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Retro-Corey-Chaykovsky Epoxidation: Converting Geminal Disubstituted 

Epoxides to Ketones 

Siqi Li, Pingfan Li, and Jiaxi Xu* 

State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical 

Technology, Beijing 100029, China, jxxu@mail.buct.edu.cn 

 

Corey-Chaykovsky epoxidation has been widely applied in the conversion of aldehydes and ketones to epoxides with sulfonium and sulfoxonium ylides. 

The reverse transformation is realized for conversion of geminal disubstituted epoxides to ketones in the presence of DABCO in refluxing mesitylene. The 

method is a weak basic transformation from epoxides to ketones with loss of a methylene group and can be applied as an alternative strategy of the acid-

catalyzed Meinwald rearrangement or oxidation for conversion of epoxides to carbonyl compounds. 
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Introduction 

In 1962 and 1965, Corey and Chaykovsky prepared epoxides from 

aldehydes and ketones with dimethylsulfoxonium and dimethylsulfonium 

methylides, generated from trimethylsulfoxonium and trimethylsulfonium 

halides, respectively, in the presence of sodium hydride under nitrogen at 

room temperature through deprotonation.[1,2] Both dimethylsulfoxonium 

and dimethylsulfonium methylides are sulfur ylides. The preparation of 

epoxides from aldehydes and ketones with sulfur ylides is known as the 

Corey-Chaykovsky epoxidation.[3] Since that time, the Corey-Chaykovsky 

epoxidation has been widely applied in the synthesis of epoxides, aziridines, 

and cyclopropanation, even their optically active analogues.[4,5] Recently, 

ammonium ylide-mediated epoxidation reactions of aldehydes have been 

developed as well.[6-9] On the other hand, earlier than the Corey-

Chaykovsky epoxidation, the reverse reaction was also reported, but has 

paid less attention to date.[10-13] The reaction of tetracyanoepoxide and 

some nucleophiles without active hydrogen atom, including 

triphenylphosphine, tertiary amines,  pyridines, isoquinoline, and dialkyl 

sulfides, generated carbonyl cyanide (a ketone with two strong electron-

withdrawing cyano groups) and the corresponding ylides (Scheme 1, a). 

Subsequently, diethyl 2,3-dicyanooxirane-2,3-dicarboxylate was treated 

with diheptyl sulfide to generate ethyl 2-cyano-2-oxoacetate (a ketone with 

strong electron-withdrawing cyano and carboxylate groups) as a dienophile 

and enophile for the in situ use in cycloadditions by loss of a sulfur ylide 

(Scheme 1, a).[14] Besides the reactions of epoxides with four electron-

withdrawing substituents and nucleophiles without active hydrogen atom, 

only one example of the retro reaction of Corey-Chaykovsky epoxidation of 

2-methyl-2-phenylepoxide and hydrogen peroxide in the presence 

potassium hydroxide has been exploited (Scheme 1, b). 

Alternatively, the conversion of epoxides to the carbonyl compounds  

(aldehydes and ketones) was realized previously through the oxidative C-C 

cleavage of epoxides with some oxygen-transfer reagents, such as ozone, 

meta-chloroperbenzoic acid, pyridinium chlorochromate, and ozone or 

pyridine N-oxide under photoirradiation. However, the conversion yields 

were generally from low to moderate.[15,16]  

When we investigated nucleophilic organic base DABCO-mediated 

Meinwald rearrangement of terminal epoxides into methyl ketones, 

monosubstituted epoxides rearranged into methyl ketones.[17] However, 

we observed that DABCO could promote geminal disubstituted epoxides to 

convert to ketones. Ammonium ylides have been applied in the epoxidation 

of aldehydes.[6-9] Our observation could be considered as retro-Corey-

Chaykovsky epoxidation. It should be a useful reaction for conversion of 

epoxides into ketones under non-oxidative mild basic conditions. We 

previously studied the scope and limitation of the Corey-Chaykovsky 

epoxidation.[18] We, herein, present a systematic investigation on the retro-

Corey-Chaykovsky epoxidation for conversion of epoxides into ketones and 

its scope and limitation (Scheme 1, c).  

 

Scheme 1. Retro-Corey-Chaykovsky Epoxidation for Conversion of Epoxides to 

Ketones. 

