ORGANOMETALLICS

Mechanistic Study of Indolizine Heterocycle Formation by Ruthenium(II)-Assisted Three-Component Cross-Coupling/Cyclization

Chunhong Zhang, Hong Zhang, Laiying Zhang, Ting Bin Wen, Xumin He,* and Haiping Xia*

State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China

Supporting Information

ABSTRACT: In the presence of the acid HBF₄, 3-alkenyl-2-phosphonium indolizines 3a−c can be produced respectively by adding PhC≡CCOCH₃ (2a), CH₃OCOC≡CCOOCH₃ (2b), and CH₃CH₂C≡CCOCH₃ (2c) to a mixture of ruthenium complex RuCl₂(PPh₃)₃ and the propargyl alcohol (2-Py)CH(OH)C≡CH (1). We carefully investigated the mechanism of this reaction by means of structurally characterizing two key intermediates, ruthenium vinyl (4) and ruthenium carbene (5), and by deuterium-labeling experiments. A plausible mechanism is proposed, which involves addition of a proton to an alkyne carbon and the insertion of an alkyne into the Cα bond of an alkenylcarbene group, followed by an α-H elimination and reductive elimination.

INTRODUCTION

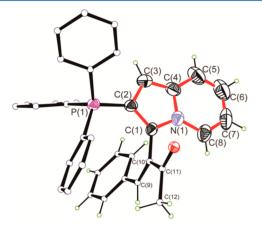
In recent years, the pharmacological potential of indolizines and related derivatives has become well recognized. A number of biologically important natural products contain the indolizine framework. As a result, a variety of methods for their synthesis have emerged. One of these strategies is the transition-metal-catalyzed cycloisomerization of easily available nonconjugated propargylpyridines or other organic molecules into indolizines. Transition-metal-catalyzed cycloisomerizations typically proceed through metal-carbene intermediates. For example, Gevorgyan and his co-workers reported the Rhcatalyzed transannulation of pyridotriazoles with alkynes to afford indolizines. As shown in Scheme 1, the mechanism for the formation of indolizine was proposed, including one Rhcarbene intermediate, A. To the best of our knowledge, this kind of metal-carbene intermediate has never been isolated.

Scheme 1. Proposed Rh-Carbene Intermediate in the Rh-Catalyzed Cycloisomerization

$$\begin{array}{c} \text{CO}_2\text{Me} \\ \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{CI} \\ \\ \text{Ph} \\ \\ \text{CI} \\ \\ \text{Ph} \\ \\ \text{CO}_2\text{Me} \\ \\ \text{CI} \\ \\ \text{Ph} \\ \\ \text{CO}_2\text{Me} \\ \\ \text{CI} \\ \\ \text{Ph} \\ \\ \text{CO}_2\text{Me} \\ \\ \text{Ph} \\ \\ \text{CI} \\ \\$$

It is interesting that ruthenium-based catalysts are used extensively for promoting the synthesis of organic compounds; however, a ruthenium catalyst involved in the synthesis of indolizine is rare, and we are aware of just one example used in a catalyst screening. In the following we report a mechanistic study on the ruthenium-assisted formation of indolizines by a three-component cross-coupling/cyclization that, in the future, might assist in the development of ruthenium-catalyzed processes for the synthesis of the indolizine hetereocycle. The key feature of this mechanism proceeds through a thermally stable but reactive ruthenium carbene intermediate, which is similar to intermidiate A in Scheme 1.

■ RESULTS AND DISCUSSION


Efficient One-Pot Synthesis of 3-Alkenyl-2-phosphonium Indolizine Salts 3a-c. We found that $RuCl_2(PPh_3)_3$ can assist the synthesis of 3-alkenyl-substituted indolizines by coupling and cyclizing propargyl alcohols with alkynes. For example, in the presence of HBF_4 , $RuCl_2(PPh_3)_3$ reacted with the easily accessible $(2-Py)CH(OH)C\equiv CH(1)$ and commercially available alkyne $PhC\equiv CCOCH_3(2a)$, and the 3-alkenyl-2-phosphonium indolizines salt $3a(R^1 = Ph, R^2 = CH_3)$ could be isolated, albeit in low yields of 10%, as shown in Scheme 2. The yield could be further improved to around 80% (NMR) if we first incubated $RuCl_2(PPh_3)_3$ together with 1, PPh_3 , and HBF_4 for 12 h before the addition of the alkyne 2a. With different alkyne starting materials, two related indolizines, $3b(R^1 = COOCH_3, R^2 = OCH_3)$ and $3c(R^1 = CH_2CH_3, R^2 =$

