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 PREFACE      

    Monoclonal antibodies are an important component of the biopharmaceutical 
industry. Within the burgeoning market of protein - based therapeutics, they are 
the market leaders in terms of volume sales and the most common class of 
product. Almost all commercial antibodies are produced in cultured mamma-
lian cells, and an entire subindustry has grown up around downstream process-
ing to ensure that manufacturing processes generate safe and pure products 
suitable for administration to humans. This is an industry in which I have been 
involved for many years, and one that is facing exciting and diffi cult 
challenges. 

 I fi rst came into contact with the world of monoclonal antibodies in 1986, 
when their production in cultured mammalian cells was still in its infancy. This 
was at the Cancer Research Campaign Laboratories in Nottingham, UK. I was 
a PhD student from Germany, and one of my main tasks was to purify anti-
bodies from mouse ascites, a horrible process for obvious reasons. A milligram 
of antibodies was worth far, far more than its weight in gold. 

 At the time, my colleagues and I had visions of curing cancer by drug tar-
geting, and we linked all sorts of cytotoxic agents to the antibodies we pro-
duced. Unfortunately, some of the expectations surrounding the medical use 
of antibodies turned out to be premature and unrealistic. Our awareness of 
this coincided with the fi rst real downturn in the biotechnology sector, but 
antibodies survived in niche markets for diagnostics and research reagents. 
Years later, new life has been breathed into therapeutic antibodies and they 
are now back, stronger than ever. Indeed, they represent the fastest - growing 
area in biotherapeutics with 21 products on the US market (as of 2007) and 
hundreds in clinical and preclinical development  (1) . 

 At the end of the 1980s, antibodies were produced commercially using 
mammalian cells cultured in perfusion fermenters, but yields rarely exceeded 
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100   mg/L. Huge volumes of culture broth needed to be processed, and 
the easiest way to bring the volume down was polyethylene glycol (PEG) 
  precipitation with tons of material and endless centrifugation cycles. The 
yields were poor and diffi cult to reproduce, but there were no alternatives. 
Since that time, the productivity of cell cultures has increased signifi cantly, 
with 1 – 5   g/L titers now routine and the real prospect of 10 – 20   g/L yields in 
the next decade. How far we have come since the early days of 
biomanufacturing!

 The increase in titers has heaped pressure on the downstream processes 
that we use to extract and purify antibodies from cell culture broth, and the 
technologies used in downstream processing have been forced to modernize 
and improve in the face of this increasing challenge. There is little doubt that 
packed - bed chromatography is the workhorse of current downstream process-
ing, its high resolution and relative simplicity making it the central enabling 
technology in modern bioseparation processes  (2) . As productivity increases, 
however, doubts have been cast on the ability of column chromatography to 
cope with the dramatically increasing product titers in fermentation  (3) . Unlike 
fermentation, capturing steps in downstream processing have hardly any 
economy of scale. Bind - and - elute cycles in chromatography are driven by mass 
rather than by volume, and this means that increasing batch sizes translate into 
increasing costs in a near linear fashion. This phenomenon particularly affects 
the fi rst column, where all of the product must be captured. This initial recov-
ery step has therefore been identifi ed as the most serious potential bottleneck, 
with knock - on effects throughout the processing facility, e.g., in terms of 
column sizes, buffer preparation, and hold. However, this opinion is not shared 
by everyone, and debate continues as to whether or not packed - bed chroma-
tography is here to stay  (4, 5) . 

 These challenges and their surrounding issues set the scene for this exciting 
book, in which I have compiled a selection of chapters from top - tier industrial 
and academic experts providing up - to - date accounts of current best practice 
in the manufacture of monoclonal antibodies. Opinions on the suitability 
of packed - bed chromatography in today ’ s manufacturing environment differ, 
particularly in the light of emerging competitive technologies, and the fi rst 
chapter by Ann Lee and colleagues captures that debate and puts the case for 
and against the continuing reliance on traditional chromatography methods. 
The second chapter by John Curling provides an informative historical over-
view of the development of antibody purifi cation technologies, providing the 
basis for the next fi ve chapters, which consider some of today ’ s major steps in 
antibody processing — harvesting and recovery (Abhinav Shukla and col-
leagues  ), Protein A chromatography (Suresh Vunnum and colleagues), non -
 Protein A strategies (Alahari Arunakumari and Jue Wang),   mixed mode 
chromatography (Pete Gagnon), and integrated polishing (Sanchayita Ghose 
and colleagues). 

 Looking closer, the pace at which fermentation is guiding the way is not 
the only challenge for modern downstream processing. The regulatory frame-
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work, particularly current good manufacturing practice (cGMP) is a moving 
target, and quality requirements are constantly leading to tighter specifi cations 
and higher safety margins, e.g., with regard to small, nonenveloped viruses. The 
chapter by Joe Zhou therefore deals with orthogonal methods for virus 
removal, before we consider platform technologies that integrate virus clear-
ance with capture and purifi cation (Yuling Li and colleagues). Nuno Fontes 
and Robert van Reis then consider the important aspects of scaling up anti-
body purifi cation to industrial levels with a platform of methods that offer the 
potential to set a new standard in antibody manufacture. Finally in this section, 
Thomas M ü ller - Sp ä th and Massimo Morbidelli consider the use of continuous 
chromatography for the high - resolution separation of antibodies, based on a 
laboratory - scale strategy they developed. 

 The next two chapters look at the economic perspectives of antibody manu-
facture, one from the standpoint of process economics (Suzanne Farid) and 
the other from the standpoint of process design and optimization (Andrew 
Sinclair). We then turn to the consideration of emerging technologies, which 
may replace, augment, or supplement traditional chromatography: fl occula-
tion, precipitation, and membrane adsorbers for antibody purifi cation (J ö rg 
Th ö mmes and Uwe Gottschalk); precipitation for the elimination of impurities 
(Judy Glynn); and charged fi ltration membranes (Mark Etzel). 