Results and Discussion 

At first, 2-methyl-2-phenylepoxide (1a) was selected as the model 

substrate to optimize reaction conditions (Table 1). Initially, epoxide 1a was 

stirred in mesitylene in the presence of 2 equivalents of DABCO at 130 oC 

for 48 h. No reaction occurred (Table 1, entry 1). The product acetophenone 

(2a) was obtained in 22% yield when the reaction temperature was raised 

to 165 oC (Table 1, entry 2). The yield was improved to 31% when the 

reaction time was prolonged to 60 h (Table 1, entry 3). Other active 

hydrogen-free nucleophiles were also tested as the nucleophiles because 

nucleophiles with active hydrogen atom would undergo nucleophilic ring-

opening reaction. Triphenylphosphine gave acetophenone in only 7% yield 

(Table 1, entry 4). Both diphenyl sulfide and thioanisole were not efficient 

nucleophiles for the reaction (Table 1, entries 5 and 6). Several 

representative acidic additives, neutral water (weak protonic acid), protonic 

acid TsOH, and Lewis acid CuCl2
.H2O, were attempted, resulted in obvious 

decrease of the yield (Table 1, entries 7–9). Microwave acceleration was not 

observed, either, when the reaction was conducted under microwave 
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irradiation at 165 oC for 1 h (Table 1, entry 10), although microwave 

irradiation assisted some epoxide-participated organic reactions.[19-21] 

Although the conversion yield of epoxide 1a to acetophenone (2a) was not 

satisfactory, to investigate the scope and limitation of the conversion, other 

representative geminal disubstituted epoxides 1 were further evaluated 

under the conditions of 2 equivalents of DABCO in mesitylene at 165 oC for 

48 or 60 h (Table 2). First, different 2-aryl-2-methylepoxides 1a-1d were 

examined, affording the corresponding acetophenones in low yields of 13-

31% (Table 1, entries 1–4). Several 2-aryl-2-alkenylepoxides 1e-1h were 

tested, giving the desired α,-unsaturated ketones 2e-2h in satisfactory 

yields of 40-61% (Table 2, entries 5–8). 2-Aryl-2-alkynylepoxide 2-phenyl-

2-phenylethynylepoxide (1i) was also tried, producing a trace amount of 

1,3-diphenylprop-2-yn-1-one (2i) (Table 2, entry 9). For 2,2-diarylepoxide, 

2,2-diphenylepoxide (1j) yielded benzophenone (2j) in only 21% yield (Table 

2, entry 10). 

Table 1. Optimization for the Conversion of 2-Methyl-2-Phenylepoxide to 

Acetophenone.[a]  

 

Entry Nu Additive (eq.) Temp. 

(oC) 

Time (h) Yield[b] 

(%) 

1 DABCO  130 48 0 

2 DABCO  165 48 22 

3 DABCO  165 60 31 

4 PPh3  165 48 7 

5 Ph2S  165 48 0 

6 PhSMe  165 48 0 

7 DABCO H2O (4) 165 48 9 

8 DABCO TsOH·H2O (0.1) 165 48 Trace[c]  

9 DABCO CuCl2·2H2O (0.1) 165 48 4 

10 DABCO  165 1 0[d] 

[a] All the reactions were performed on a 0.5 mmol scale of 1a and 1.0 mmol of 

nucleophile (Nu). [b] Yields of the isolated product 2a. [c] 2-Phenylpropanal was 

obtained in 30% yield. [d] Microwave irradiation heating at 165 °C for 1 h. 

 

Table 2. DABCO-promoted conversion of geminal disubstituted epoxides to methyl 

ketones[a] 

 

Entry Substrate 1 Time (h) Product 2 
Yield 

(%)a 

1  

1a 

60  

2a 

31 

2  

1b 

40  

2b 

28 

3  

1c 

48  

2c 

21 

4  

1d 

48 
 

2d 

13 

5  

1e 

48  

2e 

59 

6  

1f 

48  

2f 

61 

7  

1g 

48  

2g 

47 

8  

1h 

48  

2h 

40 

9 

1i 

48 
 

2i 

trace 

10  

1j 

48  

2j 

21 

11  

1k 

48  

2k 

15 

12  

1l 

60  

2l 

7 

13  

1m 

60 - NR 

14 
 

1n 

48 - NR 

[a] All the reactions were performed on a 0.5 mmol scale of epoxide 1 and DABCO (1 

mmol) in 2 mL of mesitylene were stirred at 165 °C, yields are isolated yields.  

