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Abstract
A magnetically recoverable nanocatalyst was synthesized by covalent binding of a Schiff base ligand, namely N,N′-
bis(Salicylidene)-1,3-diaminopropane-2-ol  (H2salpn), onto the surface of silica-coated magnetic  CuFe2O4 nanoparticles, 
followed by complexation with  MnCl2. The resulting core–shell nanoparticles were characterized by spectroscopic and 
microscopic methods, including FTIR, XRD, VSM, TGA elemental analysis, TEM, and SEM. The Mn content was deter-
mined by ICP analysis. The nanoparticles were investigated as a catalyst for the selective oxidation of alcohols to the 
corresponding carbonyl compounds with tertiary-butyl hydrogen peroxide. The catalyst can be magnetically separated for 
reuse, with no noticeable loss of activity in subsequent reaction cycles. FTIR, VSM, and leaching experiments after three 
successive cycles confirmed that the catalyst was strongly anchored to the magnetic nanoparticles. A suitable mechanism 
for the reaction is proposed.

Introduction

Oxidation reactions are among the most useful processes 
in organic synthesis, since the products of these reactions 
are widely used as intermediates in the pharmaceutical and 
fine chemical industries [1, 2]. Among the various kinds of 
oxidations, the oxidation of alcohols to carbonyl compounds 
is an essential transformation in the laboratory as well as 
industry [3, 4]. Traditional oxidation methods are associated 
with heavy metals, toxic and environmentally polluting rea-
gents, high temperatures, and moderate chemoselectivities. 
Therefore, much research has been focused on the develop-
ment of economical and environmentally benign oxidation 
processes [5–7].

Oxidation reactions are generally carried out in homoge-
neous systems. Although homogeneous catalysts often show 
higher catalytic activities than their heterogeneous counter-
parts, they can also suffer from difficulties of separation 
and recovery of the catalyst from both the reaction mixture 
and the products [8–13]. Therefore, the immobilization of 
homogeneous catalysts on solid supports has attracted sub-
stantial interest. Recently, various supports have been used 
for the immobilization of homogeneous catalysts, includ-
ing mesoporous silica [14–18], polymers [19, 20], activated 
carbon [21, 22], and inorganic nanoporous materials [23]. 
Magnetic nanoparticles have attracted considerable attention 
due to their unique properties. They have been used in vari-
ous fields such as magnetically assisted drug delivery, mag-
netic resonance imaging, contrast agents and hyperthermia 
treatments [24–29]. One of the most frequent applications 
of magnetic nanoparticles is as a substrate for catalysts [30, 
31].

Ferrites are a class of magnetic nanoparticles which have 
found various applications as image contrast agents [32], 
bioseparation sensors [33, 34], and biomedicines [35, 36]. 
There have been widespread studies on the synthesis of mag-
netic core–shell nanostructures because of their particular 
magnetic properties [37–39]. Coating a silica shell around 
magnetic nanoparticles provides several advantages, such 
as improving the dispersion and enhancement of catalytic 
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activity [40]. The silica layer can also protect the core from 
corrosion during oxidation and epoxidation reactions [41].

The immobilization of manganese complexes on solid 
supports has already received much attention. Manganese 
complexes are often easily synthesized, with mild reaction 
conditions and short reaction times [42–46]. Given that fer-
rites require an inert atmosphere for synthesis [42, 43], in 
this study copper–ferrite was used as a magnetic core. The 
magnetism of this material is almost the same as that of fer-
rites, but the preparation is easier, with no need for an inert 
atmosphere. To the best of our knowledge, this is the first 
report on the synthesis of a Mn Schiff base complex immo-
bilized on copper–ferrite nanoparticles as a magnetic core.

This report describes a simple and efficient synthesis of a 
copper–ferrite supported magnetically recyclable and inex-
pensive manganese Schiff base catalyst and its application 
for the oxidation of alcohols to the corresponding carbonyl 
compounds using tertiary-butyl hydrogen peroxide (TBHP) 
in ethanol. The catalyst can be easily and completely sep-
arated from the reaction mixture by the application of an 
external magnetic field.