Received: April 28, 2013

Organometallics Article Article

Scheme 2. Synthesis of Indolizine-2-phosphonium Salts 3a-

 CH_3), could be also synthesized in the same fashion. A crystal structure of 3a is shown in Figure 1 and confirms the formation of indolizine 3a, whereas the indolizines 3b and 3c were identified by NMR and HRMS.

Figure 1. X-ray molecular structure for the cation of complex **3a** drawn with 50% probability. The hydrogen atoms in PPh₃ moieties are omitted for clarity. Selected bond lengths [Å] and angles [deg]: N(1)-C(1) 1.368(6), C(1)-C(2) 1.391(6), C(2)-C(3) 1.411(6), C(3)-C(4) 1.365(7), C(4)-C(5) 1.431(7), C(5)-C(6) 1.330(8), C(6)-C(7) 1.428(8), C(7)-C(8) 1.348(8), C(8)-N(1) 1.388(6), C(1)-C(10) 1.490(6), C(10)-C(9) 1.317(7), C(2)-P(1) 1.772(5); N(1)-C(1)-C(2) 105.8(4), C(1)-C(2)-C(3) 108.8(4), C(2)-C(3)-C(4) 107.9(4), C(3)-C(4)-N(1) 106.7(4), C(4)-N(1)-C(1) 110.8(4).

Identification of the Intermediate [Ru(CHC(PPh₃)C-(OH)(2-Py))Cl(PPh₃)₂]Cl (4). In order to elucidate this RuCl₂(PPh₃)₃-assisted transformation, we attempted to isolate potential intermediates by reacting RuCl₂(PPh₃)₃ with 1 in CH₂Cl₂ for 7 h and obtained a yellow precipitate, which we referred to as complex 4 (Scheme 3).

X-ray crystallographic analysis of complex 4 revealed a ruthenium vinyl structure (Figure 2). The coordination geometry around the ruthenium atom can be rationalized as a distorted octahedron with one phosphorus atom of PPh₃ ligands and the nitrogen atom of the pyridine occupying trans positions $(P(1)-Ru(1)-N(1)=166.94(11)^\circ)$, while one chloride atom and another PPh₃ ligand are cis to each other $(Cl(3)-Ru(1)-P(2)=82.26(10)^\circ)$. The Ru(1)-C(1) bond length is 1.986(4) Å, and distance of C(1)=C(2) bonds in the metallacycle of 4 is 1.354(6) Å. These bond distances are similar to those of reported ruthenium vinyl complexes (1.984 and 1.346 Å). The NMR spectra of 4 also exhibited the characteristic chemical shifts of a Ru-vinyl complex: a low-field resonance at 11.3 ppm in the ¹H NMR corresponds to a proton atom bound to ruthenium (RuCH) due to the effect of the

Scheme 3. Trapping of Intermediates 4 and 5

(i) CH₂Cl₂, PPh₃, RT, 7 h, 75% (ii) CHCl₃,NH₄Cl, HBF₄, RT, 6 h, 90% (iii) CHCl₃, HBF₄, RT, 12 h, 80% (NMR)