 While most of the book focuses on the purifi cation of typical, full - size IgG 
molecules produced in fermenters, the fi nal section deals with noncanonical 
antibody varieties and novel sources. There are chapters dealing with the 
purifi cation of antibody fragments (Mariangela Spitali  ) and non - IgG mono-
clonals (IgM and IgA; Charlotte Cabanne and Xavier Santarelli), followed by 
a chapter considering the promising use of plant - based systems for antibody 
manufacture, and the particular challenges faced when isolating antibodies 
and other biopharmaceuticals from plant sources (Zivko Nikolov and 
colleagues). 

 The fi nal chapter wraps up the book by looking to the future and consider-
ing what drives change in the industry, particularly what factors are likely to 
infl uence the techniques and technologies that will be adopted for antibody 
purifi cation in the decade to come. This concluding chapter is written by Hari 
Pujar  , Duncan Low, and Rhona O ’ Leary, three distinguished authors repre-
senting the top - tier companies in the sector. 

 In all likelihood, we will not see a revolution in downstream processing like 
the one that has galvanized upstream process development over the last 20 
years. The chapters in this book are, however, evidence that the future of 
antibody purifi cation holds great promise, underlining the progress that has 
been made in closing the performance gap between upstream production and 
downstream processing. 

 All the contributors to this book live and die for the production of anti-
bodies. Some of us have been there from the very fi rst day, while others have 
joined more recently, but we all passionately believe that technological 
advances and innovation can help to break through the current ceiling in 
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antibody processing and can lead to affordable, high - quality pharmaceutical 
products in the future. 

   U we  G ottschalk
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 DOWNSTREAM PROCESSING OF 
MONOCLONAL ANTIBODIES: 
CURRENT PRACTICES AND 
FUTURE OPPORTUNITIES  

  Brian   Kelley  ,   Greg   Blank  , and   Ann   Lee       

   1.1   INTRODUCTION 

 Monoclonal antibodies (mAbs) are now established as the most prevalent 
class of recombinant protein therapeutics. They can be expressed at high levels 
in cell culture, are typically very soluble, and are relatively stable during pro-
cessing. The nearly universal use of mammalian cell expression systems for 
mAb synthesis, combined with the selection of homologous, humanized mAb 
framework protein sequences, provides opportunities to harmonize manufac-
turing processes around base platforms that can then be used with only slight 
variations from product to product. In addition, by using a platform process, 
manufacturing plants designed for the production of one mAb can usually be 
readily adapted to produce others. 

 For these reasons, mAbs represent a unique group of biological products. 
They accommodate rapid process development time lines, can be produced in 
large quantities, and may be manufactured in multiple facilities during their 
lifecycle as a result of their common process fl owsheets. As a result, they have 
relatively low manufacturing costs and benefi t from the fl exibility of produc-
tion at either in - house or contract production facilities. Although mAbs are 
not commodity products that are substitutable in the clinical setting, they have 
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distinct advantages in production scale and cost, as well as in product develop-
ment speed and convenience, when compared to other recombinant protein 
therapeutics. 

 This introductory chapter attempts to set the context for the following 
chapters, which cover many aspects of mAb purifi cation in detail. A typical 
mAb purifi cation process fl ow sheet is described and used to illustrate the 
impact of purifi cation platforms on mAb production. Factors to consider with 
respect to the various process alternatives or new technologies described in 
upcoming chapters are addressed, emphasizing the integration of unit opera-
tions and process design principles into an optimized, holistic process. Both 
current practices and controversial topics are introduced, among them the 
challenges of very large - scale (VLS) production, issues related to facility fi t, 
the maturation of process purifi cation technology for mAb processing, the 
need for innovations in mAb downstream processing, and the impact of the 
evolving regulatory environment. It is hoped that this backdrop will stimulate 
critical thinking and comprehensive analysis when the processing options 
described in the following chapters are being considered.  

  1.2   A BRIEF HISTORY OF  c  GMP   m  A  b  AND INTRAVENOUS 
IMMUNOGLOBULIN ( I  g  IV ) PURIFICATION 

 The processes used for production of IgIV from human plasma differ from 
those used for recombinant mAbs. Figure  1.1  shows a consensus processing 
scheme, based on many published process fl ow sheets, for the purifi cation of 
IgIV. Most IgIV processes lack chromatographic steps and instead rely on 
multiple fractional precipitation steps based on the Cohn process developed 
in the 1950s  (1) . Some recently developed processes include chromatographic 

    FIGURE 1.1     Cohn - based IgIV consensus process.  
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steps, but this is used to a limited extent and still in combination with upstream 
steps based on the Cohn process  (2, 3) . The processes used for recombinant 
mAb purifi cation have borrowed very little from plasma fractionation technol-
ogy, other than ultrafi ltration to formulate and to concentrate the drug sub-
stance. The low cost of manufacturing IgIV and the very large production scale 
have led to debate on the value of going  “ back to the future ”  and applying 
IgIV processing technologies to the production of recombinant mAbs. A 
review of current mAb processing platforms will put this proposal into 
context.   

 The fi rst cGMP for mAb purifi cation refl ected the state of the art in the 
1980s and early 1990s, prior to the accumulation of substantial process knowl-
edge and the introduction of improved separation media that made today ’ s 
more effi cient and scalable processes possible. Examples of the diversity of 
early processes include the use of various microfi ltration or depth - fi ltration 
media for harvest; affi nity chromatography with Protein G in addition to 
Protein A; conventional capture columns to protect the Protein A resin; incor-
poration of challenging separation methods for large - scale production, such 
as size exclusion chromatography (SEC); solvent/detergent virus - inactivation 
methods; and the requirement for four or even more chromatography steps 
(Figure  1.2 ). In addition, downstream processing was sometimes performed in 
the cold. Chromatographic media often provided relatively low loading capac-
ities, which were not a signifi cant issue when cell culture titers were measured 
in hundreds of milligrams per liter. To address the need for kilogram - scale 
production, very large bioreactors were used; the focus for capture resin selec-
tion was based on maximizing volumetric productivity and on the ability to 

    FIGURE 1.2     Early mAb purifi cation schemes. IEC   =   ion - exchange chromatography; 
HIC   =   hydrophobic interaction chromatography.  
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process large volumes of feed rapidly, rather than on the handling of large 
batches (greater than 20   kg of product). Many of these early mAb products 
were also derived from a more diverse set of framework protein sequences, 
refl ecting the historical progression from murine and chimeric mAbs to today ’ s 
fully humanized antibodies, which gave rise to a more varied set of process 
fl ow sheets.    