Experimental

Chemicals were purchased from Merck or Fluka and used 
without further purification. The purities of the reaction 
products and the overall progress of the reactions were 
checked by TLC on silica gel polygram SILG/UV254 

plates. TEM analysis was performed with a TEM micro-
scope (Philips CM30). FTIR spectra were recorded in the 
4000–400  cm−1 region, using KBr disks, on a Thermo 
SCIENTIFIC model NICOLET iS10 spectrophotometer. 
Elemental analyses were obtained on a LECO CHNS-932 
analyzer. Thermogravimetric analysis (TGA) was performed 
on a computer-controlled Rheometric Scientific model STA 
1500 instrument. Powder X-ray diffraction (XRD) was 
performed on a Philips X’pert diffractometer with Cu  Kα 
(λ = 0.154 nm) radiation. Room-temperature magnetization 
isotherms were obtained using a vibrating sample mag-
netometer (VSM, LakeShore 7400). The Mn content in the 
catalyst was determined with an ICP-OES Optima DV7300 
inductively coupled plasma analyzer. Gas chromatography 
experiments were performed with a Shimadzu 16A chroma-
tograph using a column packed with silicon DC-200 and a 
flame ionization detector (FID).

Preparation of  CuFe2O4 nanoparticles

CuFe2O4 nanoparticles were prepared by thermal decom-
position of copper and iron salts in water in the presence of 
NaOH [44]. In a generic experiment, a solution of NaOH 
(3 g) in deionized water (15 mL) was added to a solution 
of Fe(NO3)3·9H2O (3.34 g, 8.2 mmol) and Cu(NO3)2·3H2O 
(1 g, 4.1 mmol) in deionized water (15 mL) at room tem-
perature over 10  min. After forming a reddish-brown 
precipitate, the mixture was warmed to 90 °C and stirred 
under ultrasonic irradiation for 2 h and then cooled to room 
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temperature. The resulting particles were separated by an 
external magnet, then washed three times with deionized 
water, and dried under vacuum at 80 °C for 12 h. The nano-
particles were then ground in an agate mortar and kept in a 
furnace at 400 °C for 5 h and then cooled to room tempera-
ture.  CuFe2O4 particles of about 45–55 nm diameters were 
so obtained.

Preparation of silica‑coated magnetite  (CuFe2O4@
SiO2 core–shell)

Concentrated aqueous ammonia (3.5 mL) was added slowly 
to a sonicated mixture of  CuFe2O4 nanoparticles (3.5 g) 
suspended in deionized water–ethanol (40:160 mL), and 
the resulted mixture was stirred at 40 °C for 30 min. Tetra-
ethyl orthosilicate (TEOS, 2.0 mL) was then added, and 
the mixture was stirred at 40 °C for 24 h. The silica-coated  
copper–ferrite magnetic nanoparticles  (CuFe2O4@SiO2) 
were isolated with a magnet. The collected solid was washed 
several times with EtOH and diethyl ether and then dried at 
100 °C in a vacuum oven for 24 h [45].

Synthesis of chloro‑functionalized  CuFe2O4@SiO2

CuFe2O4@SiO2 (3.5 g) was sonicated in dry toluene (50 mL) 
for 30 min. 3-Chloropropyltriethoxysilane (3.5 mL) was 

Fig. 1  FTIR spectra of (a)  CuFe2O4@SiO2–salpnH2 and (b) 
 CuFe2O4@SiO2–MnClsalpn

Fig. 2  XRD patterns of (a)  CuFe2O4 and (b)  CuFe2O4@SiO2–
MnClsalpn

Fig. 3  Magnetization curves of (a)  CuFe2O4 and (b)  CuFe2O4@SiO2–
MnClsalpn
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then added to the suspension, and the mixture was stirred at 
105 °C for 24 h. The solid was separated with an external 
magnet, washed several times with ethanol, and dried under 
vacuum [46].

Synthesis of supported Schiff base  (CuFe2O4@SiO2–
salpnH2)

SalpnH2 (N,N′-bis(Salicylidene)-1,3-diaminopropane-2-ol) 
was prepared according to the reported method [47]. A por-
tion of  salpnH2 (1 g, 3.2 mmol) was added to a sonicated 
suspension of  CuFe2O4@SiO2 (2 g) in acetonitrile (100 mL), 
and the resulting mixture was refluxed for 24 h. The solid 
was separated magnetically, washed thoroughly with etha-
nol, and dried under vacuum.