Next, disubstituted alkylepoxides 1k and 1l were examined as well. 2-

Methyl-2-(2-phenylethyl)epoxide (1k) was converted to 4-phenylbutan-2-
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one (2k) in only 15% yield under the same conditions (Table 2, entry 11). 

Similarly, 2-methyl-2-styrylepoxide (1l) gave a low yield (7%) of 4-

phenylbut-3-en-2-one (2l) (Table 2, entry 12). 

Finally, two representative vicinal disubstituted epoxides, 2,3-diarylepoxide 

2,3-diphenylepoxide (1o) and 2,3-diaklylepoxide cyclohexene oxide (1p) 

were checked. However, for both of them, no reaction occurred possibly 

due to their steric hindrance and less electrophilicity (Table 2, entries 13 and 

14). Bulky tetrasubstituted epoxides with four strong electron-withdrawing 

substituents underwent the conversion smoothly due to their strong 

electrophilicities.[10-12] However, bulky vicinal 2,3-dialkyl and diarylepoxides 

possessed only weak electrophilicity, unfavorable in the nucleophilic attack 

by DABCO. 

The results indicated that only 2-aryl-2-styrylepoxides favored retro-Corey-

Chaykovsky epoxidation with DABCO as a nucleophile in refluxing 

mesitylene, affording the corresponding ketones in satisfactory yields. 

Other geminal disubstituted epoxides showed low efficiency in the 

conversion. 

After obtaining the above information, we proposed the following 

mechanism, DABCO as a nucleophile first nucleophilically attacks the less 

substituted carbon atom of geminal disubstituted epoxides 1 to generate 

zwitterionic intermediates A, which undergo an elimination of DABCO 

ammonium methylide B to give rise to methyl ketones 2 (Scheme 2). During 

the ring-opening reaction, the regioselectivity follows the general 

regioselectivity in the nucleophilic ring-opening of the three-membered 

heterocycles.[22-27] The ammonium methylide B decomposes into DABCO 

and methanol through the reaction with water during workup.  

 

Scheme 2. Proposed Mechanism for the Retro-Corey-Chaykovsky Epoxidation. 

On the basis of DFT calculational results,[6,8,9] the formation of betaine 

intermediates from aldehydes and ammonium ylides is reversible and 

DABCO is not a good leaving group. In the current cases, when the 

intermediates A generate, the ring closure for formation of epoxides 1 is 

unfavorableby by loss of DABCO from intermediate A, resulting in the 

occurence of retro-Corey-Chaykovsky epoxidation to give rise to ketones 2 

and DABCO ammonium methylide B. Ketones show poor reactivity in the 

ammonium ylide-mediated epoxidation. Thus, ketones 2 and DABCO 

ammonium methylide B cannot undergo Corey-Chaykovsky epoxidation. 

 

Scheme 3. Verification of the Generation of DABCO Ammonium Methylide B. 

To verify the generation of the DABCO ammonium methylide B, the 

experiment on the ammonium methylide B transfer was conducted. A 

solution of equivalent amounts of 2-phenyl-2-styrylepoxide (1e) and 

cinnamaldehyde in mesitylene was refluxed in the presence of 2 equivalents 

of DABCO for 24 h. The resulting solution was subjected GC-MS analysis, 

revealing that chalcone (2e) and 4-phenylbut-3-en-2-one (2l) were 

observed and verified by comparison with the authentic samples (Scheme 

3). The results indicated that the retro-Corey-Chaykovsky epoxidation of 

epoxide 1e and DABCO generated chalcone (2e) and the DABCO 

ammonium ylide B, which reacted with less steric cinnamldehyde to yield 

styrylepoxide (1p) and DABCO. They further underwent the DABCO-

mediated Meinwald rearrangement under heating conditions to give final 

product 4-phenylbut-3-en-2-one (2l) as previously reported by us.[17] The 

designed experimental results perfectly verified the generation of the 

DABCO ammonium methylide B in the reaction, further supporting our 

proposed mechanism for the retro-Corey-Chaykovsky epoxidation. 

Conclusions 

In summary, we developed a direct and simple strategy to realize retro-

Corey-Chaykovsky epoxidation for the conversion of geminal disubstituted 

epoxides to ketones. Although the strategy just shows a limited substrate 

scope with low to moderate yields, the method is only suitable for geminal 

disubstituted epoxides, especially, 2-aryl-2-alkenylepoxides, it can serve as 

an important alternative to the acid-catalyzed or nucleophile-participated 

Meinwald rearrangements or the oxidative C-C cleavage method for 

conversion of epoxides to ketones. The method may provide an idea and 

beginning for other organic chemists to improve this transformation and 

finally to realize it efficiently under mild conditions in the future. 