  1.3   CURRENT APPROACHES IN PURIFICATION PROCESS 
DEVELOPMENT: IMPACT OF PLATFORM PROCESSES 

 Despite the high degree of homology among humanized mAbs, variations in 
complementarity - determining regions and framework sequences make it dif-
fi cult to defi ne a truly generic purifi cation process capable of processing many 
different mAbs without any changes to the operating conditions. Despite these 
variations, many companies have defi ned platform purifi cation processes based 
on a common sequence of unit operations. A frequently used purifi cation 
platform for mAbs is shown in Figure  1.3 . The conditioned medium is fi rst 
clarifi ed by centrifugation, followed by depth fi ltration. Protein A chromato-
graphy offers direct product capture from the centrate and provides excellent 
purifi cation and signifi cant concentration of the product. The low - pH elution 
from the Protein A step also provides virus inactivation. Two chromatographic 
polishing steps are used to reduce host cell, medium, purifi cation process -
 related impurities and product impurities. Additional virus removal is usually 
achieved in these polishing steps. One of the polishing steps is almost invari-
ably anion - exchange (AEX) chromatography, often run in the fl ow - through 
mode. The second polishing step is typically cation - exchange (CEX) chroma-
tography, although occasionally ceramic hydroxyapatite or hydrophobic inter-

    FIGURE 1.3     Typical mAb platform (current).  
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action chromatography (HIC) are used. The remaining process steps include 
virus fi ltration (VF) and ultrafi ltration/diafi ltration (UF/DF) to formulate and 
concentrate the product, which is now the bulk drug substance. The effi ciency, 
robustness, and scalability of this standardized process have resulted in the 
rapid convergence of process development groups in the industry around a 
similar process fl ow sheet  (4, 5) .   

 The establishment of platform processes for mAb production has already 
had an enormous impact on process development strategy and activities, and 
is just beginning to affect the world of commercial manufacturing. At this 
point, very few companies have two or more commercial mAbs that are puri-
fi ed by a common platform process. Many mAbs currently in the clinical 
pipeline, however, are manufactured by a process similar to the standard 
process shown in Figure  1.3 . The gradual progression of these early - stage 
processes from clinical to commercial production enables additional effi cien-
cies in production that will reduce the costs of goods (COGs) and accelerate 
responses to surges in product demand. The benefi ts of effi cient facility man-
agement (e.g., reductions in changeover time and the use of common raw 
materials and equipment) and fl exible commercial production (e.g., balanced 
production schedules among multiproduct facilities) will be realized more 
slowly than the gains seen today with product candidates in the early stages 
of clinical development. The combination of platform processing, multiproduct 
facilities, rapid product changeover, and fl exible sourcing between contract 
manufacturing organizations (CMOs) and in - house production facilities 
achieves an industrialization of mAb production that will be unprecedented 
in the fi eld of recombinant protein biologics. Antibodies could become a class 
of therapeutic biologics that support the treatment of large patient popula-
tions while remaining cost competitive with small molecules. To achieve this 
vision, the biopharmaceutical industry must take advantage of the opportuni-
ties presented by the ease of development, validation, and production afforded 
by platform processes. 

 Given the value and broad adoption of processing platforms, combined with 
an installed production facility base designed for them, there is enormous 
pressure to conform to such platforms with future products. As a result, options 
for unit operations, raw materials, step sequences, control systems and algo-
rithms, and processing equipment are limited. While these restrictions may at 
fi rst seem highly constraining, they require other challenges to be addressed, 
e.g., the establishment of highly effi cient work processes that rapidly defi ne 
the appropriate processing conditions for each new mAb that enters the pipe-
line, as well as the defi nition of a common set of optimization approaches and 
process characterization studies that will streamline late - stage development of 
clinical products. 

 Clarifi cation operations such as centrifugation often vary little from product 
to product, provided that the cell culture process is not radically different. 
Large changes in the cell concentration or viability in a bioreactor will affect 
clarifi cation, but provided that the unit operations are designed for the worst -

CURRENT APPROACHES IN PURIFICATION PROCESS DEVELOPMENT 5
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 case feedstream, few if any modifi cations will be needed for new mAbs. The 
capacity of centrate depth fi lters can vary signifi cantly, depending on feed-
stream, and should be optimized for robustness while the costs of raw materi-
als are minimized. Similarly, the platform ’ s ultrafi ltration steps (VF and fi nal 
ultrafi ltration) should be largely unaffected by the change in the mAb. The 
unit operations that are most likely to require tuning are the chromatography 
steps. Even there, the standardization of many elements in a chromatographic 
unit operation will streamline development time lines by focusing on key 
factors infl uenced by product characteristics  (5) . Process variables that are 
often specifi ed for platform processes include resin and membrane selection, 
column bed height, wash volumes, loading capacity, membrane fl ux, and target 
bulk concentration. This effort simplifi es and accelerates early - stage process 
development. 

 The Protein A capture step is generally a very robust operation that can 
tolerate changes in bioreactor harvest conditions and product characteristics 
(see Chapter  4 ). The variables that may be infl uenced by product or feed-
stream variations are dynamic binding capacity, the optimal composition of 
the column wash solution, and the elution conditions. Variations in these 
process parameters arise from differences in the affi nity of Protein A for the 
mAb, the steric hindrance among molecules  (6) , and variations in impurity 
levels and species in the feedstream, probably caused either by the cell line 
and bioreactor management or by the properties of the mAb itself. 

 The most common variables for the ion - exchange polishing steps include 
the column - loading and solution compositions (e.g., pH and counterion con-
centration) and the wash and elution compositions. In some cases, there can 
be major changes to the platform, as when a highly acidic mAb has strong 
affi nity for an AEX resin and the typical fl ow - through operation must be 
abandoned in favor of a bind – elute step. Broad ranges in the affi nities of ion -
 exchange resins have been described  (5, 7)  and highlight one area where the 
diversity of mAb properties has an impact on the purifi cation process. 

