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Abstract A simple and green method is described for the synthesis of
trisubstituted pyrazoles from a,B-alkynyl N-tosylhydrazones under met-
al- and solvent-free conditions. Notably, only diisopropylamine is re-
quired as a promoter, and the reaction can be easily performed at room
temperature and on a gram scale.
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Pyrazoles are among the most important N-heterocy-
cles and are found in many natural products and pharma-
ceutically active molecules; they are also frequently used as
ligands for metal-catalyzed cross-coupling reactions in ma-
terials science and in organic synthesis.! Substituted pyra-
zoles, for example, are associated with a broad range of bio-
logical activities, such as antiviral,? antidiabetic,? antibacte-
rial,¥ antiobesity,” antiinflammatory,® and antitumor
activities.” In addition, some pyrazole derivatives are pres-
ent as core frameworks in a wide variety of leading drugs
and pesticides, such as celecoxib (Celebrex), sildenafil
(Viagra), zometapine, cyenopyrafen, and fenpyroximate.®
Their diverse pharmacological and biological activities have
stimulated substantial interest in the preparation of these
important heterocycles.

In recent decades, several methods have been devel-
oped for the synthesis of substituted pyrazoles.® Typical
strategies for the synthesis of pyrazoles involve a 1,3-dipo-
lar cycloaddition reaction of diazo compounds and
alkynes,!? the cyclocondensation of hydrazines with 1,3-di-
carbonyl compounds or their equivalents,!! transition-met-
al-catalyzed C-N or C-C cross-coupling reactions,!? or one-
pot reactions through a propargylic substitution-cycliza-
tion cascade sequence from propargylic alcohols and hy-
drazines.'* Recently, «,B-alkynyl hydrazones'# have been
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explored as good precursors for the synthesis of polyfunc-
tionalized pyrazoles with high efficiencies and high regio-
selectivities. However, these syntheses have several draw-
backs, including the use of hazardous transition metals,
harsh reaction conditions, poor regioselectivity, and labori-
ous workup procedures. In particular, it is desirable that
polyfunctionalized pyrazoles prepared for their biological
or pharmaceutical activities are free of residues of metal
catalysts in the final products; consequently, considerable
attention has to be paid to product purification and to the
detection of impurities. To overcome these drawbacks,
more convenient and more environmentally benign ap-
proaches to these N-heterocycles are required.”

As a continuation of our ongoing efforts to develop envi-
ronmentally benign synthetic reactions'® and our interest
in the synthesis of heterocycles,'” we developed a simple
and green method for the synthesis of trisubstituted pyra-
zoles from a,B-alkynyl N-tosylhydrazones under metal- and
solvent-free conditions (Scheme 1). Only diisopropylamine
is required as a promoter, and the reaction can be easily
performed at room temperature and on a gram scale. This
approach has several advantages over the conventional
methods, such as a shorter reaction time, mild reaction
temperatures, high isolated yields, and ease of purification
of the products.
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Scheme 1 Synthesis of pyrazoles under metal- and solvent-free condi-
tions

Because solvent-free synthesis has attracted a great deal
of interest, it was imperative to investigate the reaction un-
der solvent-free conditions. First, we employed the o,B-
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alkynyl N-tosylhydrazone 1a as a substrate and investigated
its electrophilic cyclization reaction under metal- and sol-
vent-free conditions. The reaction proceeded successfully
in a porcelain mortar and pestle with K,CO; as the promot-
er, without any catalyst, to give the corresponding pyrazole
2ain 79% yield at room temperature in 30 minutes (Table 1,
entry 1). Next, we carefully examined the effectiveness of
various bases in the reaction. The inorganic bases Cs,COs,

Na,CO;, and KOH behaved similarly to K,CO;, giving the cor-
responding pyrazole 2a in 48, 27, and 44% yield, respective-
ly (entries 2-4). However, only a trace of 2a was detected
when t-BuOK was used under the same reaction conditions
(entry 5). Interestingly, when DBU was used as the promot-
er, a 78% yield of 2a was obtained (entry 6). Although
the use of Et;N resulted in an increased yield of 2a (entry 7),
i-Pr,NH was found to be the most effective base for this re-
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Scheme 2 Diisopropylamine-promoted metal- and solvent-free synthesis of pyrazoles. All the reactions were carried out on a 0.3 mmol scale of 1 in
the presence of 0.6 mmol of i-Pr,NH under air at room temperature with grinding for 30 minutes. Isolated yields are reported.
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action (entry 8). Increasing the loading of i-Pr,NH did not
improve the yield of the product (entry 9). Finally, for com-
parison, we attempted the reaction in the absence of a base,
but no reaction occurred under these conditions (entry 10).

Table 1 Effect of the Base on the Electrophilic Cyclization Reaction of
the o,B-Alkynyl N-Tosylhydrazone 1a under Metal- and Solvent-Free
Conditions?

