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Efficient Synthesis of Pyridylacrylonitriles
via the Heck Reaction

Kui Mei

College of Pharmacy, Wuhan University, Wuhan, China

Junbo Wang

Sundia Meditech Company Ltd., Shanghai, China

Xianming Hu
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Abstract: A new synthetic pathway to pyridylacrylonitriles has been developed based

on a palladium-catalyzed Heck reaction. The optimized process and the preparation of

related functionalized pyridylacrylonitriles are discussed.

Keywords: Heck reaction, palladium acetate, pyridylacrylonitrile

INTRODUCTION

Substituted pyridines, especially functionalized pyridines, exhibit a diverse

range of effects when introduced into biological systems. Among them, pyri-

dylacrylontriles (2) have attracted significant attention because of their

potential as building blocks in medicinal chemistry.[1] Thus, the preparation

of pyridylacrylontriles is of increasing interest.

There are several approaches for the synthesis of pyridylacrylonitriles,

including the Knoevenagel condensation,[2] the Wittig reaction,[3] and the

Peterson reaction.[4] However, these previously reported methods have
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certain disadvantages such as limited availability of starting materials, which

limit their applications to some extent.

Recently Hutchinson et al.[5] and Berthiol et al.[6] described an efficient

Heck coupling of 3-bromopyridine with acrylates. We herein report an

improved synthesis of pyridylacrylonitriles via the Heck reaction between

bromopyridines (1) and acrylonitrile (Scheme 1). Generally, a Heck

coupling reaction system involves palladium acetate, ligand, base, solvent,

and other additives. We investigated the effects of these factors and

developed a practical synthesis of pyridylacrylonitriles.

RESULTS AND DISCUSSION

We selected 3-bromopyridine (1a) as the substrate in a model reaction and

performed a comparative study of this coupling reaction under various

conditions. The results are shown in Table 1.

From Table 1, it can be observed that temperature is important for this

reaction. Different solvents worked well for this reaction, as long as they

could sustain the reaction temperature; thus N-methyl-2-pyrrolidinone

(NMP), toluene, and N,N-dimethylformamide (DMF) were good, but

dioxane and acetonitrile gave low yields.

Generally, the ligands play important roles in Heck reaction. We screened

four electron-rich phosphorous-based ligands including triphenylphosphine,

tri-(o-tolyl)phosphine, tri-(2-furyl)phosphine, and tri-(2-thienyl)phosphine

and found that tri-(o-tolyl)phosphine worked best (Entries 4 to 7).

The investigation of various bases was also performed. NaHCO3 (66%)

and triethylamine (TEA) (62%) gave much better results than Na2CO3,

K3PO4, and NaOAc.

A number of reports have indicated that phase-transfer conditions are

superior to Pd-catalyzed Heck reactions, and many reactions under Jeffery’s

conditions did give good yields.[7] Accordingly, we designed two reactions

using tetra-n-butylammonium chloride as phase-transfer agent. We found

that under these conditions the reactions completed faster and no ligand was

necessary (Entries 9 and 10). Interestingly, the reaction worked well with

TEA as base or in toluene (Entries 11 and 12). This fact suggests that tetra-

n-butylammonium chloride in the reaction is not only the phase-transfer

Scheme 1.
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agent but also presumably the stabilizer of intermediate Pd0 species, as

reported previously.[8]

Overall, we found the following conditions were efficient for the Heck

reaction of 3-bromopyridine with acrylonitrile: (a) Pd(OAc)2, n-Bu4NCl,

DMF, NaHCO3, 110 8C, 4 h; (b) Pd(OAc)2, n-Bu4NCl, toluene, NaHCO3,

110 8C, 16 h; and (c) Pd(OAc)2, n-Bu4NCl, DMF, TEA, 110 8C, 16 h.

Under these optimized conditions, other substituted pyridyl bromides

could be converted into the corresponding functionalized pyridylacrylonitriles

(Table 2).

The Heck reaction of 4-bromopyridine in the presence of n-Bu4NCl with

TEA as the base (Entry 1b) was much better than the one with NaHCO3. As

expected, the Heck reaction of 3,5-dibromopyridine (Entry 1c) gave a

mixture of three isomeric products determined by 1H NMR. The reaction of

4-methyl-3-bromopyridine and 5-bromo-2-methoxypyridine (Entries 1d and

1e) required more catalyst Pd(OAc)2 (6%) to achieve the acceptable yields.