 Given that chromatography variables may be optimized independently for 
each mAb, there are choices to be made regarding the investment in early -
 stage process development. Two extremes are represented by tailored, as 
compared to generic, processing conditions. An example of the tailored 
approach is the use of high - throughput screening to defi ne unique operating 
conditions for each mAb, e.g., to optimize an AEX polishing step  (8) . Similarly, 
scouting studies using gradient elution for bind – elute steps could be used to 
tune the elution conditions for a CEX step. The generic approach to process 
development would use a single pH for the AEX step and adjust the load 
counterion concentration only by dilution. This minimum counterion concen-
tration would vary from mAb to mAb; an even more fl exible step would use 
a single counterion concentration, which allows successful processing of the 
majority of mAbs without signifi cant product losses of the most acidic family 
members. Likewise, in a generic approach for CEX, the step could be designed 
with a very low conductivity for the load combined with a broad gradient 
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elution, which could potentially encompass successful processing of a large 
number of mAbs (see Chapters  5  –  7 , which provide examples of this approach). 
The trade - offs of the two approaches would be infl uenced by the interplay of 
process development resources and time (more for the tailored approach, less 
for the generic), manufacturing effi ciency (higher for tailored, lower for 
generic), and other factors, such as mAb characteristics. 

 After Phase I process development, companies typically engage in at least 
one additional cycle of process development (commonly termed late - stage 
development), which defi nes the Phase III process and is subsequently used 
for product launch. This second cycle often involves changes to the cell culture 
process, including media reformulation, changes to the feeding strategy, opti-
mization of culture duration, and potentially the introduction of a new cell 
bank or cell line. Although changes to the purifi cation process during this 
second cycle are unlikely to have the same regulatory impact as cell line 
changes, the elimination of a step (e.g., the elimination of one of two polishing 
steps) could cause a problematic change in an impurity profi le. Given that 
several years may have passed between the development of the Phase I and 
Phase III processes, consideration should be given to upgrading the purifi ca-
tion process to include the superior separation media that have been recently 
introduced to the market. Additional optimization studies will defi ne the fi nal 
process control ranges for key and critical process parameters and will inves-
tigate the processing parameters that are unique to each mAb (e.g., column 
capacities, resin and membrane lifetimes, in - process hold times, and maximum 
bulk concentration). 

 If the implementation of radically new processing technologies is consid-
ered, this option is typically weighed at the late - stage development cycle rather 
than at the early stage. Alternate, off - platform technologies  (9)  would require 
sustained and signifi cant effort to defi ne processing parameters; establish 
process robustness; acquire and test novel raw materials; and specify, purchase, 
and validate new equipment. These factors strongly support an approach 
where implementation of new technology on a Phase I time line would be used 
only if the new process technology represented the sole means of enabling 
clinical production. The  “ speed - to - clinic ”  driver would almost always trump 
the benefi ts in COGs or the productivity benefi ts that novel technology would 
offer at this stage of development. This would force novel technologies to be 
considered during the next two cycles of process development, either for the 
Phase III defi nition or as a post - licensure change. 

 This argument may appear to establish a conundrum for the introduction 
of novel, off - platform unit operations. If they will not be introduced in Phase 
I processes due to speed - to - market pressures, they must be delayed to the 
Phase III process. Yet the introduction of signifi cant process changes 
(especially those that could negatively affect the impurity profi le of the 
product) after Phase I safety studies is a high hurdle that may require addi-
tional clinical trials, increasing the cost of the drug development and poten-
tially delaying product launch. The introduction of new technology after 
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licensure may appear to have an even higher bar, even if the risk of an untow-
ard effect of process changes is very low. There have been instances of signifi -
cant post - licensure changes in purifi cation processes for recombinant proteins 
 (10 – 12) , which in some cases required additional clinical studies. The U.S. Food 
and Drug Administration (FDA) allows process changes to be managed under 
comparability protocols without clinical trials if the process change has no 
impact on product safety, potency, or effi cacy, and if the product is well 
characterized. 

 A major benefi t of establishing a purifi cation process platform is realized 
when a reasonably long period elapses without signifi cant changes that alter 
process development or manufacturing operations. This leads to an approach 
whereby process improvements are bundled and introduced through a con-
trolled, internal review and decision - making process (a  “ punctuated equilib-
rium ”  for the platform). The evolution of a company ’ s platform is a healthy 
process, as superior separation media and accumulated development knowl-
edge combine to offer signifi cant advantages in development speed, reduction 
in COGs (see Chapter  9 ) or improved plant productivity. The change - control 
process for the platform should be managed to prevent changes from occur-
ring too frequently, while allowing the introduction of clearly superior technol-
ogy when appropriate.  

  1.4   TYPICAL UNIT OPERATIONS AND 
PROCESSING ALTERNATIVES 

 Centrifugation is currently the method of choice for harvest operations  (13, 
14) . Continuous - fl ow disk - stack centrifuges are robust, are easily scaled across 
various fermenter volumes, and use a relatively generic set of processing 
parameters. It is unlikely that centrifugation can provide a suffi cient degree of 
solids removal to allow the centrate to be processed directly by the initial 
capture chromatography without further fi ltration, although processing alter-
natives such as fl occulation may offer a signifi cant reduction in the fi ltration 
area required  (15) . Depth fi lters may remove protein [host cell protein (HCP) 
or product] during fi ltration  (16) , and changes to fi ltration media should be 
evaluated carefully. Centrifugation parameters can affect the fi lter area needed 
and can infl uence the colloidal properties of the feedstream. Therefore, con-
sideration of both centrifugation and fi ltration parameters is required for 
optimal performance and integration of these steps. Although centrifugation 
is likely to remain the preferred choice for large - scale operations, smaller - scale 
cell culture harvests ( ≤ 400   L) can also be performed using a combination of 
depth and size fi ltration. Newer technologies, such as pod harvest units, make 
fi ltration a more attractive option at small scales. 