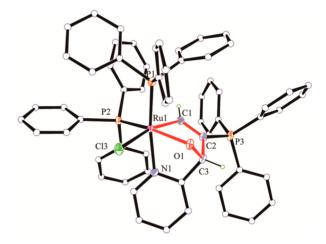


Figure 2. X-ray molecular structure for the cation of complex 4 drawn with 50% probability. The hydrogen atoms in PPh3 moieties are omitted for clarity. Selected bond lengths [Å] and angles [deg]: Ru(1)-C(1) 1.986(4), C(1)-C(2) 1.354(6), C(2)-C(3) 1.533(6), C(3)-O(1) 1.462(5), O(1)-Ru(1) 2.227(3), Ru(1)-P(2) 2.2780(13), Ru(1)-C1(3) 2.5145(12), Ru(1)-P(1) 2.3291(13), Ru(1)-N(1) 2.120(4); Ru(1)-C(1)-C(2) 114.5(4), C(1)-C(2)-C(3) 113.9(4), C(2)-C(3)-O(1) 106.5(4), C(3)-O(1)-Ru(1) 97.9(2), O(1)-Ru(1)-C(1) 77.77(16).

metal atom and phosphonium group on C2. This value is in the range of our reported Os-vinyl compound (OsCH is 12.2 ppm).⁸ In its ¹³C NMR, typical downfield signal at 241.6 ppm could be assigned to a carbon atom that is directly bound to the metal (RuCH). The doublet signal at 105.8 ppm was assigned to CPPh₃ due to the phosphorus-containing ligand. The ³¹P NMR spectrum of 4 consists of a singlet and two doublets: 7.9 ppm corresponds to CPPh₃; the doublets at 41.0 and 61.1 ppm correspond to two PPh₃ groups that are coordinated to ruthenium. The 26.7 Hz coupling constant between the two PPh₃ groups suggested that they are coordinated cis to each other.

Identification of the Intermediate [RuCHC(PPh₃)CH(2-Py)Cl₂PPh₃]BF₄ (5). Treatment of ruthenium vinyl 4 with HBF₄ afforded the Ru-carbene 5 by protonation of the hydroxyl group followed by dehydration. Ru-carbene 5 could be directly produced also by treatment of RuCl₂(PPh₃)₃, 1, and HBF₄ all together in chloroform. The solid-state structure of 5 was established by X-ray diffraction. As shown in Figure 3, the geometry of the ruthenium center can be viewed as a square-

Organometallics Article Article

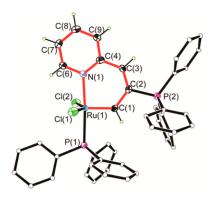


Figure 3. Molecular structure for the cation of 5 (ellipsoids at the 50% probability level). Counteranion and hydrogen atoms in PPh₃ are omitted for clarity. Selected bond lengths [Å] and angles [deg]: Ru(1)-C(1) 1.834(3), C(1)-C(2) 1.458(4), C(2)-C(3) 1.336(5), C(3)-C(4) 1.449(5), N(1)-C(4) 1.360(4), Ru(1)-N(1) 2.117(3). N(1)-Ru(1)-C(1) 92.62(12), Ru(1)-C(1)-C(2) 125.8(2), C(1)-C(2)-C(3) 127.5(3), C(2)-C(3)-C(4) 127.6(3), C(3)-C(4)-N(1) 119.5(3), C(4)-N(1)-Ru(1) 126.9(2), Cl(1)-Ru(1)-Cl(2) 148.08(3), Cl(1)-Ru(1)-C(1) 107.96(10), Cl(2)-Ru(1)-C(1) 103.81(10).

based pyramid as Grubbs' first-generation catalyst,9 in which the five coordination sites are occupied by C(1), N(1), two chloride atoms, and one phosphorus atom of the phosphine ligand. Complex 5 contains an essentially planar six-membered ring, as reflected by the deviation of rms = 0.009 Å from the plane of the best fit of the Ru(1), C(1), C(2), C(3), C(4), and N(1) chain. The value through the C(4), N(1), C(6), C(7), C(8), and C(9) chain (pyridine plane) is 0.0366 Å. The dihedral angle between the plane through C(1), C(2), C(3), C(4), and C(5) and the pyridine plane is 1.9° , which proves that the two cycles are nearly planar. As expected, there is a clear alternation of the bond lengths around the six-membered ring of Ru(1)/C(1)/C(2)/C(3)/C(4)/N(1). The Ru(1)= C(1) bond length (1.834(3) Å) is similar to that in Ru= CHPhCl₂(PCy₃)₂ (1.838(3) Å). The bond lengths of C(1)-C(2) and C(2)-C(3) are 1.458(4) and 1.336(5) Å, consistent with the value of C-C single bonds and C=C double bonds, respectively. All these parameters strongly support a 1,3butadiene moiety in complex 5.