However, we did not obtain coupling products when 2-bromopyridine

was used as substrate, even with higher loading of catalyst or with tetrakis(tri-

phenylphosphine)palladium. Probably the oxidative addition intermediate of

Pd0 dimerizes to form a stable complex,[9] which renders the palladium

catalyst unavailable for further reaction.

In conclusion, we disclosed the Heck reaction between pyridyl bromides

and acryonitrile for the synthesis of a variety of pyridylacryonitriles.

Table 1. Heck reactions between 3-bromopyridine and acrylonitrilea

Entry

Temp.

(8C)b Ligand Solvent Base Additive

Time

(h)

Yieldc

(%)

1 90 (o-tol)3P DMA TEA — 24 18

2 110 (o-tol)3P DMA TEA — 24 54

3 140 (o-tol)3P DMA TEA — 24 46

4 110 (o-tol)3P DMF TEA — 24 62d

5 110 PPh3 DMF TEA — 24 45

6 110 (2-thienyl)3P DMF TEA — 24 21

7 110 (2-furyl)3P DMF TEA — 24 17

8 110 (o-tol)3P DMF NaHCO3 — 24 66d

9 110 (o-tol)3P DMF NaHCO3 n-Bu4NCl 4 85

10 110 — DMF NaHCO3 n-Bu4NCl 4 94

11 110 — DMF TEA n-Bu4NCl 16 85

12 110 — Toluene NaHCO3 n-Bu4NCl 16 90

13 110 — Toluene TEA n-Bu4NCl 16 74

aUnless otherwise noted, all reactions were performed with 2.0 mmol of 3-bromo-

pyridine, 6.0 mmol of acrylonitrile, 0.04 mmol of Pd(OAc)2.
bOil bath temp.
cIsolated yield.
dWhen this reaction was run for 48 h, yield was not improved.
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EXPERIMENTAL

General

All melting points were determined on a ShenGuang WRR apparatus and

are uncorrected. 1H NMR spectra was recorded on Mercury-300 (300 MHz)

using TMS as internal reference in CDCl3 or in CD3OD. The liquid

Table 2. Reaction of various bromopyridines with acrylonitrilea

Entry Substrate 1 Product 2

Timeb

(h)

Yieldc

(%) E/Zd

1b 12 94e 5/1

1c 4 91 3/3/1f

1d 12 85g 2.5/1

1e 12 71g 4/1

1f 4 84 2/1

1 g 4 75 2/1

aUnless otherwise noted, all reactions were performed with 2.0 mmol of bromopyr-

idine, 6.0 mmol of acrylonitrile, 0.04 mmol of Pd(OAc)2, 2.0 mmol n-Bu4NCl, and

6.0 mmol NaHCO3 in DMF at 1108C.
bMonitored by TLC until the bromopyridine reacted completely.
cIsolated yield.
dDetermined by 1H NMR.
e4-Bromopyridine hydrochloride salt was used, and the base was TEA (8.0 mmol).
fE-E/Z-E/Z-Z.
gPd(OAc)2 (6%) was used.
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chromatography-mass spectrometry (LC/MS) was equipped with a Symmetry

C18 (0.46 mm � 50 mm) column. Mass spectra were recorded by atmospheric

pressure chemical ionization (APCI). The CHN elemental analyses were

performed at Shanghai Institute of Materia Medica, Chinese Academy of

Sciences.

General Procedure for a Heck Coupling between Bromopyridine

and Acrylonitrile

A mixture of bromopyridine (2 mmol), acrylonitrile (6 mmol), Pd(OAc)2

(0.04 mmol), ligand (0.08 mmol, if necessary), n-Bu4NCl (2 mmol, when

present), and base (6 mmol) in 5 ml of solvent was stirred under nitrogen

(for reaction time and temperature, see Tables 1 and 2). After removing the

solvent in a vacuum, the residue was extracted with methylene chloride

(10 ml � 3) and washed with water (10 ml � 3). The organic phase was

dried over anhydrous Na2SO4, filtered, and concentrated. The crude product

was purified by flash column chromatography (silica, petroleum ether/ethyl

acetate) to afford the pure desired compound.