Synthesis of  MnCl2 salpn‑modified  CuFe2O4@SiO2 
 (CuFe2O4@SiO2–MnClsalpn)

CuFe2O4@SiO2–salpnH2 (2.5  g) was sonicated in dry 
acetonitrile (100 mL) for 30 min. To the resulting suspen-
sion,  MnCl2.4H2O (2 g) was added, and the mixture was 
refluxed for 24 h. The solid was separated with an external 
magnet and was subjected to Soxhlet extraction with etha-
nol and then dried under vacuum at 90 °C for 12 h to give 
 CuFe2O4@SiO2–MnClsalpn.

General procedure for oxidation of alcohols

All catalytic experiments were performed in a 5-mL test 
tube. In a typical procedure, to a solution of benzyl alcohol 
(1 mmol) in solvent (0.5 mL),  CuFe2O4@SiO2–MnClsalpn 
(0.0014 g, 2 mol %) and TBHP (2 mmol) were added. The 
reaction mixture was stirred for 1 h at 80 °C, and the prod-
ucts were tracked by TLC or GC. After completion of the 
reaction, the mixture was diluted with EtOAc. The catalyst 

was separated with an external magnet, washed with EtOAc, 
dried, and reused for a sequential run under the same reac-
tion conditions. Evaporation of the solvent from the filtrate 
gave the crude product, which was purified by chromatog-
raphy on silica gel with n-hexane/EtOAc (2:5).

Results and discussion

Scheme 1 shows the chemistry employed for the functionali-
zation of  CuFe2O4 magnetic nanoparticles (MNPs) with the 
manganese Schiff base complex. In the first step, the MNPs 
were coated with a silica shell to obtain  CuFe2O4@SiO2 
core–shell. This outer shell of silica serves to improve the 
dispersibility of the nanoparticles and also provides surface 
Si–OH groups for further surface functionalization. Hence, 
the treatment of the silanol groups of  CuFe2O4@SiO2 with 
chloropropyl trimethoxysilane gives chloropropylated mag-
netite nanoparticles. In the next step, the chloro-functional-
ized  CuFe2O4@SiO2 was substituted by the alkoxide groups 
of  salpnH2 Schiff base to yield the  CuFe2O4@SiO2–salpnH2, 
a tetradentate Schiff base ligand supported on  CuFe2O4@
SiO2. Finally, the reaction of excess  MnCl2·4H2O with 
 CuFe2O4@SiO2–salpnH2 in dry acetonitrile gave  CuFe2O4@
SiO2–MnClsalpn. The final product was subjected to Soxhlet 
extraction in order to remove unreacted  MnCl2.

Characterization of the nanoparticles

In order to confirm the modification of the magnetite sur-
face, FTIR spectra of the prepared  CuFe2O4@SiO2–salpnH2 
and  CuFe2O4@SiO2–MnClsalpn materials were recorded, 
as shown in Fig. 1. The observation of two broad bands at 
around 466–581 cm−1 indicates the presence of the mag-
netite core in both samples. The silica coating of magnetite 
nanoparticles was confirmed by observation of a broad band 

Fig. 4  a SEM image of  CuFe2O4 and b EDAX analysis of  CuFe2O4
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at about 1000–1100 cm−1 assigned to Si–O–Si and Si–OH 
stretching vibrations. In the FTIR spectrum of  CuFe2O4@
SiO2–salpnH2 (Fig. 1a), a band at 1636 cm−1, assigned to 
the C=N stretching vibration of  salpnH2 [48, 49], and some 
weak bands at 1400–1500 cm−1 assigned to the aromatic 
rings of  salpnH2 were observed; these were not present in the 

parent  CuFe2O4@SiO2. Upon reaction with  MnCl2, the C=N 
band at 1636 cm−1 shifted to lower frequency (1620 cm−1) 
(Fig. 1b), indicating complexation of the C=N groups to 
manganese. Further evidence for formation of  CuFe2O4@
SiO2–MnClsalpn was also provided by the observation of 

Fig. 5  a–d HRTEM images of 
 CuFe2O4@SiO2–MnClsalpn 
core–shell nanoparticles and e 
the particle size distribution of 
 CuFe2O4@SiO2–MnClsalpn
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ν(Mn–O) and ν(Mn–N) bands at ca. 570 and ca. 410 cm−1, 
respectively [50, 51].