 The majority of processes use Protein A chromatography as the initial 
capture chromatography step. Two potential issues associated with Protein A 



chromatography are leaching of the Protein A ligand from the resins into the 
product pool and the higher cost of Protein A resins as compared with nonaf-
fi nity resins. Alternative ligands to Protein A that are either small molecules 
or polypeptide mimetics of Protein A have generally not delivered increased 
load capacity while maintaining selectivity  (17) . Most of these resins are not 
known to be under active investigation in industrial laboratories. Other alter-
natives to Protein A chromatography as a capture step typically include ion -
 exchange chromatography, and because many mAbs have pIs greater than 7, 
CEX resins are the primary choice (see Chapter  5 ). With CEX, the pH and/or 
conductivity of the harvest cell culture fl uid may need to be adjusted, and in 
some cases the product in the feedstream should be concentrated using ultra-
fi ltration, to obtain optimal capacity and throughput. This conditioning opera-
tion should be evaluated when the overall costs of affi nity capture are compared 
to those of nonaffi nity capture. The lower pH and conductivity may affect 
antibody stability in the feedstream (because of acid - activated proteases) or 
precipitation of proteins (either product or HCP), thus necessitating increased 
fi lter area. However, precipitation of HCP during conditioning may contribute 
to HCP removal during the process (see Chapter  5 ), although it could cause 
complications during ultrafi ltration. The potential of impurity precipitation as 
an up - front conditioning step is addressed later (see Chapter  15 ), although the 
economics of the technique do not appear to be favorable, at least at the high 
concentrations of the precipitant evaluated by those authors. 

 The number and types of polishing steps will be determined by the nature 
of the product and process - related impurities. In general, a Protein A pool will 
be more pure than a nonaffi nity pool. Cell culture conditions that increase 
expression but also result in higher levels of aggregate or charge variants may 
infl uence the choice of affi nity or nonaffi nity process or may require additional 
polishing steps. A nonaffi nity process is generally less amenable to a platform 
approach because not all antibodies bind well to the capture column without 
custom feedstream modifi cations, as in the case of CEX resins. Furthermore, 
a Protein A capture step offers greater freedom to match the subsequent 
processing step without feedstream adjustments (see Chapter  4 ). If the affi nity 
pool is relatively pure, only one additional chromatography polishing step may 
be necessary. There have been platforms that use just two chromatography 
steps, where the AEX step is run under conditions of weak partitioning  (8) , as 
shown in Figure  1.4 . Two - column processes offer advantages beyond the 
obvious cost reduction associated with eliminating a step from the process (see 
Chapter  5 , which provides examples of processes comprising two columns plus 
a membrane adsorber) New, mixed - mode chromatography resins may also aid 
in minimizing the number of polishing steps by increasing the separation per-
formance for each resin (see Chapter  6 ). Product - related impurities with only 
slight charge or size differences can be the greatest challenge for the purifi ca-
tion process because of their similarity to the product. Controlling these impu-
rities to acceptable levels during the cell culture process facilitates a two - column 
process.   

TYPICAL UNIT OPERATIONS AND PROCESSING ALTERNATIVES 9
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    FIGURE 1.4     Emerging two - column platforms.  
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    FIGURE 1.5     Future high - effi ciency platforms. AEC   =   anion - exchange chromato-
graphy; CEC   =   cation - exchange chromatography; WPC   =   weak partitioning 
chromatography.  
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 Future platforms could build on continuous processing, two - column pro-
cesses, and alternative unit operations (Figure  1.5 ). Alternatives to chroma-
tography may simplify processes, reduce costs, and facilitate the processing of 
large batches. Currently, binding capacities for adsorptive membranes are 
lower than those of resins, making them most suitable for fl ow - through chro-
matography operations in which relatively low amounts of impurities are 
bound. Membrane adsorbers could replace an ion - exchange polishing step and 
may offer reduced buffer consumption and small pool volumes when com-
pared to resin column chromatography  (18) . They may also be more conducive 



to a continuous process in which the feedstream moves through each unit 
operation without the collection of a discrete pool, although pH and conduc-
tivity targets must coincidently match subsequent unit operations. Other alter-
native technologies include crystallization and precipitation  (9)  (see Chapter 
 14 ). For individual antibodies, these technologies may provide a performance 
benefi t in cost or productivity that would merit their implementation in a 
process. However, because of mAb variability, they are not likely to be ame-
nable to a platform process, and they require additional resource investment 
during process development. Factors to consider in evaluating such novel 
process options include annual production requirement, expression level, 
COGs target, and production costs. As outlined later (see Chapter  12 ), eco-
nomic considerations must include capital investment, operating expenses, 
economies of scale, the impact of opportunity costs of extended changeover 
periods, and the processing success rate.   

 The concentration of drug substance is linked to the requirements for drug 
product. For intravenous delivery, the drug product concentration may only 
be 5 – 20   mg/mL. Drivers for concentrations of 100   mg/mL or greater include 
the benefi ts of subcutaneous administration and a reduction in the number of 
drug substance storage vessels (often large stainless steel tanks) for very large 
batches. Achieving concentrations greater than 100   mg/mL depends on the 
solubility of the antibody as well as the formulation excipients, concentrations, 
and pH. Operational challenges to high - concentration formulations include 
mAb stability during concentration and diafi ltration, product losses due to 
system hold - up volume and incomplete recovery, and the extreme viscosity of 
some antibodies as the concentration increases. These challenges may be 
addressed by careful equipment design and by a formulation that minimizes 
viscosity and maximizes product stability.  

  1.5    VLS  PROCESSES: TON - SCALE PRODUCTION AND BEYOND 

 The recent increases in cell culture titers are likely to continue as cellular 
productivity and cell density improve and as production phases are extended. 
Titers as high as 10   g/L have already been reported  (19) , and titers of 2 − 5   g/L 
or more will be common. The rise in titers combined with predictable scale - up 
to larger bioreactors has sparked debate about purifi cation bottlenecks that 
limit a production plant ’ s capacity. However, efforts to intensify the purifi ca-
tion process should stave off capacity limits for all but the largest - volume 
products  (20, 21) . The benefi ts of chromatography resins and ultrafi ltration 
membranes with elevated capacities and improved volumetric productivities 
allow purifi cation processes to keep pace with advances in cell culture. The 
most common limitations are buffer make - up and storage capabilities, 
in - process pool tank volumes, and the scale of the production equipment. 
High - capacity resins and membranes reduce buffer consumption, generate 
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high - concentration in - process pools that minimize process volumes, and allow 
larger batches to be processed with existing equipment. A two - column process 
is signifi cantly more productive than three - column or four - column purifi cation 
trains, and for almost all products, it should enable VLS production without 
constraint. 