Data

3-(3-Pyridyl)acrylonitrile (2a). White solid [E/Z ca. 5/1 (1H NMR)]: mp 82–

84 8C. 1H NMR (CD3OD): d 6.4 (d, J ¼ 16.8 Hz, 1H), 7.5 (m, 1 H), 7.6

(d, J ¼ 16.8 Hz, 1H), 8.1 (m, 1H), 8.5 (m, 1H), 8.7 (m, 1H), 5.8

(d, J ¼ 12.3 Hz, 0.2H), 7.3 (d, J ¼ 12.3 Hz, 0.2H), 7.5 (m, 0.2H), 8.3

(m, 0.2H), 8.6 (m, 0.2H), 8.8 (m, 0.2H). Elemental analysis calcd. (%) for

C8H6N2: C, 73.83; H, 4.65; N, 21.52; found: C, 73.63; H, 4.67; N, 20.99. MS

(APCI): m/e ¼ 131.1 [MþH]þ. Recrystallized with petroleum ether gave

pure E-isomer: mp 105–107 8C (lit.[10] 106–107 8C). 1H NMR (CD3OD): d

6.4 (d, J ¼ 16.8 Hz, 1H), 7.5 (dd, J ¼ 4.8, 8.2 Hz, 1H), 7.6 (d, J ¼ 16.8 Hz,

1H), 8.1 (m, 1H), 8.5 (dd, J ¼ 2.1, 4.8 Hz, 1H), 8.7 (d, J ¼ 2.1 Hz, 1H).

3-(4-Pyridyl)acrylonitrile (2b). White solid [E/Z ca. 5/1 (1H NMR)]: mp

48–51 8C. 1H NMR (CD3OD): d 6.5 (d, J ¼ 16.8 Hz, 1H), 7.5–7.6 (m, 3H),

8.5 (m, 2H); 5.9 (d, J ¼ 12.3 Hz, 0.2H), 7.3 (d, J ¼ 12.3 Hz, 0.2H), 7.7 (dd,

J ¼ 1.8, 4.5 Hz, 0.4H), 8.6 (dd, J ¼ 1.8, 4.5 Hz, 0.4H). Elemental analysis

calcd. (%) for C8H6N2: C, 73.83; H, 4.65; N, 21.52; found: C, 73.70; H,

4.58; N, 21.15. MS (APCI): m/e ¼ 131.3 [MþH]þ. Recrystallized with

petroleum ether gave pure E-isomer: mp 71–72 8C (lit.[10] mp 70–71 8C).
1H NMR (CD3OD): d 6.5 (d, J ¼ 16.8 Hz, 1H), 7.5 (m, 2H), 7.6

(d, J ¼ 16.8 Hz, 1H), 8.5 (m, 2H).

3-[5-(2-Cyanovinyl)(3-pyridyl)]acrylonitrile (2c). White solid [E-E/Z-E/Z-

Z ca. 3/3/1 (1H NMR)]: mp 181–1848C. 1H NMR (CD3OD): d 6.5
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(d, J ¼ 16.8 Hz, 2H), 7.6 (d, J ¼ 16.8 Hz, 2H), 8.3 (t, J ¼ 2.1, 2.1 Hz, 1H), 8.7

(d, J ¼ 1.8 Hz, 2H); 5.9 (d, J ¼ 12.6 Hz, 1H), 6.4 (d, J ¼ 16.8 Hz, 1H), 7.4

(d, J ¼ 12.6 Hz, 1H), 7.7 (d, J ¼ 16.8 Hz, 1H), 8.5 (t, J ¼ 2.1 Hz, 1.8 Hz,

1H), 8.8 (d, J ¼ 2.1 Hz, 1H), 8.9 (d, J ¼ 2.1 Hz, 1H), 6.0 (d, J ¼ 12.3 Hz,

0.6H), 7.4 (d, J ¼ 12.3 Hz, 0.6H), 8.6 (t, J ¼ 1.8 Hz, 2.4 Hz, 0.3H), 8.9

(d, J ¼ 2.4 Hz, 0.6H). Elemental analysis calcd. (%) for C11H7N3: C, 72.85;

H, 3.86; N, 23.18; found: C, 72.82; H, 3.85; N, 22.87. MS (APCI):

m/e ¼ 182.0 [MþH]þ.

3-(4-Methyl(3-pyridyl))acrylonitrile (2d). White solid [E/Z ca. 2.5/1 (1H

NMR)]: mp 70–72 8C. 1H NMR (CD3OD): d 2.4 (s, 3H), 6.32

(d, J ¼ 16.8 Hz, 1H), 7.3 (d, J ¼ 4.2 Hz, 1H), 7.8 (d, J ¼ 16.8 Hz, 1H), 8.4

(d, J ¼ 5.4 Hz, 1H), 8.7 (s, 1H), 2.3 (s, 1.2H), 5.9 (d, J ¼ 12.0 Hz, 0.4H), 7.4

(d, J ¼ 5.4 Hz, 0.4H), 7.6 (d, J ¼ 12.0 Hz, 0.4H), 8.4 (d, J ¼ 5.4 Hz, 0.4H),

8.8 (s, 0.4H). Elemental analysis calcd. (%) for C9H8N2: C, 74.95; H, 5.55;

N, 19.43; found: C, 74.60; H, 5.32; N, 19.44. MS: m/e ¼ 145.2 [MþH]þ.