Figure 2 depicts the XRD pattern of the MNPs. The dif-
fraction peaks can be assigned to the planes of inverse cubic 
spinel-structured  CuFe2O4 (JCPDS no. 034-0425). The same 
confirming characteristic peaks were observed in the XRD 
pattern of  CuFe2O4@SiO2–MnClsalpn, confirming the 
stability of the crystalline phase during surface modifica-
tion of the nanoparticles. The XRD pattern of  CuFe2O4@
SiO2–MnClsalpn shows an obvious peak at 2θ = 5–20, 
assigned to amorphous silica (Fig. 2b). The broadening of 
each peak indicates the nanocrystalline nature of the as-
prepared  CuFe2O4@SiO2–MnClsalpn. The average size of 
 CuFe2O4@SiO2–MnClsalpn deduced from Scherrer’s for-
mula was 36.4 nm.

In order to characterize the magnetic properties of the 
magnetite nanoparticles before and after surface modifica-
tion, we recorded their hysteresis loops at room temperature 
using vibrating sample magnetometry (VSM). The magneti-
zation curves are shown in Fig. 3. The MNPs exhibited no 
remaining effects (superparamagnetic properties) with satu-
ration magnetization of about 25 emu/g. The surface-modi-
fied nanoparticles also showed superparamagnetic behavior, 
with decreased saturation magnetization of about 7 emu/g. 
The  CuFe2O4@SiO2–MnClsalpn nanoparticles showed a sat-
uration magnetization of about 18 emu/g, sufficient for them 
to be separated easily and rapidly from the reaction mixture 
by use of an external magnet. Also, the superparamagnetic 
properties of the  CuFe2O4@SiO2–MnClsalpn nanoparticles 
are suitable to prevent aggregation and enable them to re-
disperse quickly when the magnetic field is removed.

A SEM micrograph of the synthesized  CuFe2O4 nanopar-
ticles is shown in Fig. 4. It is evident that the particles have 
almost uniform spherical morphology with a narrow size 
distribution. The size of the nanoparticles calculated from 

the SEM micrographs was in the range of 45–55 nm, which 
is in good agreement with the value obtained from the XRD 
data (the average size from Scherrer’s formula was about 
48.5 nm). The obtained EDAX spectrum (Fig. 4b) confirms 
the presence of Cu, Fe and O in the sample, with a Cu/Fe 
stoichiometry of 1:1.82 (semiquantitative analysis).

The effect of surface modification on the size and struc-
ture of the MNPs was evaluated by high-resolution transmis-
sion electron microscopy (HRTEM), which showed a spheri-
cal shape for  CuFe2O4@SiO2–MnClsalpn with diameter of 
ca. 50 nm (Fig. 5). It also confirmed the core–shell structure 

Fig. 6  TGA curve for  CuFe2O4@SiO2–MnClsalpn

Table 1  Oxidation of benzyl alcohol to benzaldehyde under different 
conditions

a Isolated yield, reaction conditions: benzyl alcohol (1  mmol), oxi-
dant (2 mmol, except for entries 12–16),  CuFe2O4@SiO2–MnClsalpn 
(2 mol%, except for entries 17–21), reaction time: 1 h
b 60 bubble/min
c 1 mmol TBHP
d Catalyst: 1 mol%
e Catalyst: 3 mol%
f No catalyst
g Catalyst:  CuFe2O4(2 mol%)
h Catalyst:  MnCl2.4H2O (2 mol%)
i Catalytic test with first, second and third recovered catalyst

Entry Oxidants T (°C) Solvent (0.5 ml) Yielda (%)

1 TBHP 80 – 65
2 TBHP 80 EtOH 90
3 TBHP 80 Toluene 85
4 TBHP 65 CH3OH 80
5 TBHP 55 THF 60
6 TBHP 60 CHCl3 60
7 TBHP 80 CH3CN 90
8 TBHP 60 CH2Cl2 20
9 TBHP 80 H2O 60
10 TBHP 80 DMSO 20
11 TBHP 50 EtOH 50
12 O2

b 80 EtOH (1 ml) 40
13 H2O2 80 EtOH Trace
14 UHP 80 EtOH 30
15 – 80 EtOH Trace
16c TBHP 80 EtOH 60
17d TBHP 80 EtOH 50
18e TBHP 80 EtOH 85
19f TBHP 80 EtOH Trace
20g TBHP 80 EtOH 10
21h TBHP 80 EtOH 30
22i (1st) TBHP 80 EtOH 90
23i (2nd) TBHP 80 EtOH 88
24i (3rd) TBHP 80 EtOH 85
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of the particles and confirmed the presence of a silica shell 
of uniform thickness (Fig. 5).

