Tetrahedron Letters 55 (2014) 6726-6728

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of 4,5-fused tricyclic quinolines via an acid-promoted intramolecular Friedel–Crafts allenylation of aniline derivatives

Yuta Suzuki, Tetsuhiro Nemoto, Shun-ichi Nakano, Zengduo Zhao, Yuta Yoshimatsu, Yasumasa Hamada*

Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan

ARTICLE INFO

Article history: Received 29 August 2014 Revised 30 September 2014 Accepted 3 October 2014 Available online 13 October 2014

Keywords: Cascade reaction Friedel–Crafts reaction Heterocycle Quinoline Synthetic method

ABSTRACT

A novel method for synthesizing 4,5-fused tricyclic quinoline derivatives based on an acid-promoted intramolecular Friedel–Crafts allenylation of anilines. Using aryl group-substituted propargyl alcohol derivatives with a *meta*-substituted *N*-Boc aniline unit as substrates, a four-step reaction sequence involving an acid-promoted intramolecular Friedel–Crafts allenylation of anilines, an acid-promoted intramolecular C–N bond formation, deprotection of the Boc group, and air oxidation proceeded in a single pot, producing the corresponding 4,5-fused tricyclic quinoline derivatives in 31–84% yield.

© 2014 Elsevier Ltd. All rights reserved.

Functionalized quinoline rings are ubiquitous in a wide variety of biologically active natural products and pharmaceuticals. An efficient synthetic method for quinoline derivatives is therefore in high demand in the fields of organic synthesis and medicinal chemistry.¹ The 4,5-fused tricyclic quinoline framework is present in various bioactive molecules, such as kuanoniamines (cytotoxic activity),^{2a} and exatecan (topoisomerase I inhibitor),^{2b} and is an attractive structural motif for scaffolds in drug design (Fig. 1). Efficient construction of a 4,5-fused tricyclic quinoline skeleton, however, remains a challenging task in organic synthesis.³

We recently focused on the development of a novel cascade process for synthesizing fused-polycyclic indoles⁴ and hydroquinolines⁵ based on an acid-promoted intramolecular Friedel-Crafts-type reaction using phenol derivatives as substrates. When aryl group-substituted propargyl alcohol derivatives with a *para*-substituted phenol unit I were utilized as substrates, an intramolecular *ipso*-Friedel-Crafts allenylation of phenols proceeded in the presence of an acid promoter, providing aryl group-substituted allenyl spirocyclohexadienones II that could be transformed into various fused heterocycles via sequential bond forming/cleaving reactions (Scheme 1(a)). The present reaction mode can be extended to the synthesis of 2,3-fused bicyclic *ortho*-allenyl anilines IV using *meta*-substituted aniline derivatives III as substrates.⁶ We hypothesized that an acid-promoted six-membered ring formation would proceed sequentially from IV through a delocalized cationic species **V**, and subsequent deprotection and oxidation would produce the corresponding 4,5-fused tricyclic quinoline derivatives (Scheme 1(b)). Herein, we report a novel method for synthesizing 4,5-fused tricyclic quinolines based on an acid-promoted intramolecular Friedel–Crafts allenylation of anilines.

Our investigation began with the model substrate **1a** (Table 1). We first examined the reaction using 3 equiv of trifluoroacetic acid (TFA) as an acid promoter in CH₂Cl₂ (0.05 M) at room temperature. Substrate **1a** was gradually consumed, and the desired product **2a** was obtained in 12% yield, accompanied by the isolation of *N*-Boc dihydroquinoline derivative **3a** in 50% yield (entry 1). The amount of TFA remarkably affected the reactivity (entries 1–4). When the reaction was performed using 15 equiv of TFA in CH₂Cl₂ under air, the desired cascade reaction proceeded smoothly to give 4,5-

Figure 1. Examples of bioactive molecules with a 4,5-fused tricyclic quinoline skeleton.

CrossMark

etrahedror

^{*} Corresponding author. Tel./fax: +81 43 226 2920. E-mail address: y-hamada@faculty.chiba-u.jp (Y. Hamada).

(a) Previous works

(b) Reaction design of this work

Scheme 1. Background and reaction design of this work.

TFA

1a

(8 equiv.)

CH₂Cl₂, 0 under air

15 min

Table 1 Optimization of the reaction conditions

Entry	Acid (equiv)	Concd (M)	Time (h)	Yield ^a (%)
1	TFA (3)	0.05	16	12 (50) ^b
2	TFA (8)	0.05	16	60
3	TFA (15)	0.05	3	76 (75) ^c
4	TFA (25)	0.05	3	75
5	TFA (15)	0.1	3	67
6	TFA (15)	0.025	12	74
7	$TsOH \cdot H_2O(3)$	0.05	3	Messy

^a Determined by ¹H NMR analysis of the crude sample. Triphenylmethane was used as an internal standard.