Experimental Section 

Instrumentation and Chemicals 

Unless otherwise noted, all materials were purchased from commercial 

suppliers. DCE was refluxed over CaH2, and freshly distilled prior to use. 

Flash column chromatography was performed using silica gel (normal 

phase, 200300 mesh) from Branch of Qingdao Haiyang Chemical. 

Petroleum ether (PE) used for column chromatography is 6090 oC fraction, 

and the removal of residue solvent was accomplished under rotovap. 

Reactions were monitored by thin-layer chromatography (TLC) on silica gel 

GF254 coated 0.2 mm plates from Institute of Yantai Chemical Industry. 

The plates were visualized under UV light, as well as other TLC stains (10% 

phosphomolybdic acid in ethanol; 1% potassium permanganate in water; 

10 g of iodine absorbed on 30 g of silica gel). 1H, 13C,  and 19F NMR spectra 

were recorded on a Bruker 400 MHz spectrometer in CDCl3 with TMS as an 

internal standard, and the chemical shifts (δ) are reported in parts per 

million (ppm). All coupling constants (J) in 1HNMR are absolute values given 

in hertz (Hz) with peaks labeled as single (s), broad singlet (brs), doublet (d), 

triplet (t), quartet (q), and multiplet (m). The IR spectra (KBr pellets, v 

[cm−1]) were taken on a Nicolet 5700 FTIR spectrometer. HRMS 

measurements were carried out on an Agilent LC/MSD TOF mass 

spectrometer. Melting points were obtained on a Yanaco MP-500 melting 

point apparatus and are uncorrected. 

General Procedure for the Preparation of Epoxides 1 

Epoxides 1a-1l were prepared from trimethylsulfonium iodide and the 

corresponding ketones using Johnson-Corey-Chaykovsky reaction.[17] 

Sodium hydride (300 mg, 7.5 mmol, 60% mineral oil dispersion) was washed 

with petroleum ether (3  5 mL). The residual petroleum ether was removed 

under vacuum. Under atmosphere of nitrogen, dry THF (15 mL) and dry 

DMSO (15 mL) were added and the reaction mixture was cooled in an ice 

bath. A solution of trimethylsulfonium iodide (1.22 g, 6 mmol) in DMSO (4 

mL) was added. After addition, a ketone (5 mmol) was added in one portion. 

The reaction mixture was stirred at 0 oC for 30 min and at room temperature 

for an additional 12 h. The reaction mixture was slowly quenched with a 

mixture of water and ice (20 mL) and extracted with methylene chloride (3 

 10 mL). The combined organic extracts were washed with brine (2  30 

mL), dried over sodium sulfate, and filtered. The reaction mixture was 

directly subjected to flash column chromatography with ethyl 

acetate/petroleum ether (1:25, v/v) to give epoxide 1. 
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2,3-Diphenyloxirane (1m) was prepared from 1,2-diphenylethene using the 

MCPBA epoxidation reaction.[17] To a solution of 1,2-diphenylethene (900 

mg, 5.0 mmol) in DCM (20 mL) in a 100 mL flask was added MCPBA (1.5 g, 

7.5 mmol, 85%) at 0 °C. The reaction mixture was allowed to stir at room 

temperature overnight. The solution was then washed with NaHCO3 aq (20 

mL) and dried over Na2SO4. After evaporation of the solvent, the crude 

product was purified on silica gel column chromatography with a mixture of 

petroleum ether/EtOAc (20:1, v/v) to afford the desired epoxide 1m. 

Epoxide 1n is commercial available. Epoxides 1a-1e and 1i-1m are known 

compounds. 

2-Methyl-2-phenyloxirane (1a).[18] Colorless liquid. 482 mg, yield 72%. Rf = 

0.64, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, CDCl3) δ 

7.36–7.11 (m, 5H), 2.89 (d, J = 5.4 Hz, 1H), 2.72 (d, J = 5.4 Hz, 1H), 1.64 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 141.1, 128.3, 127.4, 125.3, 64.9, 57.0, 21.8. 