Thermogravimetric analysis (TGA) was used to investi-
gate the thermal stability of  CuFe2O4@SiO2–MnClsalpn, 
as shown in Fig. 6. A weight loss of about 9 wt% between 
25 and 600 °C can be attributed to decomposition of the 
organic component attached to the surface. According to the 
TGA, the amount of organic component functionalized on 
 CuFe2O4@SiO2 was about 9 wt%.

These results are in good agreement with the elemental 
analysis (N = 0.53%) and the ICP analysis, which showed 
that 0.19 mmol of manganese was anchored on 1.0 g of 
 CuFe2O4@SiO2–MnClsalpn nanoparticles.

Catalytic oxidation of alcohols

The catalytic activity of  CuFe2O4@SiO2–MnClsalpn for 
the oxidation of alcohols to the corresponding aldehydes 
or ketones has been investigated. The oxidation of benzyl 
alcohol to benzaldehyde was chosen as a test reaction, with 
TBHP as the terminal oxidant. Our initial experiments 
focused on the choice of reaction solvent (Table 1, entries 
1–10). The reaction was also investigated under solvent-free 
conditions. The best product yields were obtained in ethanol 
and acetonitrile at 80 °C (entries 2 and 7). Since ethanol is 
cheaper and less toxic, it was chosen as solvent for subse-
quent experiments. On lowering the temperature, the product 
yield was decreased (entry 11). Next, the influence of differ-
ent oxidants on the oxidation of benzyl alcohol in ethanol 
at 80 °C was investigated (entries 12–14). TBHP proved to 
be the best option (entry 2). The reaction gave only a trace 
amount of the desired product in the absence of any added 
oxidant (entry 15). A similar reaction with 1 mmol of the 
oxidant gave a low yield (entry 16). Next, the influence of 
different amounts of  CuFe2O4@SiO2–MnClsalpn was stud-
ied. Entries 2, 17, and 18 show that 2 mol% of the catalyst 

gave the best results. The model reaction was also carried 
out in the absence of the catalyst, in the presence of  CuFe2O4 
and  MnCl2.4H2O rather than  CuFe2O4@SiO2–MnClsalpn 
(entries 19–21); under these conditions, the amount of the 
desired product was significantly decreased.

Metal-catalyzed oxidations by alkyl peroxides may pro-
ceed through homolytic or heterolytic mechanisms. Transi-
tion metal complexes of Co, Cu, Fe, and Mn are usually 
involved in hemolytic mechanisms [52–54]. Hence, an 
oxidation mechanism for benzyl alcohol by TBHP in the 
presence of  CuFe2O4@SiO2–MnClsalpn can be proposed 
as shown in Scheme 2.

In order to test the generality of this method, the oxida-
tions of several primary and secondary alcohols under the 
optimized reaction conditions were investigated (Table 2). 
Substituted benzyl alcohols bearing either electron-releas-
ing or withdrawing groups were also oxidized selectively, 
affording the corresponding aldehydes in good-to-excel-
lent yields (entries 1–6). Moderately sterically hindered 
benzyl alcohols were also transformed to the correspond-
ing aldehydes in good yields, without any over-oxidation 
to the corresponding carboxylic acid (entries 2, 3, 5). In 
particular, the heteroaromatic furfuryl alcohol, which is 
known to be a challenging substrate in most transition 
metal catalyst systems, was oxidized selectively to furfural 
in this system (entry 7). Meanwhile, secondary alcohols 
gave the corresponding ketones in good yields (entries 
8–14).

The chemoselectivity of this system was investigated by 
means of a competitive reaction system. A mixture of equal 
amounts of benzyl alcohol and 2-phenyl ethanol was oxi-
dized under the conditions given in Table 2 (Scheme 3). In 
this experiment, benzyl alcohol was quantitatively oxidized 
to benzaldehyde, while the 2-phenyl ethanol remained unre-
acted. In the absence of catalyst, only trace amounts of both 
oxidation products were obtained.