1a-k

ÓMe

^b Isolated yield of **3a**.

^c Isolated yield of **2a**.

Table 2 Substrate scope

Entry	Product	Х	Y	\mathbb{R}^1	R ²	R ³	Time (h)	Yield ^a (%)
1	2a	$C(CO_2Me)_2$	Me	Н	Н	Н	3	75
2	2b	$C(CO_2Me)_2$	Me	Me	Н	Н	3	53
3	2c	$C(CO_2Me)_2$	Me	OMe	Н	Н	3	62
4 ^b	2d	$C(CO_2Me)_2$	Me	Cl	Н	Н	18	60
5 ^b	2e	$C(CO_2Me)_2$	Me	Br	Н	Н	18	69
6	2f	$C(CO_2Me)_2$	Me	Н	OMe	Н	4	84
7	2g	$C(CO_2Me)_2$	Me	Н	Me	Н	3	79
8	2h	$C(CO_2Me)_2$	Me	Н	Н	OMe	3	82
9	2i	$C(CO_2Me)_2$	OMe	Н	Н	Н	3	75
10	2j	$C(CO_2Me)_2$	F	Н	Н	Н	6	53
11 ^b	2k	NTs	Me	Н	Н	Н	18	31

^a Isolated yield.

^b Reaction concentration = 0.025 M.

Me

4a (30% yield)

BocHN

TFA

TFA

(3 equiv.)

CH₂Cl₂, rt

under air

(15 equiv.)

CH2Cl2, rt

3 h, 85% yield

under air

3 h, 43% yield

3a

2a

TFA

(15 equiv.)

CH₂Cl₂, rť

under air

3 h, 88% yield

fused tricyclic quinoline **2a** in 76% yield (75% isolated yield) (entry 4). The results were less satisfactory, however, when the reaction concentration was either increased or decreased (entries 5 and 6). The use of more acidic TsOH·H₂O resulted in a messy reaction (entry 7). Thus, we selected the conditions in entry 3 as optimum for this cascade reaction.

After determining the optimal reaction conditions, we investigated the scope and limitations of the developed cascade process (Table 2).⁷ In addition to model substrate **1a** (entry 1), aryl

2a-k

Scheme 3. Proposed reaction mechanism.

group-substituted propargyl alcohol derivatives with an electrondonating group or an electron-withdrawing group on the *ortho*position (**1b**-**e**), *meta*-position (**1f** and **1g**), or *para*-position (**1h**) of the aromatic ring were applicable to this cascade process and 4,5-fused tricyclic quinoline derivatives **2b**-**h** were obtained in 53–84% yield (entries 2–9). Introduction of a methoxy group (**1i**) or fluorine group (**1j**) on the anilinic aromatic ring was also tolerant to this reaction, affording the corresponding products **2i** and **2j** in 75% yield and 53% yield, respectively. Furthermore, when *N*-Ts tethered compound **1k** was used as a substrate, the desired product **2k** was obtained in 31% yield.⁸

To gain insight into the reaction mechanism of this cascade process, we performed the following experiments (Scheme 2). When compound **1a** was reacted with 8 equiv of TFA in CH_2Cl_2 at 0 °C for 15 min, *ortho*-allenyl aniline derivative **4a** was obtained in 30% yield. Both **3a** and **4a** were transformed into **2a** under the optimal reaction conditions in 88% yield and 85% yield, respectively. Moreover, when **4a** was treated with 3 equiv of TFA in CH_2Cl_2 for 3 h at room temperature, **3a** was isolated in 43% yield. These experimental data led us to propose a reaction pathway for this cascade reaction (Scheme 3).

First, substrate **1a** reacts with TFA to give propargyl cation intermediate **A**. An intramolecular Friedel–Crafts allenylation of the *meta*-substituted aniline proceeds, providing 2,3-fused bicyclic *ortho*-allenyl aniline derivative **4a**. After the generation of delocalized cationic species **B** by protonation of the allene, the six-membered ring formation occurs sequentially to give *N*-Boc dihydroquinoline derivative **3a**. Finally, deprotection of the *N*-Boc group in the presence of TFA, followed by air oxidation of the dihydroquinoline unit,⁹ affords 4,5-fused tricyclic quinoline **2a**.

