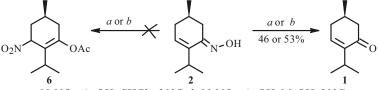
Chemistry of Natural Compounds, Vol. 50, No. 2, May, 2014 [Russian original No. 2, March-April, 2014]

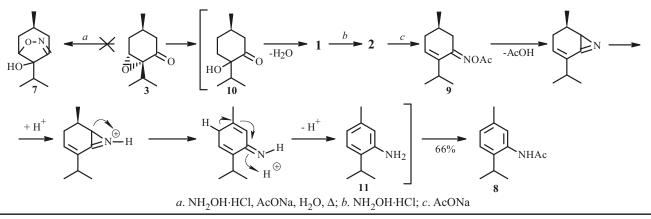
(*R*)-*n*-MENTH-4-EN-3-ONE AND ITS DERIVATIVES IN REACTIONS WITH *N*-CONTAINING REAGENTS

G. Yu. Ishmuratov,^{1,2*} V. S. Tukhvatshin,² M. P. Yakovleva,¹ R. R. Muslukhov,¹ A. V. Allagulova,² and G. R. Talipova²

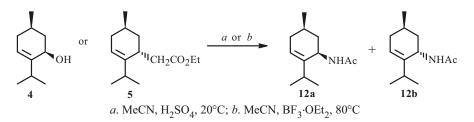

The reactions of (**R**)-**n**-*menth*-4-*en*-3-*one and its derivatives with* **N**-*containing reagents were studied. New menthane-type acetamides were synthesized.*

Keywords: (R)-n-menth-4-en-3-one and its derivatives, nitrosation, Ritter reaction, menthane-type acetamides.

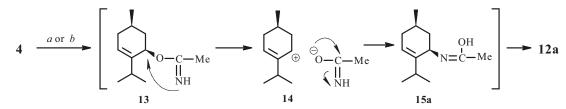
We determined earlier that (*R*)-*n*-menth-4-en-3-one (1) was less reactive than ordinary cyclic α, β -unsaturated ketones in conjugated addition of organometallic reagents, Michael addition, and pyrazoline-formation reactions [1].

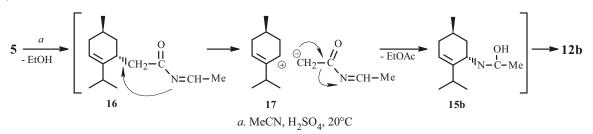

In continuation of studies on the elaboration of the synthetic potential of 1, we studied the behavior of its anti-oxime (2) [2], epoxide (3) [3], (1R,3R)-*n*-menthen-3-ol (4) [4], and acetate (5) [5] in reactions with *N*-containing reagents. The transformations studied herein also had practical application because it is known [6] that *N*-containing derivatives of monoterpenoids exhibit various types of biological activity.

It was found that nitrosation of **2** by $NaNO_2$ -AcOH in MeOH or CHCl₃ did not give the expected unsaturated nitroacetate (6) [6], like (–)-carvone oxime [7]. Regeneration of starting **1** was observed.



a. NaNO₂, AcOH, CHCl₃, 20°C; b. NaNO₂, AcOH, MeOH, 20°C


The reaction of **3** with NH_2OH ·HCl in the presence of NaOAc formed an aromatic acetamide (**8**) and not the proposed 1,2-dioxopyrazole derivative (**7**), like (*S*)-pulegone [8]. Evidently, this was due to the steric influence of the *i*-Pr group and the lower reactivity of the endocyclic double bond in **1**. Compound **8** was probably formed by the following scheme. Ketoalcohol **10** was dehydrated through sequential steps to enone **1**, reaction of which with NH_2OH ·HCl gave oxime **2** and then its *O*-acyl derivative **9**. The last underwent Semmler–Wolf conversion to amine **11** with further acylation to the desired acetamide **8** [2].


¹⁾ Institute of Organic Chemistry, Ufa Scientific Center, Russian Academy of Sciences, 450054, Ufa, Prosp. Oktyabrya, 71, e-mail: insect@anrb.ru; 2) Bashkir State University, 450074, Ufa, Ul. Z. Validi, 32, e-mail: vadimtukhvatshin@yandex.ru. Translated from *Khimiya Prirodnykh Soedinenii*, No. 2, March–April, 2014, pp. 241–243. Original article submitted October 9, 2013.