2-(4-Bromophenyl)-2-methyloxirane (1b).[28,29] Colorless oil. 0.934 g, yield 

88%. Rf = 0.71, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, 

CDCl3) δ 7.44 (d, J = 8.4 Hz, 2H), 7.22 (d, J = 8.4 Hz, 2H), 2.95 (d, J = 5.4 Hz, 

1H), 2.73 (d, J = 5.3 Hz, 1H), 1.68 (s, 1H). 13C NMR (101 MHz, CDCl3) δ 140.3, 

131.4, 127.1, 121.4, 56.9, 56.3, 21.5. 

4-(2-Methyloxiran-2-yl)benzonitrile (1c).[30] Colorless liquid. 490 mg, yield 

62%. Rf = 0.50, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, 

CDCl3) δ 7.63 (d, J = 8.5 Hz, 2H), 7.48 (d, J = 8.5 Hz, 2H), 3.03 (d, J = 5.3 Hz, 

1H), 2.76 (d, J = 5.3 Hz, 1H), 1.74 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 146.5, 

132.1, 126.0, 118.5, 111.2, 57.0, 56.1, 21.0. 

2-(4-Methoxyphenyl)-2-methyloxirane (1d).[31] Colorless liquid. 400 mg, 

yield 49%. Rf = 0.70, 20% ethyl acetate in petroleum ether. 1H NMR (400 

MHz, CDCl3) δ 7.28 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 3.78 (s, 3H), 

2.94 (d, J = 5.4 Hz, 1H), 2.78 (d, J = 5.3 Hz, 1H), 1.68 (s, 3H). 13C NMR (101 MHz, 

CDCl3) δ 158.9, 133.2, 126.5, 113.6, 56.9, 56.4, 55.2, 21.9. 

2-Phenyl-2-styryloxirane (1e).[32] Colorless liquid. 1.6 g, yield 72%. Rf = 0.75, 

20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, CDCl3) δ 7.60–7.43 

(m, 2H), 7.43–7.21 (m, 8H), 6.62–6.47 (m, 1H), 6.45–6.32 (m, 1H), 3.21 (dd, J 

= 5.5, 2.0 Hz, 1H), 3.12 (dd, J = 5.5, 2.0 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 

138.3, 136.2, 133.8, 128.7, 128.6, 128.3, 128.0, 127.9, 127.1, 126.5, 60.4, 57.2.  

(E)-2-(4-Chlorophenyl)-2-styryloxirane (1f). Colorless oil. 152 mg, yield 

20%. Rf = 0.80, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, 

CDCl3) δ 7.41–7.26 (m, 9H), 6.53 (d, J = 16.0 Hz, 1H), 6.33 (d, J = 16.0 Hz, 1H), 

3.21 (d, J = 5.6 Hz, 1H), 3.07 (d, J = 5.6 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 

136.8, 135.9, 134.2, 128.9, 128.6, 128.6, 128.2, 128.1, 127.2, 126.6, 126.5, 

59.9, 57.2. HRMS (ESI) m/z: calcd. for C16H14ClO+[M+H]+: 257.0728; found: 

257.0728. 

(E)-2-(2-Chlorostyryl)-2-phenyloxirane (1g). Yellow oil. 703 mg, yield 92%. 

Rf = 0.65, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, CDCl3) 

δ 7.53 (d, J = 7.5 Hz, 1H), 7.48 (dd, J = 7.1, 1.2 Hz, 2H), 7.42 – 7.30 (m, 4H), 7.24 

– 7.12 (m, 2H), 6.97 (d, J = 16.0 Hz, 1H), 6.38 (d, J = 16.0 Hz, 1H), 3.23 (d, J = 

5.6 Hz, 1H), 3.13 (d, J = 5.6 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 138.0, 134.5, 

133.2, 131.5, 130.1, 129.7, 129.0, 128.4, 128.0, 127.0, 126.9, 126.8, 60.3, 57.3. 

HRMS (ESI) m/z: calcd. for C16H14ClO+[M+H]+: 257.0728; found: 257.0726. 

