 50 mL Schlenk tube was charged with 1j (1.075g, 5 
mmol), 2a (1.46 mg, 10 mmol), Pd(OAc)2 (113 mg, 10 mol %), 
KOAc (0.98 g, 10 mmol) in HFIP (15 mL) under air. This 
mixture was heated to 80 °C in an oil bath for 24 h. Upon 
completion, the reaction mixture was cooled to room 
temperature, diluted with ethyl acetate, and filtered through a 
pad of celite. The filtrate was concentrated under vacuum, and 
the resulting residue was purified by flash chromatography on 
silica gel with ethyl acetate: hexane:AcOH (1:8:0.03) to give 
the corresponding products 3j (0.387g, 34%) and 1j (0.644g, 
60%).
One-pot competition experiment

A dried 10 mL Schlenk tube was charged with Benzoic acid 
1t (12.2 mg, 0.1 mmol), deuterated benzoic acid 1t-d5 (12.7 
mg, 0.1 mmol), 2a (58.4 mg, 0.4 mmol), Pd(OAc)2 (4.5 mg, 
10 mol %), KOAc (39.3 mg, 0.4 mmol) in HFIP (0.5 mL) 
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under air. This mixture was heated to 80 °C in a heating plate 
for 24 h. Upon completion, the reaction mixture was cooled to 
room temperature, diluted with ethyl acetate, and filtered 
through a pad of celite. The filtrate was concentrated under 
vacuum, and the resulting residue was purified by preparative 
thin layer chromatography (PTLC) with ethyl acetate: 
hexane:AcOH (1:4:0.03) to give a mixture of 3t and 3t-d4 in 
23% combined yield. The ratio of 3t/3t-d4 was determined to 
be 1.86 by the 1H NMR spectrum of the mixture.
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