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Abstract—Fluoroalkyl and fluoroaryl analogues of valdecoxib were found to possess potent inhibitory activities against cyclooxy-
genase-2 comparable to that of the parent valdecoxib. Among them, the fluoromethyl analogue was chosen for 18F-labeling. Thus,
4-(5-[18F]fluoromethyl-3-phenylisoxazol-4-yl)benzenesulfonamide (�2000 Ci/mmol at end of synthesis) was synthesized by [18F]fluo-
ride-ion displacement of the corresponding tosylate in �40% decay-corrected radiochemical yield within �120 min from end of
bombardment.
� 2005 Elsevier Ltd. All rights reserved.
Cyclooxygenase (COX) is the enzyme that catalyzes the
first step in the biotransformation of arachidonic acid
to prostanoids.1 COX exists as two distinct isoforms,
of which COX-1 is constitutively expressed in healthy
tissues mediating physiological responses, while COX-
2 is the inducible form responsible for the synthesis of
prostanoids involved in acute and chronic inflammatory
states. Inflammation is a common biological process
shared by many diseases. Indeed, elevated expression
of COX-2 has been implicated in many pathological
events, including rheumatoid arthritis, cancer, heart dis-
ease, stroke, and neurodegenerative disorders.1b,c,2

However, COX-2 is also found constitutively in some
tissues where it is considered to play a physiologically
important role.1b,c

The therapeutic effect of classical non-steroidal anti-in-
flammatory drugs (NSAIDs) is attributed to the inhibi-
tion of COX-2, whereas the undesired side effects arise
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from the disruption of COX-1. Since the discovery of
COX-2 in 1991,1a a rapid progress has been made in
the development of COX-2-selective inhibitors.3 In
1999, celecoxib (Celebrex) and rofecoxib (Vioxx) were
introduced to the market as non-ulcerogenic anti-
inflammatory drugs. Subsequently, in 2001, a second
generation inhibitor valdecoxib (Bextra) received the
US Food and Drug Administration (FDA) approval.
However, clinical trial studies with these drugs have
raised concerns about their potential cardiovascular
hazards.4 As a result, Vioxx and Bextra have recently
been withdrawn from the worldwide market and a
black-box warning is being required for Celebrex.5

To fully understand the role of COX-2 both in health
and disease, it would be of great benefit if we could mon-
itor �real-time� COX-2 expression in vivo, non-invasively
and repeatedly over time.6 COX-2-selective inhibitors
labeled with short-lived positron emitters are therefore
attractive molecules that could be used to image COX-
2 in living subjects with positron emission tomography
(PET), which is a powerful non-invasive, in vivo molec-
ular imaging technique currently available for biomedi-
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Table 1. Inhibition of COX-2 by fluorinated analogues of valdecoxib

Compound IC50 (lM)a

Enzyme assayb Macrophage COX-2 assayd

COX-2 S.I.c

1 0.002 >50,000 0.002

2 0.008 >12,500 0.002

3 —e —e 0.002

4 —e —e 0.002

Valdecoxib 0.005 >20,000 —e

a Values are means of two experiments.
b Enzyme assays were performed against human recombinant COX-1

and COX-2 enzymes, as reported in Ref. 14.
c In vitro COX-2-selectivity index: COX-1 IC50/COX-2 IC50.
d Cell-based assays were performed for prostaglandin E2 production as

a function of COX-2 inhibition using endotoxin-treated murine

RAW 264.7 macrophages, as reported in Ref. 15.
e Not determined.
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cal use.7 The [18F]fluorinated or [11C]methylated ana-
logues of celecoxib,8,9 rofecoxib,10 and their prototype
DuP-69711 have recently been synthesized. Herein, we
report the synthesis of a new [18F]fluorinated analogue
of valdecoxib 1-18F (Fig. 1) as a potential PET imaging
probe for COX-2.12

Being bioisosteric with hydrogen, albeit having high
electronegativity,13 18F is often used to replace hydro-
gen of otherwise non-fluorinated molecules with
minimum effects on biomolecular interactions. Non-ra-
dioactive fluorinated analogues of valdecoxib were first
synthesized and evaluated for their COX-2 inhibitory
activities using human recombinant COX-1 and
COX-2 enzymes,14 and/or endotoxin-treated RAW
264.7 macrophages.15 The fluoroalkyl analogues 116

and 217 were synthesized by direct fluorination of the
corresponding hydroxy analogues 518 and 6,19 respec-
tively, with DAST (Scheme 1). The fluoroaryl ana-
logues 3 and 4 were synthesized, as previously
reported.20 As shown in Table 1, the fluoroalkyl and
fluoroaryl analogues were all potent COX-2 inhibitors.
Moreover, the fluoromethyl analogue 1 showed an
even higher COX-2-selectivity index than valdecoxib.
Therefore, the radiosynthesis of the [18F]fluoromethyl
analogue 1-18F was investigated.