(E)-2-(3-Fluorostyryl)-2-phenyloxirane (1h). Colorless liquid. 697 mg, yield 

97%. Rf = 0.70, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, 

CDCl3) δ 7.40–7.19 (m, 5H), 7.17–7.10 (m, 1H), 6.96 (ddd, J = 10.2, 9.2, 4.7 Hz, 

2H), 6.82 (td, J = 8.3, 2.0 Hz, 1H), 6.41 (d, J = 16.0 Hz, 1H), 6.29 (d, J = 16.0 

Hz, 1H), 3.08 (d, J = 5.6 Hz, 1H), 3.01 (d, J = 5.6 Hz, 1H). 13C NMR (101 MHz, 

CDCl3) δ 163.0 (d, J = 245.6 Hz), 138.5 (d, J = 7.7 Hz), 137.9, 132.5 (d, J = 1.9 

Hz), 130.0 (d, J = 8.4 Hz), 128.4, 128.0, 127.1, 122.4 (d, J = 2.2 Hz), 114.8 (d, J 

= 21.4 Hz), 112.9 (d, J = 21.9 Hz), 60.2, 57.2. 19F NMR (377 MHz, CDCl3) δ -

113.23.HRMS (ESI) m/z: calcd. for C16H14FO+[M+H]+: 241.1023; found: 

241.1021. 

2-Phenyl-2-(phenylethynyl)oxirane (1i).[33] Yellow oil. 500 mg, yield 45%. 

Rf = 0.90, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, CDCl3) 

δ 7.59–7.54 (m, 2H), 7.51 (ddd, J = 4.9, 1.9, 0.6 Hz, 2H), 7.38 (t, J = 7.3 Hz, 2H), 

7.35–7.28 (m, 4H), 3.52 (d, J = 6.1 Hz, 1H), 3.10 (d, J = 6.1 Hz, 1H). 13C NMR 

(101 MHz, CDCl3) δ 137.2, 132.0, 131.8, 128.8, 128.4, 128.4, 128.3, 125.6, 

121.9, 86.6, 84.3, 59.4, 51.4. 

2,2-Diphenyloxirane (1j).[18] White crystals. m.p. 54-56 °C. (Lit.[18] M.p. 

55−56 C). 1.0 g, yield 51%. Rf = 0.75, 20% ethyl acetate in petroleum ether. 
1H NMR (400 MHz, CDCl3) δ 7.39–7.27 (m, 10H), 3.27 (s, 2H). 13C NMR (101 

MHz, CDCl3) δ 139.6, 129.2, 129.0, 128.3, 128.0, 127.5, 61.84, 56.9. 

2-Methyl-2-phenethyloxirane (1k).[28,29] Colorless liquid. 240 mg, yield 

30%. Rf = 0.85, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, 

CDCl3) δ 7.27 (dd, J = 7.8, 7.3 Hz, 2H), 7.19 (d, J = 7.0 Hz, 1H), 7.18 (d, J = 7.7 

Hz, 2H), 2.74–2.68 (m, 2H), 2.58 (dd, J = 11.0, 4.9 Hz, 2H), 1.97–1.77 ( m, 2H), 

1.37 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 141.6, 128.4, 128.2, 125.9, 56.6, 53.9, 

38.5, 31.4, 21.0. 

(E)-2-Methyl-2-styryloxirane (1l).[34] Colorless liquid.480 mg, 60%. Rf = 

0.85, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, CDCl3) δ 

7.35–7.14 (m, 5H), 6.82–6.46 (m, 1H), 5.94 (d, J = 16.2 Hz, 1H), 2.83 (d, J = 5.2 

Hz, 1H), 2.77 (d, J = 5.2 Hz, 1H), 1.50 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 136.3, 

131.6, 130.6, 128.6, 127.8, 126.4, 67.9, 56.2, 19.8. 

2,3-Diphenyloxirane (1m).[35] Colorless crystals. M. p. 68–70 C. (Lit.[36] M.p. 

67−69 C). 0.945 g, yield 48%. Rf = 0.82, 20% ethyl acetate in petroleum 

ether. 1H NMR (400 MHz, CDCl3) δ 7.50–7.14 (m, 10H), 3.87 (s, 2H). 13C NMR 

(101 MHz, CDCl3) δ 137.1, 128.6, 128.3, 125.5, 62.8. 

General procedure for the retro-Corey-Chaykovsky epoxidation of 

epoxides 1 

Epoxide 1 (0.5 mmol) was dissolved in 2 mL of mesitylene in a 10 mL 

reaction tube. After DABCO (112 mg, 1.0 mmol) was added at room 

temperature, the reaction mixture was heated at 165 C for 48 h. After 

cooling to room temperature, the reaction mixture was directly subjected 

to flash column chromatography with ethyl acetate/petroleum ether (1:50, 

v/v) to afford product 2. All ketones are known products. 

