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Abstract Bisthiourea derivatives 1,10-(ethane-1,2-diyl)-

bis(3-phenylthiourea), 1,10-(propane-1,3-diyl)bis(3-phen-

ylthiourea), and 1,10-(butane-1,4-diyl)bis(3-phenylthiourea)

have been synthesized and characterized by IR, 1H NMR,

and 13C NMR. Suitable crystals of 1,10-(propane-1,3-diyl)-

bis(3-phenylthiourea) were grown for single-crystal X-ray

analysis and from the data it was observed that they organize

into the P-1 space group. The thermal decomposition of these

compounds has been studied by TG–DSC.
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Introduction

Urea and thiourea derivatives are conspicuous for their

biological activity as they form strong hydrogen bonding

interactions and coordinate metal ions [1–3]. In recent

years, the use of urea and thiols as functionalized ligands

has been extensively studied in catalytic reactions such as

hydroformylation [4], hydrosilylation [5], asymmetric

reduction [6], cyclization [7], hydrolytic kinetic resolution

of epoxides [8], and hydrogenation [9]. Other applications

include their use as synthetic cation–anion ionophores [10,

11], chromogenic and fluorogenic receptors [12], surfactant

self-assemblies [13], and photo-dimerizing agents for

coumarins [14]. A number of bisthiourea–urea single

crystals have been studied for nonlinear optical properties

[15–17]. Thermal analyses are especially useful for

studying the chemical and physical behavior of catalysts.

Owing to the different internal organization within the

solid state, polymorphs may show different melting points,

solubility, chemical reactivity, and stability. Variations in

catalytic conditions can affect the state of a catalyst which

in turn may have considerable effects on the rate, activity,

selectivity, and turnover. It is thus important to study the

thermal behavior of this type of ligand. Here, we report the

synthesis (Scheme 1), crystal structure, spectroscopic elu-

cidation, and thermal study of the bisthiourea derivatives

1,10-(ethane-1,2-diyl)bis(3-phenylthiourea), 1,10-(propane-

1,3-diyl)bis(3-phenylthiourea), and 1,10-(butane-1,4-diyl)-

bis(3-phenylthiourea).

Experimental

Materials and synthesis

Three bisthiourea compounds were synthesized using

phenyl isothiocynate (Merck Schuchardt), ethane-1,2-dia-

mine (Saar Chem), propane-1,3-diamine (Aldrich), butane-

1,4-diamine (Aldrich), diethylether (Merck), and isopro-

panol (Sigma Aldrich).

Instruments and methods

The IR spectra were recorded using a Perkin Elmer Uni-

versal ATR spectrometer. NMR spectra were recorded

employing a Bruker Avance 400 MHz instrument with

either CDCl3 or DMSO-d6 as the solvent. Single-crystal

X-ray diffraction data were collected with a Bruker

KAPPA APEX II DUO diffractometer using graphite-

monochromated Mo-Ka radiation (v = 0.71073 Å). Data
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collection was carried out at 173(2) K. The temperature

was controlled by an Oxford Cryostream cooling system

(Oxford Cryostat). Cell refinement and data reduction were

performed using the program SAINT [18]. The data were

scaled and absorption correction performed using SAD-

ABS [18]. The structure was solved by direct methods

using SHELXS-97 [19] and refined by full-matrix least-

squares methods based on F2 using SHELXL-97 [20]. The

program OLEX2 was used to prepare molecular graphic

images [21]. The powder X-ray diffraction was carried out

using a Bruker D8 Advance instrument. The thermal

characteristics of the samples were determined on a TA

instruments differential scanning calorimeter. 8–10 mg

samples were placed in a standard vessel and heated at a

rate of 20 �C/min in the temperature range 30–1,000 �C

under a nitrogen environment.

Synthesis of 1,10-(ethane-1,2-diyl)bis(3-phenylthiourea)

(1)

A solution of phenyl isothiocyanate (6.75 g, 50 mmol) in

diethyl ether (15 ml) was added dropwise at 15 �C to a

vigorously stirred solution of anhydrous ethane-1,2-dia-

mine (6.01 g, 100 mmol) in isopropyl alcohol (100 ml)

over a period of 30 min. The reaction mixture was stirred

for 2 h at room temperature and quenched with water

(200 ml). The reaction mixture was kept overnight at room

temperature, then acidified with conc. HCl up to pH 2.6.