 Increased cell culture titers generated by extended fed - batch operations 
and high cell densities give rise to very large batch volumes (e.g., a 10   g/L titer 
in a 25,000 - L bioreactor would generate 250   kg of harvest material and a 200 -
 kg batch of drug substance). An extremely long bioreactor production phase 
affects facility utilization and staffi ng. At this scale, very few batches would be 
required to supply the market for most mAbs. A 1 - ton demand would be met 
with only fi ve batches, requiring very little production time in a plant operating 
multiple bioreactors. Efforts to level the staffi ng load or to manage product 
inventory may result in the operation of production bioreactors at less than 
maximum volume, if plant capacity is not appropriately matched to demand 
(this constraint is relaxed if the mAb is produced by a CMO). Furthermore, 
as the bioreactor production stage lengthens, the mismatch between the shorter 
cycle of the downstream process and the bioreactor becomes more problem-
atic  (22) . Harvesting a single reactor for an extended culture (e.g., every 24   d 
or more) and using a 3 - d purifi cation process means that the purifi cation staff 
may be unoccupied for a large portion of the interval between harvests. While 
this ratio allows a single purifi cation train to service eight bioreactors, the 
enormous production capacity of a plant running high - titer processes would 
invariably result in ineffi ciencies unless the plant is also making other 
products. 

 Purifi cation costs are the dominant drivers for VLS processes, but they are 
still low when expressed on a per - gram basis. Key COG components are the 
Protein A resin and the virus fi lter. Currently, the reuse of high - capacity 
Protein A resins for 200 cycles or more  (23)  reduces costs associated with this 
unit operation to approximately  $ 1 per gram. This analysis presumes that the 
resin is used to its full lifetime, which will be the case for large - volume products 
in steady production over several years. When demand does not require 
enough runs to extend the Protein A resin to its validated lifetime, COGs will 
increase, with the cost per gram declining over time as the initial investment 
in the resin is diluted over successive batches (e.g., if a 100 - kg annual demand 
can be produced with two 50 - kg batches, each requiring fi ve loading cycles 
for the Protein A step per batch, the resin will not reach 200 cycles of use 
until 20 years after launch, so limits on chronological resin age almost 
certainly dictate a shorter life span). Another signifi cant purifi cation cost is 
the VF fi lter. Provided that the membrane can offer reasonable fl uxes with 
highly concentrated feedstreams, an extended operation of several hours will 
minimize the necessary membrane area and the cost. The reuse of VF mem-
branes is attractive, especially for new membranes that are developed to 
withstand harsh sanitization cycles and do not require destructive post - use 
integrity testing.  



  1.6   PROCESS VALIDATION 

 Process validation of purifi cation processes defi nes process parameter ranges, 
critical process parameters, virus removal, membrane and resin lifetimes, and 
process pool stability. Control ranges ensure that the goals of the unit opera-
tion, including the appropriate product quality, are met. The variability of the 
incoming feedstream, the capability of the downstream process steps, and the 
potential interactions of all parameters for each step must be considered. A 
chromatography step may have 10 − 20 operating parameters. A series of 
designed experiments in which all parameters are examined would result in an 
impossibly large study. By applying an understanding of the process, along with 
a risk assessment, parameters can be placed into two categories: those that may 
have interactions with other variables and those that can be studied in single -
 parameter studies. For an ion - exchange column, examples of the potentially 
interactive variables include elution pH, elution conductivity, column loading, 
and temperature. Single - parameter studies might include fl ow rate, bed height, 
wash volumes, and pooling conditions. The risk assessment should contain the 
rationale for the type of study chosen for each parameter. 

 The process platform also offers signifi cant benefi ts during process charac-
terization and validation. Modular validation leverages data from previous 
studies to support the control ranges for a new antibody  (24) . The criteria that 
allow a modular approach should be defi ned, as should the parameters that 
qualify for modular or product - specifi c validation. For example, if a study for 
antibody X had shown that Protein A bed heights between 15 and 25   cm had 
no effect on the process, that study could be used to support the same bed -
 height range for antibody Y. However, because different antibodies have dif-
ferent dynamic binding capacities on Protein A resins, a product - specifi c study 
for the load range would be necessary. Unit operations that tend to be less 
product specifi c, such as centrifugation, virus fi ltration, low pH virus inactiva-
tion, and UF/DF, are the most amenable to the modular approach. 

 The quality by design (QbD) initiative is a comprehensive approach to 
product development and life cycle management in which the product and 
process parameters are designed to meet specifi c objectives. A thorough 
understanding of process parameters and their interactions and impact on 
product attributes defi nes the design space  (25) . Once approved, this design 
space offers regulatory fl exibility for post - approval process changes. Validation 
studies must address the input variables (e.g., impurity levels) to the unit 
operation from the preceding step. Modular validation complements QbD and 
the defi nition of design space for platform processes. A company can use data 
from validation studies on similar molecules, combined with risk analysis, to 
defi ne the design space for a related molecule. As a company accumulates data 
on several mAbs, it may be possible to develop a master fi le that provides the 
foundation for the design space for each new mAb manufacturing process. 

 For mAbs produced in mammalian cells, validation of the purifi cation 
process to remove or to inactivate adventitious viruses is a requirement (see 
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Chapter  8 ). In many cases, the platform processes for mAb manufacturing 
have an exemplary viral safety profi le: they use cells, such as Chinese hamster 
ovary cells, which do not express viable retroviruses  (26) ; use a culture medium 
with no animal - derived raw materials; include viral safety tests and procedures 
for postproduction cells for each lot; and establish the capability of the purifi -
cation process to clear or to inactivate viruses. The nature and scope of these 
studies — including the number and types of viruses studied, determination of 
the overall clearance of the model viruses, and confi rmation of the validity of 
the scale - down model and of the ability of resins to remove virus over their 
claimed lifetime — are described in the International Conference on Harmoni-
sation Q5A  (27) . The concept of modular viral validation was fi rst established 
by the FDA in 1997  (28) . It is critical to establish criteria for the use of modular 
validation data. As an example, for a chromatography step, these criteria 
should include the exact resin type, its position in the process, the robustness 
of performance, and the comparability of process parameters (e.g., fl ow rate, 
protein load, and bed height). 