Phenylethan-1-one (2a).[37] Purified by flash column chromatography 

(PE/EA 50:1, v/v) on silica gel to give the desired product as colorless oil, 19 

mg, 31% yield  Rf = 0.27, 5% ethyl acetate in petroleum ether. 1H NMR (400 

MHz, CDCl3) δ 8.02–7.92 (m, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.47 (dd, J = 7.6 7.6, 

Hz, 2H), 2.61 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 198.1, 137.0, 133.0, 128.5, 

128.2, 26.5. 

1-(4-Bromophenyl)ethan-1-one (2b).[38] Purified by flash column 

chromatography (PE/EA 50:1, v/v) on silica gel to give the desired product 

as white solid, 28 mg, 28% yield. M.p. 57–58 C. (Lit.[39] M.p. 52−53 C). Rf = 

0.30, 6.67% ethyl acetate in petroleum ether. 1H NMR (400 MHz, CDCl3) δ 

7.82 (d, J = 8.5 Hz, 2H), 7.61 (d, J = 8.5 Hz, 2H), 2.59 (s, 3H). 13C NMR (101 

MHz, CDCl3) δ 197.0, 135.8, 131.9, 129.8, 128.3, 26.5.  

4-Acetylbenzonitrile (2c).[40] Purified by flash column chromatography 

(PE/EA 50:1, v/v) on silica gel to give the desired product as white solid. 15 

mg, 21% yield. M.p. 60–63 C. (Lit.[41] M.p. 59−60 C). Rf = 0.14, 10% ethyl 

acetate in petroleum ether. 1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 8.4 Hz, 

2H), 7.79 (d, J = 8.4 Hz, 2H), 2.66 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 196.4, 

139.8, 132.4, 128.6, 117.8, 116.3, 26.7. 

1-(4-Methoxyphenyl)ethan-1-one (2d).[42] Purified by flash column 

chromatography (PE/EA 50:1, v/v) on silica gel to give the desired product 

as colorless oil, 10 mg, 13%  Rf = 0.18, 6.67% ethyl acetate in petroleum ether. 
1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 

3.87 (s, 3H), 2.56 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 196.8, 163.5, 130.6, 

130.3, 113.7, 55.5, 26.3. 

Chalcone (2e).[43] Purified by flash column chromatography (PE/EA 100:1, 

v/v) on silica gel to give the desired product as white crystals. m.p. 55–57 C. 

(Lit.[44] M.p. 55−56 C) 61 mg, 59% yield. Rf = 0.65, 20% ethyl acetate in 

petroleum ether.  1H NMR (400 MHz, CDCl3) δ 8.02 (dd, J = 7.2, 1.4 Hz, 2H), 

7.81 (d, J = 15.7 Hz, 1H), 7.64 (dd, J = 6.7, 2.8 Hz, 2H), 7.58–7.47 (m, 4H), 7.43–

7.39 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 190.5, 144.8, 138.2, 134.9, 132.7, 

130.5, 128.9, 128.6, 128.5, 128.4, 122.1. 

(E)-1-(4-Chlorophenyl)-3-phenylprop-2-en-1-one (2f).[45] Purified by flash 

column chromatography (PE/EA 100:1, v/v) on silica gel to give the desired 

product as light yellow solid m.p. 95–97 C. (Lit.[45] M.p. 93−96 C) 73mg, 

yield 61%.  Rf = 0.7, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, 
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CDCl3) δ 7.97 (dd, J = 6.7, 1.9 Hz, 2H), 7.82 (d, J = 15.7 Hz, 1H), 7.70–7.61 (m, 

2H), 7.51–7.46 (m, 3H), 7.45–7.42 (m, 3H). 13C NMR (101 MHz, CDCl3) δ 189.2, 

145.4, 139.2, 136.5, 134.7, 130.7, 129.9, 129.0, 129.0, 128.5, 121.5 

(E)-3-(2-Chlorophenyl)-1-phenylprop-2-en-1-one (2g).[43] Purified by flash 

column chromatography (PE/EA 50:1, v/v) on silica gel to give the desired 

product as light yellow solid. m.p. 49–51 C. (Lit.[46] M.p. 52 C) 57 mg, yield 

47%. Rf = 0.55, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, 

CDCl3) δ 8.18 (d, J = 15.8 Hz, 1H), 8.11–7.93 (m, 2H), 7.86–7.67 (m, 1H), 7.60 

(dd, J = 7.3, 7.3 Hz, 1H), 7.51 (dd, J = 8.8, 6.3 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.37 

– 7.29 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 190.5, 140.7, 137.9, 135.5, 133.3, 

132.9, 131.2, 130.3, 128.7, 128.6, 127.8, 127.1, 124.9. 