NNHTs s
base N—N
Ph \\ m» Ph/&)\Ph
1a P 2a
Entry Base (mol%) Time (min) Yield® (%)
1 K,CO; (200) 30 79
2 Cs,C05 (200) 30 48
3 Na,COj3 (200) 60 27
4 KOH (200) 60 44
5 t-BuOK (200) 30 trace
6 DBU (200) 30 78
7 Et3N (200) 30 88
8 i-Pr,NH (200) 30 92
9 i-Pr,NH (300) 30 92
10 - 60 NR®

3 Reactions conditions: 1a (0.15 mmol), r.t.
b Yield of the isolated pure product.
¢ No reaction; the starting materials were recovered.

To examine the scope of the present procedure, we per-
formed the reaction with a variety of «,B-alkynyl N-tosyl-
hydrazones 1 under metal- and solvent-free conditions
(Scheme 2).!8 We found that the reaction proceeded
smoothly with a wide range of substrates to give the corre-
sponding pyrazoles 2 in high yields. Among the R' groups
on the «,B-alkynyl N-tosylhydrazones 1, substituents con-
taining a phenyl ring bearing an electron-donating group or
halogen were tolerated and generally gave the desired
products 2 in high yields (2b-i). Interestingly, the reaction
proceeded smoothly with o,B-alkynyl N-tosylhydrazone
bearing a 2-naphthyl substituent, affording the correspond-
ing product 2j in excellent yield. In addition, replacement of
the aryl groups R! with alkyl groups also led to the desired
2k-m in good yields. Next, we investigated effects of a sub-
stituent at the alkyne terminus (2n-t). The reaction was
not significantly affected by the presence of substituents on
the aromatic ring of the R? group of a,B-alkynyl N-tosylhy-
drazones 1n-t; both electron-donating and halogen groups
were tolerated under the reaction conditions. Besides, we
were pleased to discover that substrate 1w, in which both R
and R? are alkyl groups, was also compatible with this
transformation, giving the desired pyrazole product 2u in

excellent yield. Moreover, note that the reaction proceeded
readily when fluoro-containing substrates were used in this
transformation (2d, 2g, 2Kk, 2r, and 2s).

More interestingly, when an «,B-alkynyl N-tosylhydra-
zone 1v with a terminal alkyne moiety was used in the re-
action, the corresponding pyrazole 2v was successfully ob-
tained in excellent yield (Scheme 3, eq 1). Furthermore,
substrate 1w, bearing a trimethylsilyl substituent at the
alkyne terminus, also reacted smoothly, with concomitant
elimination of the TMS group, to afford product 2w in mod-
erate yield (Scheme 3, eq 2).
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Scheme 3

To examine the practical utility of this reaction, we per-
formed it on a large scale. When we chose the o,B-alkynyl
N-tosylhydrazone 1a as a substrate for a gram-scale synthe-
sis, the reaction proceeded smoothly to give the pyrazole 2a
in 81% isolated yield under metal- and solvent-free condi-
tions (Scheme 4).
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Scheme 4 Large-scale reaction

Scheme 5 shows our proposed mechanism for the for-
mation of pyrazole 2a through an intramolecular electro-
philic cyclization process. An initial base-promoted depro-
tonation of alkyne 1a gives intermediate A, which then un-
dergoes intramolecular electrophilic cyclization to provide
intermediate B. Protonation of intermediate B affords the fi-
nal product 2a.

In conclusion, we have developed a straightforward and
green method for the synthesis of pyrazoles in good to ex-
cellent yields from a,B-alkynyl N-tosylhydrazones, promot-
ed by i-Pr,NH under metal- and solvent-free reactions at
room temperature. This metal- and solvent-free reaction
readily permits the ecofriendly synthesis of novel trisubsti-
tuted pyrazole derivatives that might have widespread ap-
plications in the synthesis of bioactive natural products or
pharmaceuticals. Additionally, this method can be per-
formed on a large scale without any problems.
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Scheme 5 Possible mechanism for the formation of pyrazole 2a by an intramolecular electrophilic cyclization reaction
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(18) Pyrazoles 2; General Procedure
i-Pr,NH (0.6 mmol) and the appropriate N-tosylhydrazone 1
(0.3 mmol) were thoroughly ground with a pestle and mortar
for 30 min. When the reaction was complete, the mixture was
purified by crystallization from CH,Cl, or by column chroma-
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tography (silica gel, EtOAc-PE) to give the pure pyrazole
product 2.

3,5-Diphenyl-1-tosyl-1H-pyrazole (2a)

White solid; yield: 103 mg (92%; gram scale: 81%); mp 122-
124 °C. IR (KBr): 3029, 2921, 2855, 1594, 1558, 1459, 1382,
1195, 1177, 761, 660, 598 cm'. 'H NMR (500 MHz, CDCl,):

§=2.35(s, 3 H), 6.60 (s, 1 H), 7.19 (d, ] = 8.0 Hz, 2 H), 7.35-7.45
(m, 8 H), 7.62 (d, J=8.0 Hz, 2 H), 7.84 (d, J=7.0 Hz, 2 H). 13C
NMR (125 MHz, CDCl;): §=21.69, 109.54, 126.48, 127.84,
128.04, 128.72, 129.33, 129.49, 129.62, 129.67, 130.02, 131.37,
134.88, 145.35, 149.48, 155.21. HRMS (ESI): m/z [M + H]* calcd
for C,,H9N,0,S: 375.1167; found: 375.1161.
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