The solvents were evaporated under reduced pressure, the

residue was then suspended in hot water for 30 min and the

resulting precipitate was filtered under vacuum. The

product was washed with ice-cold water and dried. The

yield was 2.90 g (35%) 1. Mp: 462 K.
1H NMR (DMSO-d6, 400 MHz) d (ppm): 9.5 (br.s., 2H,

NH-CS), 7.37–7.39 (d, 4H, H-arom), 7.29–7.33 (t, 4H,

NCS

NH2

NH2

+ n

n : 1, 2, 3 n: 1, 2, 3 for 1, 2 and 3 respectively
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Scheme 1 Synthesis of

bisthiourea derivatives
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H-arom), 7.10–7.13 (t, 2H, H-arom), 7.82 (br.s., 2H, –NH–

CH2), 3.69 (s, 4H, –CH2–CH2).
13C NMR (DMSO-d6, 100 MHz): 43.14, 123.27,

124.33, 128.66, 138.92, 180.55.

IR. (m, cm-1): 3365, 3225, 1587, 1526, 1507, 1484, 1451,

1436, 1368, 1313, 1293, 1268, 1229, 1182, 1096, 1073, 909,

801, 769, 735, 691, 641, 599, 568, 508, 490, 408, 390.

Synthesis of 1,10-(propane-1,3-diyl)bis(3-

phenylthiourea) (2)

The procedure for the preparation of 1 was repeated using

phenyl isothiocyanate (6.75 g, 50 mmol) and propane-1,3-

diamine (7.41 g, 100 mmol) to give 3.44 g (40%) 2. Mp:

401 K.
1H NMR (CDCl3, 400 MHz) d (ppm): 7.71 (br.s., 2H,

NH-CS), 7.33–7.37 (m, 4H, H-arom), 7.19–7.24 (t, 2H,

H-arom), 7.12–7.14 (d, 4H, H-arom), 6.69 (t, 2H, –NH–

CH2), 3.59 (q, 4H, –CH2–CH2), 1.73 (m, 2H, –CH2–CH2).
13C NMR (CDCl3, 100 MHz): 29.29, 41.55, 125.87,

127.72, 130.28, 135.57, 180.91.

IR. (m, cm-1): 3418, 3169, 3000, 1594, 1532, 1514,

1494, 1435, 1382, 1355, 1310, 1232, 1171, 1099, 1065,

1026, 1007, 961, 865, 840, 822, 761, 720, 694, 643, 600,

545, 489, 407.

Synthesis of 1,10-(butane-1,4-diyl)bis(3-

phenylthiourea) (3)

The procedure for the preparation of 1 was repeated using

phenyl isothiocyanate (6.75 g, 50 mmol) and butane-1,4-

diamine (8.81 g, 100 mmol) to give 2.36 g (35%) 3. Mp:

458 K.

Table 1 X-Ray diffraction data for bisthioureas

1 2 3

2h/� d/Å h k l 2h/� d/Å h k l 2h/� d/Å h k l

15.2 5.8399 – – – 15.5 5.7000 0 2 -1 15.4 5.7569 1 0 -2

16.6 5.3355 1 1 2 17.6 5.0421 – – – 17.5 5.0744 1 1 1

18.5 4.7913 – – – 18.1 4.9036 – – – 18.6 4.7667 0 1 2

20.5 4.3279 2 1 1 20.6 4.3130 1 1 3 19.8 4.4820 1 1 -2

22.1 4.0188 0 0 2 21.5 4.1322 1 3 1 22.0 4.0392 2 1 0

23.0 3.8609 1 0 4 23.9 3.7252 – – – 24.0 3.7066 – – –

25.6 3.4799 3 0 1 24.8 3.5836 3 1 0 24.4 3.6498 1 2 0

26.6 3.3484 2 2 1 26.9 3.3150 1 -2 -3 26.7 3.3324 – – –

27.2 3.2711 3 0 2 27.5 3.2450 3 2 2 27.4 3.2558 2 0 2

30.8 2.9034 0 2 4 29.1 3.0684 3 3 0 29.6 3.0165 2 2 0

33.5 2.6715 1 3 2 33.7 2.6578 3 -2 2 33.6 2.6643 3 1 1

35.8 2.5054 4 0 2 36.6 2.4563 4 2 3 36.4 2.4660 – – –

39.4 2.2859 4 2 0 39.3 2.2918 – – – 40.3 2.2342 2 0 4

43.1 2.0989 5 0 1 43.4 2.0835 4 -1 -3 42.7 2.1144 3 1 -5

48.1 1.8915 4 2 5 48.4 1.8778 1 6 4 48.5 1.8755 2 3 3
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Fig. 3 Single-crystal X-ray