The solid-state structure of **5** is fully supported by NMR spectroscopy. In the 1 H NMR spectrum, the α -H proton signal is found at 17.1 (dd, apprant t, J(PH) = 12.5 Hz) ppm. Similar proton patterns have been observed for the analogous vinylcarbene complexes $Cl_2(PPh_3)_2Ru(=CH-CH=CPh_2)^9$ and ruthenabenzenes $[Ru(CHC(PPh_3)CHC(PPh_3)CH)-Cl_2(PPh_3)_2]Cl.^{11}$ In its 31 P NMR spectrum, two singlets at 40.3 and 22.0 ppm correspond to $RuPPh_3$ and $CPPh_3$, respectively. In the 13 C NMR spectrum, the metal-bound carbon atom α -C shows typical downfield signals at 258.3 ppm, which is in the same range as those found for a variety of known ruthenium carbone complexes, 12 and the β -C connected to PPh_3 displays a signal at 116.3 (J(PC) = 87.4 Hz) ppm.

Formation of 3-Alkenyl-2-phosphonium Indolizine Salt 3 from Ru-Carbene 5. Ru-carbene 5 turns out to be very active toward alkynes such as $PhC \equiv CCOCH_3$ (2a), $CH_3OCOC \equiv CCOOCH_3$ (2b), and $CH_3CH_2C \equiv CCOCH_3$ (2c). Under acid conditions (HBF₄ or CF₃COOH), addition of 2a, 2b, and 2c to a CH_2Cl_2 solution of complex 5 at room temperature leads to 3-alkenyl-2-phosphonium indolizine salts

3a, 3b, and 3c quantitatively. These results suggest that the Rucarbene is the key intermediate for the formation of indolizine.

Ru-carbenes have been proposed as key intermediates and efficient catalysts in many reactions, and many scientists therefore have been trying to isolate related Ru-carbenes.7 However, the isolation of carbenes from reaction systems is extremely difficult because metal carbenes are often highly reactive and sensitive to air. To the best of our knowledge, Rucarbene intermediate 5 is the very first carbene that is isolated from reaction systems that lead to indolizine heterocycles. It is also worth noting that complex 5 has excellent thermal stabilities despite the unsaturated Ru coordination center. Solid samples of 5 remain nearly unchanged at 120 °C under air for 5 h. Such remarkable thermal stabilities may be related to the bulky PPh₃ ligand and quaternary phosphonium salt. 13 The high thermal stability of the Ru-carbene does not effect its reactivity, which may be related to the unsaturated ruthenium coordination center.

Scheme 4. Preparation of Indolizines from Ru-Carbene 5

Deuterium-Labeling Experiement. In order to gain more insight into the mechanism for the formation of **3**, we performed a deuterium-labeling experiment by means of isotopically homogeneous CF₃COOD. Accordingly, treatment of **5** and **2a** with CF₃COOD all together in CH₂Cl₂ afforded the compound **3a'**, in which a deuterium is incorporated in a defined position next to the phenyl group (Scheme **5**). This result reveals that this proton derives mechanistically from the acid rather than from the Ru-carbene **5**.