 An understanding of the mechanism of virus removal or inactivation is an 
important element of the modular approach. The design space for a step is 
established by assessing the effect of process parameter ranges on product 
purity (e.g., product variants, aggregates, and HCP). If a step contributes to 
viral safety, an understanding of how these parameter ranges affect virus 
removal is also needed. However, virus removal validation studies are com-
plicated and expensive. Therefore, studies are performed at the set point for 
process parameters. To address this issue, modular data from a comprehensive 
study on the effect of process parameters on viral clearance performed for one 
mAb (to defi ne its design space) are used to support the design space for 
subsequent mAbs. With the mechanism of action and process robustness 
established, companies may make modular claims for pH inactivation and VF 
 (29) . Typically, the other step that contributes to viral safety is AEX chroma-
tography. If this step is amenable to modular claims, then there may be no 
need to conduct product - specifi c viral clearance studies for clinical studies if 
the extent of viral clearance from all modular studies is great enough to 
provide a suffi cient safety factor. 

 Even when modular validation can be applied, unique studies will be 
required for each mAb. The hold times for conditioned media and in - process 
pools will be a unique combination of the feedstream, impurities, and the mAb 
sequence and structure. Forced decomposition studies should be performed 
to identify degradation pathways. Resin reuse studies are unlikely to be ame-
nable to a modular validation approach because resin lifetime will be dictated 
by unpredictable effects of the antibody ’ s properties as well as the impact of 
feedstream variability arising from the unique characteristics of individual cell 
lines.  



  1.7   PRODUCT LIFE CYCLE MANAGEMENT 

 Whereas the preapproval process development phase typically lasts 5 − 7 years, 
the post - approval commercial manufacturing life cycle may extend to 20 years 
or more. The manufacturing life cycle includes post - approval process changes, 
transfer to new manufacturing sites, and possibly process scale - up. The breadth 
and depth of process development, characterization, and validation can greatly 
facilitate these changes. The reasons for making post - licensure changes are 
varied, but the most common motivation is to increase production capacity to 
meet increased demand. The approaches to increased capacity take a variety 
of forms and present different technical and regulatory challenges. Transfer-
ring the process to a new manufacturing facility at a similar scale is the most 
straightforward approach, but if the second facility is not an exact fi t for the 
process, adjustments may be necessary. Changes in scale are usually associated 
with a facility change. If the scale - up of the cell culture and purifi cation pro-
cesses is not aligned, particularly if the purifi cation equipment is undersized 
relative to cell culture, then it is likely that process adjustments will be 
necessary. 

 The interval between the defi nition of the cell culture and purifi cation pro-
cesses and product approval may be several years. During this time, advances in 
cell culture technology may enable increases in titers of 50% or more, which 
could be used to increase productivity of current products through post - 
licensure process changes. The effects of this increased titer on the purifi cation 
process and facility are far - reaching and will probably require both process and 
equipment changes. If no changes are made to the operating conditions of the 
purifi cation process, direct scale - up requires increases in column diameter and 
volume, membrane and fi lter areas, fl ow rates, and buffer and pool volumes. For 
facilities designed several years prior to the process improvement, the maximum 
titer used as a basis for the plant design is typically lower than that provided by 
the newest product. 

 Before process changes are made, a thorough assessment of the locations 
of purifi cation bottlenecks is necessary. Changes to equipment, although 
perhaps more straightforward from the technical and regulatory perspectives, 
may be constrained by space availability, plant downtime during retrofi tting, 
and capital expense. Purifi cation process changes fall into two general catego-
ries. The fi rst category includes modifi cations to optimize wash and elution 
volumes, to narrow pooling conditions, and to increase column capacities. How 
the ranges for these parameters are specifi ed in the license will determine the 
regulatory pathway to the implementation of these changes. The second cate-
gory of changes involves substantial modifi cation to the process and requires 
regulatory approval prior to implementation. High - capacity chromatography 
resins can be used to address process bottlenecks. Pool - volume reduction 
affects both the step ’ s pool volume and the downstream pool volumes if that 
step is operated in the fl ow - through mode. Because one main facility limitation 
is tank number and volume, changing the order of unit operations to minimize 

PRODUCT LIFE CYCLE MANAGEMENT 15



16 DOWNSTREAM PROCESSING OF MONOCLONAL ANTIBODIES

the effect of pH and conductivity adjustments for downstream steps can be 
benefi cial. Of course, adding UF/DF steps is a one way to address tank limita-
tions, but this change involves new capital equipment, downtime, and space 
considerations. 

 Increases in the product titer may not be the only changes to the feedstock. 
Modifi cations to the cell culture process may also change the product and 
process impurity profi les. Other changes to the feedstock include increased 
debris load with different physical properties, which will challenge the harvest 
operation. Evolving regulatory requirements are also drivers for process 
changes. These regulatory drivers may not be limited just to requirements of 
the national and international regulatory agencies [e.g., the FDA and Euro-
pean Medicines Evaluation Agency (EMEA)]; they may also include state and 
local agencies that govern areas such as hazardous waste and discharge into 
the local water system. 

 Risk assessment should assess the scope of process characterization work 
needed to support process changes. This assessment should evaluate the impact 
of the changes on the overall process and the applicability of validation studies 
from the original process. For example, if changes were made only to the cell 
culture process, the Protein A step would need to be revalidated. If the Protein 
A pool from the new process was comparable (i.e., had the same level of 
product and process impurities), then the unit operations downstream of 
Protein A would not need to be revalidated. 