structure of 2. a Projection of

molecule 2 in plane b having

40% probability, all hydrogens

have been removed for clarity,

molecules A and B are linked

via H-bonding N2B-H���O1

(2.872 Å), and O1-H���S2A

(3.218 Å). b Projection of

molecule 2 in plane a having

40% probability, all hydrogens

have been removed for clarity,

molecules B and B are linked

via N1B-H-S1B (3.429 Å)
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1H NMR (CDCl3, 400 MHz) d (ppm): 7.64 (br.s., 2H,

NH-CS), 7.40–7.46 (m, 4H, H-arom), 7.29–7.33 (t, 2H,

H-arom), 7.19–7.21 (d, 4H, H-arom), 6.18 (br.s., 2H, –NH–

CH2), 3.65 (m, 4H, –CH2–CH2), 1.61 (m, 4H, –CH2–CH2).
13C NMR (CDCl3, 100 MHz): 26.12, 44.75, 125.45,

127.55, 130.34, 180.92.

IR. (m, cm-1): 3251, 3155, 3095, 3005, 2933, 1591, 1518,

1492, 1447, 1396, 1306, 1294, 1254, 1178, 1084, 1071, 1027,

930, 811, 750, 718, 692, 639, 600, 549, 490, 402.

Result and discussion

IR and NMR spectra

IR spectra (Fig. 1) of the bisthiourea derivatives show

bands at *3,300 and *1,590 cm-1, which are assigned to

NH stretching and bending vibrations, respectively. The

absorptions observed at *1,445 and *735 cm-1 corre-

spond to C=S stretching and rocking, respectively. The

absorptions recorded at *1,490 and *490 cm-1 can be

assigned to N–C–N stretching and bending vibrations,

respectively. The peaks at *1,090 and *400 cm-1 are

due to the C–N stretch and the S–C–N stretch, respectively.

For compounds 1, 2, and 3 absorptions for N–H–O

hydrogen bonding can be seen around 3,169 cm-1 and

except for 1 weaker bands for the N–H–S interactions

appear around 3,000 cm-1.

The 1H NMR spectra of the thiourea derivatives show

characteristic peaks for the aliphatic and aromatic protons.

Signals associated with the secondary amines were also

present and these peaks disappeared when D2O was added

in a ‘‘shake’’ test. It should be noted that all the signals are

sharp and the associated integration values correspond to

the expected figures.

X-Ray diffraction

The powder X-ray diffractograms of the compounds are

shown in Fig. 2. All the three compounds show many

reflection peaks ranging from 2h = 15� to 60�. This indi-

cates that there are a number of classes of structures that

are intermediate in the states between the crystalline and
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amorphous phases. Moreover, the presence of polar groups

provides some order between two extents of crystallinity.

As the length of the methylene spacer increases so too does

the molecule’s flexibility. The sharp reflections indicate an

increase in associated crystallinity with this augmentation

in flexibility [22, 23]. All the reflections in the powder

X-ray diffractograms match the single crystal powder

patterns. The resultant lattice parameters are summarized

in Table 1.

The single-crystal X-ray structure of compound 1 was

recently reported by our research group, the structure

shows intermolecular hydrogen bonding interactions

between N1–H1���S1 3.379(2) Å that creates layered sheets

in the ab plane. The dihedral angle between the phenyl ring

and the thiourea group is 52.9(4)� [24].

Crystals of compound 2 were grown from a solution of

methanol:methylene chloride’ (1:2 by volume) using the

slow evaporation technique. The single-crystal lattice

parameter values are a: 10.9393(8), b: 12.8867(9), and c:

13.7998(11) and hydrogen bonding occurs with methanol

creating links between two molecules (Fig. 3). All non-

hydrogen atoms were refined anisotropically. The hydroxyl

hydrogen of methanol was located in the difference

electron density maps and refined with a simple bond

length constraint [d(O–H) = 0.97(1) Å] and with Uiso =

1.2 9 Ueq (O). The rest of the hydrogen atoms were placed

at calculated positions with attachment distances ranging

from 0.95 to 0.99 Å and refined as riding on their parent

atoms with Uiso (H) = 1.2 9 Ueq (C) (CCDC: 853522).