On the basis of the structures of the Ru-vinyl 4 and Ru-carbene 5 intermediates and the result of the deuterium-labeling experiment, we here propose a possible mechanism of the formation of indolizines (Scheme 6). According to this

Scheme 5. Deuterium-Labeling Experiment for Synthesizing 3a'

Organometallics Article

Scheme 6. Possible Mechanism for the Formation of Indolizines

mechanism, $RuCl_2(PPh_3)_3$ reacts with 1 affording the ruthenium vinyl complex 4. In the presence of HBF₄, vinyl complex 4 is then transformed into ruthenium carbene complex 5 by dehydroxylation. ¹⁴ Subsequently, ruthenium coordinates to the alkyne of the alkynone to form the π-alkyne intermediate B, which then rearranges to C by a net proton of acid adding to an alkyne carbon. Similar roles played by acid have already been postulated for the reaction of $C_5(CH_3)_5(CO)_2Re(\eta^2-CH_3C) \equiv CCH_3$ with HBF₄. ^{14,15} Next, insertion of the alkyne into the $C\alpha$ bond of the alkenylcarbene group gives D. Compound E then forms by α-H elimination of D. ¹⁶ Finally, through a 6π -electrocyclization and subsequent reductive elimination, the product indolizine 3 is furnished.

CONCLUSION

We here presented a mechanistic study on a ruthenium-assisted reaction for the synthesis of indolizines. By successfully isolating and characterizing two important intermediates and an additional deuterium-labeling experiment, we were able to propose a reasonable mechanism for the formation of the indolizine salt products. A key component of this mechanism is a thermally stable but reactive ruthenium carbene intermediate. These insights might pave the way to the development of a ruthenium-catalyzed indolizine synthesis.

■ EXPERIMENTAL SECTION

General Information. All syntheses were carried out in a dry nitrogen atmosphere using standard Schlenk techniques, unless otherwise stated. Solvents were distilled from sodium/benzophenone (diethyl ether) or calcium hydride (CH₂Cl₂, CHCl₃) under N₂ prior to use. The starting material (2-Py)CH(OH)C \equiv CH (1)^{3d} was synthesized according to a literature procedure. Other reagents were used as received from commercial sources without further purification. Column chromatography was performed on alumina gel (200-300 mesh) in air. NMR spectra were performed on a Bruker AVIII-500 (¹H, 500.1 MHz; ¹³C, 125.8 MHz; ³¹P, 202.5 MHz), AVIII-400 (¹H, 400.13 MHz; ¹³C, 100.63 MHz; ³¹P, 161.96 MHz), and AVIII-300 (1H, 300.1 MHz; 13C, 75.48 MHz; 31P, 121.5 MHz) spectrometer at room temperature. 1 H and 13 C NMR chemical shifts (δ) are relative to tetramethylsilane, and ³¹P NMR chemical shifts are relative to 85% H₃PO₄. The absolute values of the coupling constants are given in hertz (Hz). Multiplicities are abbreviated as singlet (s), doublet (d), triplet (t), multiplet (m), and broad (br). High-resolution mass spectra (HRMS) experiments were recorded on a Bruker En Apex Ultra 7.0T FT-MS.