In order to show that nanocatalyst is truly heterogeneous, 
a hot filtration test was performed. In this experiment, benzyl 
alcohol was oxidized for 30 min (ca. 60% yield, Table 1). 
The nanocatalyst was then recovered magnetically at the 
reaction temperature to avoid re-adsorption of the solubi-
lized species, and the solution was decanted into a clean 
test tube. The decantate was heated at 80 °C for 24 h to 
elucidate whether oxidation resulted from a homogeneous 
catalyst leached from the support, or from the surface-bound 
manganese catalyst. The yields were determined after 1 and 
24 h, and it was found that the product amount increased 
only slightly and then remained constant (Table 1). When 
 CuFe2O4@SiO2–MnClsalpn was employed as catalyst, ICP 
analyses showed that only a very small amount of Mn (less 
than 2%) had been lost after the first run. The recyclabil-
ity of a heterogeneous catalyst provides a critical advantage 
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Scheme 2  Proposed mechanism for oxidation of benzyl alcohol with 
TBHP catalyzed by  CuFe2O4@SiO2–MnClsalpn
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Table 2  Oxidation of alcohols with TBHP catalyzed by  CuFe2O4@SiO2–MnClsalpn
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over homogeneous catalysts. The recovered nanocatalyst 
was therefore reused for the oxidation of benzyl alcohol, 
with the results presented in Table 1. The catalytic activity 
showed only a small reduction for three consecutive uses of 
the catalyst. We conclude that the manganese species are 
strongly bonded to the surface of the nanoparticles, such 
that the nanocatalyst is stable under the reaction conditions 
and the oxidation is truly heterogeneous. Also, the magnetic 
properties of the recovered nanocatalyst were investigated 

after the second recovery, by means of VSM analysis. The 
saturation magnetization of the recovered nanocatalyst is 
about 17.5 emu/g, hence there is negligible change in its 
magnetic properties (see Supplementary Materials Fig. S1). 
The FTIR spectrum of the reused catalyst also showed no 
detectable changes compared to the fresh catalyst (see Sup-
plementary Materials Fig. S2).

Table 3 compares the catalyst used in the present study 
with some other catalysts used for oxidation of benzyl alco-
hol, as reported in the literature. It can be observed that the 
catalyst employed here is comparable to, or even superior 
to, other examples as previously reported.

Conclusions

In this study, a magnetically recoverable nanocatalyst with 
high thermal stability (> 200 °C) was synthesized from a 
manganese Schiff base complex anchored on functionalized 

Table 2  (continued)

Reaction conditions: alcohol (1 mmol), TBHP (2 mmol), catalyst (2 mol %), temperature: 80° C
a All products are identified by comparison of their physical data with those of authentic samples
b Isolated yield. Yields are determined by TLC and GC based on the starting alcohol
c1 H NMR (500 MHz,  CDCl3) δ: 2.31 (s, 3H, CH3), 7.20 (d, J = 15 Hz, 2H, ArH), 7.66 (d, J = 15 Hz, 2H, ArH), 9.95 (s, 1H, aldehyde H)
d1 H NMR (500 MHz,  CDCl3) δ: 7.26–7.82 (m, 4H, ArH), 9.96 (s, 1H, aldehyde H)
e TBHP (4 mmol)
f The alcohols were synthesized according to Ref. [55]

OH

OH

H

O

O

quantitative

trace

CuFe2O4@SiO2-MnClsalpn

80 °C, ETOH, TBHP

Scheme 3  Chemoselectivity of the catalyst

Table 3  Comparison of this 
work with systems described in 
the literature for the oxidation 
of benzyl alcohol

a Hexagonal molecular sieves

Catalyst Oxidant Reaction 
time (h)

Tempera-
ture (°C)

Solvent References

Mn@MNP TBHP 4 110 DMSO [56]
SBA-15-pr-NH2-Mn(Salen) TBHP 8 90 Acetonitrile [52]
Mn(salen)Cl-cellulose Oxone 0.5 25 Ethanol [57]
Mn(II)2,2-bipyridine complexes/HMSa TBHP 8 90 Acetonitrile [58]
[Mn(bpy)2]2+/HMS TBHP 8 90 Acetonitrile [59]
CuFe2O4@SiO2–MnClsalpn TBHP 1 80 Ethanol This work
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silica-coated magnetic nanoparticles. The oxidations of alco-
hols to the related aldehydes or ketones with good-to-excel-
lent yields were efficiently mediated by this material. This 
system is both cost-effective and environmentally benign, 
and the catalyst can be readily separated from the reaction 
mixture and reused.
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