The crystal structure of compound 3 shows two distinct

intermolecular hydrogen bonding interactions [25]. The first

occurs between N2–H2 and S1 2.713(16) Å that generates an

infinite chain along the a axis. Due to these interactions an

interlocking molecular structure is formed. The second

occurs between N1–H1 and S1 2.508(18) Å that creates an

infinite chain of molecules along the b axis [25].

All three compounds show a bent structure. Compound

1 is the most linear probably due to its lack of flexibility

relative to the other molecules. It is also observed that all

three derivatives show transoid arrangement of the two

thiourea groups. This is atypical of previously reported

structures of bisurea derivatives [26]. From the crystal

structures, it appears that there is an infinite chain of

molecules for 1 and 3, while 2 has a cage-like structure.

This is presumably because of the hydrogen bonding

arrangement in this example.

Table 2 Thermoanalytical data (TG, DSC) for bisthioureas

Compound TG–DTG DSC Mass loss/% Probable decomposition assignment

Range/�C Peakmax/�C Enthalpy/J/g Obs Cal

1 30–190 (?)42.5 – 1.4 – Solvent or moisture

190–250 (?)200.8 490.0 57.0 59.0 1-(2-Aminoethyl)-3-phenylthiourea

250–350 – – 28.6 28.1 Aniline

350–930 (-)352.0 – 12.7 – –

2 30–180 (?)49.9,

(-)120.4,

(?)130.2,

(-)161.4,

(?)179.4

63.9 7.8 – Solvent or moisture

180–260 – 26.1 59.9 60.7 1-(3-Aminoethyl)-3-phenylthiourea

260–650 (-)345.0 – 25.2 27.0 Aniline

650–990 – – 0.9 – –

3 30–150 (?)75.2 370.6 7.8 – Solvent or moisture

150–270 (-)166.2,

(?)181.5,

384.7 61.2 62.2 1-(4-Aminobutyl)-3-phenylthiourea

270–650 (-)277.6,

(?)294.3,

(-)326.3,

(?)358.0,

(-)386.6

7.1 23.3 25.9 Aniline

650–990 – 24.1 1.4 – –

(?) endothermic, (–) exothermic
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Thermal analysis

All three compounds have two phenyl thiourea groups

separated by a different number of methylene groups. The

DSC traces of 1–3 (Fig. 4) show extensive decomposition

concomitant with the melting process. The endo–exo–endo

peak can be easily seen in the DSC traces, where the broad

exothermic peak followed by the sharp endothermic peak,

correspond to the melting process. The sharpness of this

peak implies a significant degree of crystallinity for the

samples. All the compounds 1–3 show similar DSC

behavior, but 1 decomposes earlier and exhibits only one

endothermic peak, while the other compounds possess

multiple endothermic peaks due to polymorphism [27].

From the thermogravimetric analyses of the compounds

from 30 and 1,000 �C (Fig. 5), it can be observed that 1

decomposes fully at 930 �C, while 2 and 3 decompose with

up to 94.5% mass loss at this temperature. The measured

decomposition range is in four steps. First, from 30 to 180 �C

it is likely that all volatile and low molecular mass fragments

of the derivatives are eliminated. In the second step, from 180

to 260 �C, the major part of the derivatives has decomposed.

It may be the ‘‘aminoalkyl-3-phenylthiourea’’. The third step

differs between 1 and 2–3. For 1, it occurs at 250–350 �C,

while for 2 and 3 it is at 260–650 �C. This may be because of

aniline decomposition (see Scheme 2). From the TG and

DSC data compounds 2–3 (Table 2) follow similar thermal

decomposition pathways. For 1, the shorter distance between

the two thiourea groups appears to have a substantive effect

on its decomposition profile.

Conclusions

Bisthiourea derivatives were synthesized and characterized

by IR, NMR, and single-crystal X-ray crystallography. The

single-crystal structure and powder data were compared.

All the structures have bent transoid arrangements. These

three bisthioureas also possess intermolecular hydrogen

bonding arrangements. The structural behavior was studied

by TG–DTG and the structures retain key properties up to

180 �C. This confirms thermal stability. The derivatives

decompose stepwise as the spacer methylene groups

between the two phenyl thiourea moieties increase. The

compounds appear to mainly decompose into two frag-

ments. From DSC data it was confirmed that multiple

phases exist.
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