In conclusion, we developed a novel synthetic method for 4,5-fused tricyclic quinoline derivatives based on an acid-promoted intramolecular Friedel-Crafts allenylation of anilines. Using aryl group-substituted propargyl alcohol derivatives with a meta-substituted N-Boc aniline unit as substrates, a four-step reaction sequence involving an acid-promoted intramolecular Friedel-Crafts allenylation of anilines, an acid-promoted intramolecular C-N bond formation, deprotection of the Boc group, and air oxidation proceeded in the presence of TFA, producing the corresponding 4,5-fused tricyclic quinoline derivatives in 31-84% yield in a single pot process. To the best of our knowledge, this is the first example of a cascade reaction for synthesizing 4,5-fused tricyclic quinoline derivatives from aryl group-substituted propargyl alcohol derivatives with a meta-substituted aniline unit. Further studies are in progress to examine the pharmacological activity of these quinoline derivatives.

Acknowledgments

This work was supported by a Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan, JSPS Research Fellowship for Young Scientists (Y.S.), and Chiba University.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.10. 010.

References and notes

- 1. For reviews on the synthesis of quinolines, see: (a) Jones, G. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R., Rees, A. R., Eds.; Pergamon: New York, 1984; Vol. 2, p 395. Part 2A; (b) Prajapati, S. M.; Patel, K. D.; Vekariya, R. H.; Panchal, S. N.; Patel, H. D. *RSC Adv.* **2014**, *4*, 24463.
- (a) Carroll, A. R.; Scheuer, P. J. J. Org. Chem. 1990, 55, 4426; (b) Pommier, Y. Nat. Rev. Cancer 2006, 6, 789.
- For examples of the stepwise construction of 4,5-fused tricyclic quinoline skeletons, see: (a) Bishop, M. J.; Ciufolini, M. A. J. Am. Chem. Soc. 1992, 114, 10081; (b) Ciufolini, M. A.; Shen, Y.-C.; Bishop, M. J. J. Am. Chem. Soc. 1995, 117, 12460; (c) Gellerman, G.; Rudi, A.; Kashman, Y. Tetrahedron Lett. 1992, 33, 5577; (d) Kitahara, Y.; Mochii, M.; Mori, M.; Kubo, A. Tetrahedron Lett. 2000, 41, 1481.
- 4. (a) Yokosaka, T.; Nemoto, T.; Hamada, Y. *Chem. Commun.* **2012**, 5431; (b) Yokosaka, T.; Nakayama, H.; Nemoto, T.; Hamada, Y. *Org. Lett.* **2013**, *15*, 2978; (c) Yokosaka, T.; Kanehira, T.; Nakayama, H.; Nemoto, T.; Hamada, Y. *Tetrahedron* **2014**, *70*, 2151.
- (a) Yokosaka, T.; Shiga, N.; Nemoto, T.; Hamada, Y. J. Org. Chem. 2014, 79, 3866;
 (b) Nakano, S.; Kakugawa, K.; Nemoto, T.; Hamada, Y. Adv. Synth. Catal. 2014, 356, 2088.
- For examples of acid-promoted Friedel-Crafts allenylation of aromatic rings, see: (a) Ishikawa, T.; Okano, M.; Aikawa, T.; Saito, S. J. Org. Chem. 2001, 66, 4635; (b) Ishikawa, T.; Manabe, S.; Aikawa, T.; Kudo, T.; Saito, S. Org. Lett. 2004, 6, 2361; (c) Huang, W.; Shen, Q.; Wang, J.; Zhou, X. J. Org. Chem. 2008, 73, 1586.
- 7. General procedure (Table 2, entry 1). To a stirred solution of **1a** (48.5 mg, 0.0952 mmol) in CH₂Cl₂ (1.90 mL) at room temperature was added trifluoroacetic acid (0.106 mL, 1.43 mmol), and the resulting solution was stirred under air at the same temperature. After 3 h, the reaction was quenched with sat. aq NaHCO₃ at 0 °C and the mixture was extracted with AcOEt. The organic layer was washed with brine, dried over Na₂SO₄, and then concentrated in vacuo. The obtained residue was purified by flash column chromatography (SiO₂, hexane/AcOEt = 5/1) to give **2a** (26.8 mg, 75% yield) as white solid.
- 8. When a non-substituted propargyl ether derivative was used as a substrate, only deprotection of the Boc group occurred under the optimized reaction conditions. This result indicates that an aryl substituent is necessary for the generation of the cation intermediate.
- 9. When the reaction was performed under an argon atmosphere, intermediate C was detected in the NMR analysis of the crude sample. This intermediate was transformed into 2a during the silica gel column purification.