The Ritter reaction involving terpene derivatives is a convenient and common synthetic method for potentially biologically and pharmacologically active acetamides [9]. Therefore, the behavior of (1R,3R)-*n*-menthen-3-ol (4) and acetate 5 in this reaction was studied. Capillary GC and PMR showed that alcohol 4 formed mixtures of acetamides 12a and b in ratios of 55:45 and 69:31 if H₂SO₄ and BF₃·Et₂O, respectively, were used as catalysts. However, 5 with H₂SO₄ catalyst was transformed into a 57:43 mixture of these same stereoisomers with 12b dominating. Apparently, this was due to simultaneous occurrence of S_N1 and S_Ni substitution mechanisms.

a. MeCN, H₂SO₄, 20°C; b. MeCN, BF₃·OEt₂, 80°C

Thus, a mixture of equal amounts of acetamides 12a and b formed according to the S_N^1 mechanism. The enrichment of the mixture with the 12a stereomer for 4 or 12b, for acetate 5, was obviously due to occurrence of the S_N^1 mechanism [10, 11], according to which adduct 13 formed initially from alcohol 4 and then dissociated to form contact ion pair 14, which decomposed through unstable 15a into the 12a isomer.

Acetamide 12b was formed analogously via an S_N i mechanism from acetate 5. The ethoxy group in 5 was replaced by -N=CHMe in product 16, which converted to contact ion pair 17 and eliminated ethylacetate to form 15b.

Thus, a Ritter reaction involving (1R,3R)-*n*-menthen-3-ol (4) or its Claisen orthoester rearrangement product 5 under H₂SO₄ or BF₃·Et₂O catalysis occurred simultaneously according to S_N1 and S_Ni mechanisms to form an enriched mixture of acetamides **12a** and **b**. The S_Ni substitution mechanism dominated to produce diastereomeric acetamides (**12a** and **b**) if a Lewis acid (BF₃·Et₂O) was used as the catalyst rather than a protic acid (H₂SO₄).

EXPERIMENTAL

IR spectra were recorded from thin layers on a Prestige-21 instrument (Shimadzu). NMR spectra were obtained in CDCl₃ with TMS internal standard on a Bruker Avance III 500 spectrometer (operating frequency 500.13 MHz for PMR and 125.20 MHz for ¹³C NMR). PMR and ¹³C NMR spectra were analyzed and resonances were assigned by two-dimensional correlation spectroscopy COSY (H–H), HSQC, and HMBC. Chromatographic analysis was performed on Chrom-5 [column length 1.2 m, stationary phase silicone SE-30 (5%) + OV-225 (3%) on Chromaton N-AW-DMCS (0.16–0.20 mm), operating temperature 50–300°C] and GC-9A [Shimadzu, quartz capillary column length 25 m, stationary phase OV-101, operating temperature 80–280°C] instruments with He carrier gas. Optical rotation was measured on a PerkinElmer 241-MC polarimeter. Column chromatography was carried out over silica gel L (60–200 μm, Sorbfil, Russia). TLC used Sorbfil plates (Russia). Mass spectra were taken on a 2010 EV LC MS instrument (Shimadzu, syringe injection, sample solution in MeCN at flow rate

 $60 \,\mu$ L/min) using electrospray ionization (ESI) with simultaneous recording of positive and negative ions at capillary potentials of 4.5 and 3.5 kV, respectively. The capillary interface temperature was 230°C; nebulizer gas (dry N₂) at flow rate 1.5 L/min. Petroleum ether (PE, bp 40–70°C) was used for chromatography. Solvents were dried by standard methods. Elemental analyses of newly synthesized compounds agreed with those calculated.

Transformation of (*R*)-4-Menthen-3-one Antioxime (2) under Nitrosation Reaction Conditions. *a*) A suspension of oxime 2 (0.50 g, 3.0 mmol) and NaNO₂ (0.71 g, 10.3 mmol) in anhydrous CHCl₃ (10 mL) was treated dropwise with stirring at room temperature with glacial HOAc (1.5 mL), stirred for 2 h, diluted with H₂O (10 mL), and extracted with EtOAc (3 × 30 mL). The combined organic layer was washed successively with saturated solutions of Na₂CO₃ (3 × 5 mL) and NaCl (2 × 5 mL), dried over MgSO₄, and evaporated. The solid (0.33 g) was chromatographed (SiO₂, PE–EtOAc, 30:1) to afford 1 (0.21 g, 46%), $[\alpha]_D^{21}$ –66.9° (*c* 4.95, CHCl₃) {lit. [12], $[\alpha]_D^{25}$ –67.5° (*c* 5.3, CHCl₃)}. The IR, PMR, and ¹³C NMR spectral data were identical to those published earlier [12].