(E)-3-(3-Fluorophenyl)-1-phenylprop-2-en-1-one (2h).[45] Purified by flash 

column chromatography (PE/EA 50:1, v/v) on silica gel to give the desired 

product as yellow solid. M.p. 86–90 C. (Lit.[45] M.p. 87−92 C) 46 mg, yield 

40%. Rf = 0.6, 20% ethyl acetate in petroleum ether. 1H NMR (400 MHz, 

CDCl3) δ 8.03 (d, J = 7.2 Hz, 2H), 7.76 (d, J = 15.7 Hz, 1H), 7.61 (dd, J = 7.3, 7.3 

Hz, 1H), 7.53 (d, J = 7.9 Hz, 2H), 7.52 (d, J = 15.7 Hz, 1H), 7.43–7.32 (m, 3H), 

7.12 (ddd, J = 9.7, 5.2, 2.5 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 190.2, 167.2 

(d, J = 267.1 Hz), 143.3, 137.9, 133.0, 130.5 (d, J = 8.3 Hz), 128.7, 128.5, 124.5, 

123.2, 117.4 (d, J = 21.5 Hz), 114.5 (d, J = 21.9 Hz). 19F NMR (376 MHz, CDCl3) 

δ -112.46. 

Benzophenone (2j).[47] Purified by flash column chromatography (PE/EA 

100:1, v/v) on silica gel to give the desired product as white crystals. m.p. 

48–51 C. (Lit.[48] M.p. 48−49 C). 19 mg, 21% yield. Rf = 0.78, 20% ethyl 

acetate in petroleum ether. 1H NMR (400 MHz, CDCl3) δ 7.80 (dd, J = 7.0, 1.4 

Hz, 4H), 7.58 (dddd, J = 7.4, 7.4, 1.4, 1.4 Hz, 2H), 7.47 (dd, J = 7.6, 7.6 Hz, 4H). 

13C NMR (101 MHz, CDCl3) δ 196.7, 137.6, 132.4, 130.0, 128.2. 

4-Phenylbutan-2-one (2k).[49] Purified by flash column chromatography 

(PE/EA 100:1, v/v) on silica gel to give the desired product as colorless liquid. 

11 mg, 15% yield. Rf = 0.80, 20% ethyl acetate in petroleum ether. 1H NMR 

(400 MHz, CDCl3) δ 7.31–7.25 (m, 2H), 7.20 (d, J = 6.8 Hz, 1H), 7.18 (d, J = 8.0 

Hz, 2H), 2.90 (t, J = 7.6 Hz, 2H), 2.76 (t, J = 7.5 Hz, 2H), 2.14 (s, 3H). 13C NMR 

(101 MHz, CDCl3) δ 207.9, 141.0, 128.5, 128.3, 126.1, 45.2, 30.1, 29.7. 

(E)-4-Phenylbut-3-en-2-one (2l).[50] Purified by flash column 

chromatography (PE/EA 100:1, v/v) on silica gel to give the desired product 

as red-brown oil, 5 mg, 7% yield, 85% (0.5 mmol scale). Rf = 0.3, 5% ethyl 

acetate in petroleum ether. 1H NMR (400 MHz, CDCl3) δ 7.57–7.47 (m, 3H), 

7.42–7.35 (m, 3H), 6.71 (d, J = 16.3 Hz, 1H), 2.37 (s, 3H). 13C NMR (101 MHz, 

CDCl3) δ 198.3, 143.4, 134.4, 130.5, 128.9, 128.2, 127.1, 27.5. 

Supplementary Material 

Supporting information for this article is available on the WWW under 

http://dx.doi.org/10.1002/MS-number. 
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The reverse transformation is realized for conversion of geminal disubstituted epoxides to ketones in the presence of DABCO in refluxing 

mesitylene. 

10.1002/hlca.201900164

A
cc

ep
te

d 
M

an
us

cr
ip

t

Helvetica Chimica Acta

This article is protected by copyright. All rights reserved.