Recrystallized with petroleum ether gave pure E-isomer: mp 102–104 8C. 1H

NMR (CD3OD): d 2.4 (s, 3H), 6.3 (d, J ¼ 16.8 Hz, 1H), 7.3 (d, J ¼ 4.2 Hz,

1H), 7.8 (d, J ¼ 16.8 Hz, 1H), 8.4 (d, J ¼ 5.4 Hz, 1H), 8.7 (s, 1H).

3-(6-Methoxy(3-pyridyl))acrylonitrile (2e). White solid [E/Z ca. 4/1 (1H

NMR)]: mp 78–80 8C. 1H NMR (CDCl3): d 3.9 (s, 3 H), 5.7

(d, J ¼ 16.6 Hz, 1H), 6.7 (d, J ¼ 9.0 Hz, 1H), 7.3 (d, J ¼ 16.6 Hz, 1H), 7.7

(dd, J ¼ 9.0, 2.4 Hz, 1H), 8.2 (d, 2.4 Hz, 1H); 4.0 (s, 0.75H), 5.4

(d, J ¼ 12.3 Hz, 0.25H), 6.8 (d, J ¼ 8.7 Hz, 0.25H), 7.0 (d, J ¼ 12.3 Hz,

0.25H), 7.2 (m, 0.25H), 8.3 (m, 0.25H). Elemental analysis calcd. (%) for

C9H8N2O: C, 67.49; H, 5.03; N, 17.49; found: C, 67.14; H, 4.95; N, 17.07.

MS (APCI): m/e ¼ 161.1 [MþH]þ. Recrystallized with petroleum ether

gave pure E-isomer: mp 106–108 8C. 1H NMR (CDCl3): d 3.9 (s, 3H), 5.7

(d, J ¼ 16.6 Hz, 1H), 6.7 (d, J ¼ 9.0 Hz, 1H), 7.3 (d, J ¼ 16.6 Hz, 1H), 7.7

(dd, J ¼ 9.0, 2.4 Hz, 1H), 8.2 (d, 2.4 Hz, 1H).

5-(2-Cyanovinyl)pyridine-2-carbonitrile (2f). Pale yellow solid [E/Z ca. 2/1

(1H NMR)]: mp 145–147 8C. 1H NMR (CD3OD): d 6.5 (d, J ¼ 16.8 Hz, 1H),

7.6 (d, J ¼ 16.8 Hz, 1H), 7.8 (d, J ¼ 8.4 Hz, 1H), 8.2 (dd, J ¼ 8.4, 2.1 Hz,

1H), 8.7 (d, J ¼ 2.1 Hz, 1H); 6.0 (d, J ¼ 12.3 Hz, 0.5H), 7.4 (d, J ¼ 12.3 Hz,

0.5H), 7.9 (d, J ¼ 8.4 Hz, 0.5H), 8.4 (dd, J ¼ 8.4, 2.4 Hz, 0.5H), 8.9

(d, J ¼ 2.1 Hz, 0.5H). Elemental analysis calcd. (%) for C9H5N3: C, 69.67;

H, 3.25; N, 27.08; found: C, 69.58; H, 3.35; N, 26.79.

Methyl 5-(2-cyanovinyl)pyridine-3-carboxylate (2 g). White solid [E/Z ca.

2/1 (1H NMR)]: mp 130–133 8C. 1H NMR (CDCl3): d 3.9 (s, 3H), 6.5 (d,

J ¼ 16.5 Hz, 1H), 7.6 (d, J ¼ 16.5 Hz, 1H), 8.6 (m, 1H), 8.9 (d, J ¼ 2.1 Hz,

1H), 9.1 (d, J ¼ 2.1 Hz, 1H), 4.0 (s, 1.5H), 5.9 (d, J ¼ 12.3 Hz, 0.5H), 7.4

(d, J ¼ 12.3 Hz, 0.5H), 8.8 (m, 0.5H), 9.0 (d, J ¼ 2.1 Hz, 0.5H), 9.1

(d, J ¼ 1.5 Hz, 0.5H). Elemental analysis calcd. (%) for C10H8N2O2: C,
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63.80; H, 4.25; N, 14.88; found: C, 63.98; H, 4.35; N, 14.70. MS (APCI): m/
e ¼ 189.1 [MþH]þ.
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