b) A suspension of oxime 2 (0.50 g, 3.0 mmol) and NaNO₂ (0.71 g, 10.3 mmol) in anhydrous MeOH (12 mL) was treated dropwise with stirring at room temperature with glacial HOAc (1.4 mL), stirred for 5 h, and evaporated in *vacuo*. The solid was diluted with H₂O (10 mL) and extracted with EtOAc (3 × 30 mL). The combined organic layer was washed successively with saturated solutions of Na₂CO₃ (3 × 5 mL) and NaCl (2 × 5 mL), dried over MgSO₄, and evaporated. The solid (0.38 g) was chromatographed (SiO₂, PE–EtOAc, 30:1) to afford 1 (0.24 g, 53%) that was identical to that obtained in *a*).

Transformation of 3 under Oximation Reaction Conditions. Epoxide **3** (1.50 g, 8.9 mmol) was dissolved in MeOH (8 mL); treated sequentially with NH₂OH·HCl (7.50 g, 107.9 mmol), NaOAc (15.0 g, 182.9 mmol), and H₂O (23 mL); refluxed for 2 h, cooled to room temperature, and extracted with EtOAc (3×90 mL). The combined organic layer was washed with saturated NaCl solution (2×15 mL), dried over Na₂SO₄, and evaporated. The solid (1.50 g) was chromatographed (SiO₂, PE–EtOAc, 20:1) to afford **8** (1.12 g, 66%), *R_f* 0.51 (PE–EtOAc, 2:1). The IR, PMR, and ¹³C NMR spectral data were identical to those published earlier [2].

Transformations of 4 and 5 in a Ritter Reaction. Enol **4** (0.46 g, 3.0 mmol) or acetate **5** (0.67 g, 3.0 mmol) was dissolved in MeCN (12 mL), cooled to 0°C, stirred, and treated with BF₃·Et₂O (0.4 mL) or conc. H₂SO₄ (0.8 g, 7.7 mmol). The reaction mixture was held at 20°C (for H₂SO₄) or 80°C (for BF₃·Et₂O) for 12 h, poured into cold (0°C) H₂O (15 mL), washed with NaOH solution (15%, 3×5 mL), and extracted with EtOAc (3×30 mL). The combined organic layer was washed with saturated NaCl solution (2×5 mL), dried over Na₂SO₄, and evaporated. The solid was purified by column chromatography (SiO₂, PE–EtOAc, 20:1) to afford diastereomeric acetamides **12a** and **b**. For enol **4**, yield 0.41 g (70%) of a mixture (55:45) of **12a** and **b** (H₂SO₄). *R_f*0.27 (PE–EtOAc 2:1). IR spectrum (KBr, v, cm⁻¹): 1539 (NHAc), 1620 (C=C), 1651 (C=O), 3350–3196 (NH). ESI mass spectrum ESI, *m/z* (I_{rel} , %), MeCN – H₂O 95:5, (Scan⁺): 410.0 (2[M + H]⁺ + H₂O], 37.5), 196.0 ([M + H]⁺, 100.0), 137.0 ([M – NHCOMe]⁺, 12.5).

N-[(1*R*,5*R*)-2-(1-Methylethyl)-5-methyl-2-cyclohexenyl]acetamide (12a) from a Mixture with 12b. PMR spectrum (500.13 MHz, CD₃OD, δ , ppm, J/Hz): 0.96 (3H, d, J = 6.6, CH₃-5'), 0.98 (3H, d, J = 6.9, H-3''), 1.04 (3H, d, J = 6.9, H-2''), 1.31 (1H, dd, ²J = 13.3, ³J = 4.7, H_a-4'), 1.52–1.60 (1H, m, H-5'), 1.59 (1H, d, J = 12.4, H_a-6'), 1.79 (1H, d, J = 13.3, H_e-4'), 1.92 (3H, s, NHCOC<u>H₃</u>), 2.12 (1H, dd, ²J = 12.4, ³J = 4.1, H_e-6'), 2.19 (1H, sept, J = 6.9, H-1''), 4.75 (1H, m, H_a-1'), 5.54 (1H, d, J = 2.0, H-3'), 7.93 (1H, br.s, N<u>H</u>COCH₃). ¹³C NMR spectrum (125.20 MHz, CDCl₃, δ , ppm): 21.16 (q, C-3''), 21.71 (q, C-2''), 22.90 (q, CH₃-5'), 23.51 (d, C-5'), 23.95 (s, NHCO<u>C</u>H₃), 31.56 (d, C-1''), 33.86 (t, C-4'), 38.00 (t, C-6'), 45.62 (d, C-1''), 123.65 (d, C-3'), 142.70 (s, C-2'), 169.19 (s, C-1).