 Commercial manufacturing is critical to the patients who rely on these 
drugs, and uninterrupted product supply is dependent on the availability of 
raw materials. For many purifi cation raw materials, such as chemicals, supply 
is not critical because multiple suppliers can meet the necessary quality and 
quantity requirements. However, for some raw materials (e.g., chromatogra-
phy resins), similar raw materials are not interchangeable among vendors. 
During process development, a specifi c resin is chosen for each step and the 
process optimized for that resin. Changing to a similar resin may not result in 
the same purity and yield under the same operating parameters. Certain mem-
branes and fi lters may require unique operating conditions. For these process -
 specifi c raw materials, it is critical to have a risk - mitigation plan that will 
ensure uninterrupted manufacturing should a vendor be unable to supply a 
raw material  (30) . The risk can be mitigated by carrying an additional inven-
tory of these raw materials or by developing processes with alternative raw 
materials. When alternative raw materials are used, the product quality of the 
drug substance must still meet the appropriate specifi cations. Ideally, an alter-
native raw material will provide the same process performance as the original 
raw material, although other factors (e.g., cost, ease of use, and process robust-
ness) may make it a second choice. If the alternative raw material does not 
result in the same product quality in the intermediate process pool, it will be 
necessary to assess whether downstream steps can achieve the same product 
quality either with or without modifi cation. Once alternative raw materials 
have been identifi ed, an implementation strategy should be developed. The 



cost of the work necessary to develop, characterize, and validate an alternative 
raw material should be balanced against the cost of carrying an additional raw 
material inventory. Other factors to consider include the resin ’ s lifetime, cost, 
and annual demand. When a raw material is used in more than one process, 
cumulative use and business risks also need to be considered. A platform 
process that relies on a small number of raw materials minimizes the number 
of raw materials in inventory and may reduce the overall backup required. 
However, this approach increases business risk, because a supply disruption 
may affect many products. 

 Raw materials may be grouped into classes such as chromatography resins, 
sterilizing fi lters, virus fi lters, and ultrafi ltration membranes. The degree to 
which such raw materials can be substituted in these classes can be considered 
according to their intended use. For example, there may be signifi cant differ-
ences among CEX resins in terms of resolution, with each resin requiring dis-
tinct operating conditions. These differences are based on the unique physical 
(e.g., bead and pore size) and chemical (e.g., ligand and resin matrix) proper-
ties of resins. Alternatively, sterilizing fi lters have a clear mechanism of separa-
tion (a size differential), and the operating parameters or design space can be 
defi ned to cover various fi lters. Taking this a step further, as the QbD concept 
evolves and design space is increasingly defi ned on the output of a unit opera-
tion, it may be possible to use different raw materials for a step as long as the 
output of the processing step (e.g., product purity and isoform distribution) is 
maintained. 

 For post - approval process changes, QbD and design space can greatly facili-
tate such changes. Knowledge gained during process development leads to a 
thorough understanding of process input ranges and process outputs, particu-
larly for critical quality attributes, and thus lays the foundation for a robust 
design space. Such a design space is the basis for consistent, reproducible 
manufacturing operations, but also allows changes within the design space 
over the product ’ s life cycle in response to changing conditions.  

  1.8   FUTURE OPPORTUNITIES 

 With standard mAb purifi cation platform processes fi rmly entrenched in the 
industry and representing the current state of the art, one might ask what the 
future will hold. Several opportunities addressing this question will be pre-
sented in this section. Some of these suppositions may come to pass, while 
others may never be adopted. 

 Because mAbs are a group of compounds large enough to warrant consid-
eration as a separate class  (28) , the adoption by regulatory agencies of common 
targets for impurity levels could be of great value to the industry. These targets 
would defi ne process development design principles that are generally regarded 
as safe and would represent impurity levels that are readily achievable with 
standard processes. Currently, the only impurity that has a well - accepted limit 

FUTURE OPPORTUNITIES 17



18 DOWNSTREAM PROCESSING OF MONOCLONAL ANTIBODIES

is host cell DNA. The FDA initially issued guidance that specifi ed 10   pg/dose 
 (31) , and then 100   pg/dose  (28) , and this was followed by World Health Orga-
nization guidelines that specifi ed 10   ng/dose  (32) . 

 At the 2003 Well Characterized Biologicals   conference, FDA representa-
tives cited typical levels of HCP, aggregates, and residual Protein A levels for 
mAbs described in Phase I Investigational New Drug Applications  (33) . 
Although levels of process- and product-related impurities have not been 
translated into regulatory guidance documents, the presentation suggests these 
levels are generally regarded as safe with the caveat that dose, dosing fre-
quency, and route of administration are all important factors have not been 
issued in regulatory guidance documents, and while they do not refl ect a 
common international position, the presentation of these levels hints at the 
possibility of establishing limits that are generally regarded as safe for these 
host cell and process - related impurities. Clarity regarding these targets could 
greatly simplify process development, enable more productive processes that 
do not  “ overdevelop or overengineer ”  without compromising product safety, 
and aid in the regulatory review of both clinical fi lings and commercial license 
applications. 

 Of course, the appropriate limits on impurity levels should be evaluated on 
a case - by - case basis, with risk adjustment for therapeutic dose, disease indica-
tion, dosing frequency, and other clinical factors. Ideally, a set of common target 
impurity levels would cover the most conservative case, so that adjustments 
would generally be made only to increase the impurity levels if warranted by 
process capability, following a thorough review of the clinical context for the 
product. In the opposite case, companies would be expected to recognize 
the highly unusual combination of factors that would warrant a reduction in the 
target impurity level in order to lower the risk of adverse clinical events. 

 Programs are under development at several companies for identifying, early 
in the discovery phase, mAbs that have inherent processing or quality issues, 
such that mAbs directed at the same target but with alternate sequences (and 
thus improved characteristics) could be chosen instead. Examples of the 
product attributes that may be included in a manufacturing feasibility assess-
ment include stability (both drug substance and drug product), maximum 
solubility and suitability for subcutaneous administration, viscosity at high 
concentrations, tendency toward unwanted microheterogeneity, and compati-
bility with a platform purifi cation process. Recognizing that the value of many 
of these attributes does not manifest itself until late in a product ’ s life cycle, 
early intervention based on the feasibility assessment prior to the initiation 
of clinical trials is a prudent approach to accommodate manufacturing 
objectives. 

 Several companies are evaluating production hosts other than mammalian 
cells, including transgenic animals or plants, recombinant yeast engineered to 
express the appropriate glycosyltransferases and thus provide natural oligo-
saccharides, and full - length mAbs from  Escherichia coli . It is unlikely that the 
purifi cation platform developed for mAbs expressed in mammalian cells will 
transfer cleanly to mAbs produced by these alternate hosts. The up - front 