The [18F]fluorination precursor 821 was synthesized from
5 via selective protection of the sulfonamide group with
a 4,4 0-dimethoxytrityl (DMTr) group (!722), followed
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Figure 1. Valdecoxib and its [18F/19F]fluorinated analogues 1–4.
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Scheme 1. Synthesis of non-radioactive fluoroalkylvaldecoxibs 1

and 2.
by O-tosylation with Ts2O (!8) (Scheme 2). Radiosyn-
thesis of 1-18F was then effected by two consecutive reac-
tions in one pot, namely [18F]fluoride-for-tosylate
substitution of 8, followed by acidic deprotection.23

The radioactive product was purified by HPLC and
reconstituted in EtOH (1 mL).24 The specific activity
was �2000 Ci/mmol at end of synthesis (EOS). In a typ-
ical radiosynthesis, starting from �500 mCi of [18F]fluo-
ride, �80 mCi of chemically and radiochemically pure
1-18F was obtained in an injection-ready form within
120 min after end of bombardment (EOB). The decay-
corrected radiochemical yield was �40%. It was ob-
served that 1-18F experienced autoradiolysis in saline
containing 10% EtOH (�5% de[18F]fluorination after
6 h).25 The autoradiolysis was however effectively sup-
pressed in 100% EtOH (less than 0.5% de[18F]fluorina-
tion after 6 h).

In vivo kinetics of 1-18F was preliminary evaluated using
a normal mouse with microPET.26 Rapid in vivo
de[18F]fluorination was evidenced by the conspicuous
emergence of the bony skeleton, which is characteristic
of [18F]fluoride peripheral formation with rapid uptake
in bone.27 A similar peripheral metabolism was also ob-
served in a vervet monkey, although it was somewhat
slower.28 It is likely that 1-18F is metabolized in vivo
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Scheme 2. Synthesis of [18F]fluoromethylvaldecoxib (1-18F).
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similar to the parent valdecoxib, involving oxidative
hydrogen abstraction at the methyl group presumably
via the P450 enzyme-catalyzed oxidation process.29

The [18F]fluorohydroxymethyl group thus formed is
chemically labile leading to spontaneous de[18F]fluorina-
tion. It has been noted with drugs and other PET probes
that the rate of peripheral metabolism increases in the
order of mice > monkeys > humans.30 Indeed, the
metabolism of valdecoxib is reported to be rapid in
rodents but significantly slower in humans.29 Therefore,
it would be expected that 1-18F would undergo a much
slower metabolic de[18F]fluorination in humans. The
dosimetry data for a 70-kg adult were estimated from
the residence times determined with the monkey
whole-body biodistribution data using the MIRDOSE
program (Table 2).31 For a 10-mCi injection of 1-18F,
the highest absorbed dose found in the urinary bladder
wall was well below the dose limitation of 5 rad/mCi,
warranting the safe use of 1-18F in human PET imaging
studies.

In summary, the [18F]fluoromethyl analogue of valdec-
oxib 1-18F has been synthesized. The rapid metabolic
de[18F]fluorination in mice hinders the determination
of in vivo binding of 1-18F to COX-2 in experimental
rodent models, limiting our ability to investigate 1-18F
in detail. However, it should be mentioned that our pre-
liminary human imaging results have shown the poten-
tial usefulness of 1-18F in human studies, because only
minimum peripheral de[18F]fluorination occurred after
60 min. In addition to PET imaging determination in
humans, syntheses of radiofluorinated 2–4 are currently
underway.
Table 2. Dosimetry estimation for 1-18F for a 70-kg adult

Target organ Total dose (rad/mCi)

Adrenals 4.2 · 10�3

Brain 3.1 · 10�5

Breasts 1.1 · 10�2

Gallbladder wall 8.5 · 10�3

Lower large intestine wall 5.0 · 10�3

Small intestine 6.4 · 10�3

Stomach 2.6 · 10�3

Upper large intestine wall 5.0 · 10�2

Heart wall 1.8 · 10�2

Kidneys 1.9 · 10�2

Liver 3.4 · 10�2

Lungs 2.3 · 10�3

Muscle 1.8 · 10�3

Ovaries 6.4 · 10�3

Pancreas 3.8 · 10�3

Red marrow 2.2 · 10�3

Bone surfaces 1.2 · 10�3

Skin 8.9 · 10�4

Spleen 1.6 · 10�3

Testes 2.8 · 10�3

Thymus 2.0 · 10�3

Thyroid 2.0 · 10�4

Urinary bladder wall 1.4 · 10�1

Uterus 1.0 · 10�2

Total body 3.2 · 10�3

Effective dose 1.3 · 10�2
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