N-[(1*S*,5*R*)-2-(1-Methylethyl)-5-methyl-2-cyclohexenyl]acetamide (12b) from a Mixture with 12a. PMR spectrum (500.13 MHz, CD₃OD, δ , ppm, J/Hz): 0.96 (3H, d, J = 6.6, CH₃-5'), 0.98 (3H, d, J = 6.9, H-3''), 1.04 (3H, d, J = 6.9, H-2''), 1.31 (1H, dd, ²J = 13.3, ³J = 4.7, H_a-4'), 1.52–1.60 (1H, m, H-5'), 1.59 (1H, d, J = 12.4, H_a-6'), 1.79 (1H, d, J = 13.3, H_e-4'), 1.92 (3H, s, NHCOCH₃), 2.12 (1H, dd, ²J = 12.4, ³J = 4.1, H_e-6'), 2.19 (1H, sept, J = 6.9, H-1''), 4.52 (1H, m, H_e-1'), 5.61 (1H, d, J = 4.5, H-3'), 8.07 (1H, br.s, NHCOCH₃). ¹³C NMR spectrum (125.20 MHz, CDCl₃, δ , ppm): 21.16 (q, C-3''), 21.71 (q, C-2''), 22.90 (q, CH₃-5'), 23.51 (d, C-5'), 23.95 (s, NHCOCH₃), 31.56 (d, C-1''), 33.98 (t, C-4'), 40.08 (t, C-6'), 47.87 (d, C-1'), 121.85 (d, C-3'), 143.42 (s, C-2'), 169.58 (s, C-1).

REFERENCES

- 1. G. Yu. Ishmuratov, E. R. Latypova, R. Ya. Kharisov, R. R. Muslukhov, A. V. Bannova, R. F. Talipov, and G. A. Tolstikov, *Zh. Org. Khim.*, **44**, 663 (2008).
- 2. R. Ya. Kharisov, E. R. Latypova, R. F. Talipov, R. R. Muslukhov, G. Yu. Ishmuratov, and G. A. Tolstikov, *Chem. Nat. Compd.*, **39**, 569 (2003).
- 3. J. Katsuhara, H. Yamasaki, and N. Yamamoto, Bull. Chem. Soc. Jpn., 43, 1584 (1970).
- G. Yu. Ishmuratov, E. R. Latypova, V. S. Tukhvatshin, A. A. Smol'nikov, R. R. Muslukhov, N. M. Ishmuratova, and R. F. Talipov, *Chem. Nat. Compd.*, 48, 978 (2012).
- 5. E. R. Latypova, V. S. Tukhvatshin, R. R. Muslukhov, M. P. Yakovleva, N. K. Lyapina, R. F. Talipov, and G. Yu. Ishmuratov, *Vestn. Bashkir. Univ.*, **2**, 358 (2009).
- 6. A. V. Tkachev, A. M. Chibiryaev, A. Yu. Denisov, and Yu. V. Gatilov, *Tetrahedron*, **51**, 1789 (1995).
- 7. A. M. Chibiryaev, A. Yu. Denisov, D. V. Pyshnyi, and A. V. Tkachev, Izv. Akad. Nauk, Ser. Khim., 1342 (2001).
- 8. G. A. Atazhanova, Dissertation, Fitokhimiya Scientific Research Center, Karaganda, 2008, 259 pp.
- 9. V. R. Kartashov, K. V. Malkova, A. V. Arkhipova, and T. N. Sokolova, Zh. Org. Khim., 42, 986 (2006).
- 10. C. Ingold, Structure and Mechanism in Organic Chemistry, Cornell Univ. Press, Ithaca, 1969.
- 11. P. Sykes, A Guidebook to Mechanism in Organic Chemistry, Wiley, New York, 1970.
- 12. W. Treibs and H. Albrecht, J. Prakt. Chem., 13, 291 (1961).