Preparation of Indolizine 3a. Method 1: To a solution of RuCl₂(PPh₃)₃ (535 mg, 0.560 mmol), PPh₃ (438 mg, 1.68 mmol), (2-Py)CH(OH)C \equiv CH (89.1 mg, 0.670 mmol), and HBF₄ (0.20 mL, 1.5 mmol) in 1:1 CHCl₃/CH₂Cl₂ (20 mL) was added PhC≡CCOCH₃ (0.16 mL, 1.5 mmol). After stirring for 24 h at room temperature, the solution was then concentrated to about 2 mL. The resulting solution was then purified by chromatography over neutral alumina eluting with CH₂Cl₂/CH₃COCH₃ (10:1), affording 3a as a yellow solid (31 mg, 10%). Method 2: To a suspension of compound 5 (450 mg, 0.50 mmol) and HBF₄ (0.20 mL, 1.5 mmol) in CH₂Cl₂ (10 mL) was added PhC≡CCOCH₃ (0.16 mL, 1.5 mmol). After stirring for 4 h at room temperature, the solution was concentrated to ca. 2 mL. The resulting solution was purified by chromatography over neutral alumina eluting with CH₂Cl₂/CH₃COCH₃ (10:1), affording 3a as a yellow solid (253 mg, 83%). Mp: 209–211 °C. 1 H NMR (400 MHz, CD $_{2}$ Cl $_{2}$): δ 7.74 (t, I = 7.4 Hz, 3 H), 7.59 (s, 1 H, CH₃COCCH), 7.55–7.40 (m, 14 H), 7.23 (t, J = 7.4 Hz, 1 H), 7.12 (t, J = 7.6 Hz, 2 H), 6.89 (dd, J = 6.6, 8.8 Hz, 1 H), 6.72 (d, J(PH) = 5.1 Hz, 1 H, $C(PPh_3)CH$), 6.62 (d, J = 7.3Hz, 2 H), 6.60 (t, J = 7.1 Hz, 1 H), 2.08 (s, 3 H, CH₃). ³¹P NMR (161 MHz, CD₂Cl₂): δ 14.5 (s, CPPh₃). ¹³C NMR (100 MHz, CD₂Cl₂): δ 198.3 (s, CO), 149.6 (s, COCCH), 135.2 (d, J(PC) = 2.5 Hz), 135.0, 134.3(d, J(PC) = 10.9 Hz), 132.5, 131.7, 130.4, 130.0 (d, J(PC) = 12.9)Hz), 129.2, 127.0, 126.7, 122.5, 121.3, 120.2, 119.4, 118.4, 114.6 (PPh₃, Ph and others carbon atoms), 106.2 (d, ${}^{2}J(PC) = 10.9$ Hz, $C(PPh_3)CH)$, 99.0 (d, ${}^{1}J(PC) = 112.1 \text{ Hz}$, $C(PPh_3)$), 26.2 (s, CH_3). HRMS (ESI): m/z calcd for $[C_{36}H_{29}ClORuP]^+$, 522.1981; found

Preparation of [Ru(CHC(PPh₂)C(OH)(2-Pv)Cl(PPh₂)₂]Cl (4). RuCl₂(PPh₃)₃ (535 mg, 0.560 mmol), (2-Py)CH(OH)C≡CH (89.1 mg, 0.670 mmol), and PPh₃ (663 mg, 2.53 mmol) were dissolved in 15 mL of CH2Cl2. A yellow precipitate formed after stirring at room temperature for 7 h. The product was collected by filtration, washed with CH_2Cl_2 (2 × 3 mL), and dried as a yellow solid (458 mg, 75%). Mp = 178–185 °C (dec). ¹H NMR (300 MHz, CD₂Cl₂): δ 11.32 (d, J(PH) = 18.0 Hz, 1 H, RuCH), 7.84-6.56 (m, 50 H, other aromatic carbon atoms and OH), 5.96 (d, J(PH) = 4.0 Hz, 1 H, RuCHC(PPh₃)CH). 31 P NMR (121 MHz, CD₂Cl₂): δ 7.9 (s, $CPPh_3$), 41.0 ppm (d, J(PP) = 26.7 Hz, $RuPPh_3$), 61.1 (d, J(PP) =26.7 Hz, RuPPh₃). ¹³C NMR plus DEPT 135 and ¹H-¹³C HSQC (75 MHz, CD_2Cl_2): δ 241.6 (br, RuCH), 156.3 (s, CHN), 156.0 (s, C(PPh₃)CHC), 136.6–119.7 (m, other aromatic carbon atoms), 105.8 (d, J(PC) = 81.9 Hz, $C(PPh_3)$), 80.57 ppm (d, J(PC) = 29.4 Hz, C(PPh₃)CH(OH)). HRMS (ESI): m/z calcd for

[C₆₂H₅₂ClNORuP₃]⁺, 1056.1989; found 1056.1984.

Preparation of [Ru(CHC(PPh₃)CH(2-Py))Cl₂PPh₃]BF₄ (5). To a suspension of compound 4 (1.1 g, 1.0 mmol) and NH₄Cl (0.16 g, 3.0 mmol) in CHCl₃ (15 mL) was added HBF₄/Et₂O (0.41 mL, 3.0 mmol). After 6 h, the resulting green solution was concentrated to ca. 2 mL, and then diethyl ether (20 mL) was added to the solution. The

Organometallics Article

Table 1. Crystal Data and Structure Refinement for 3a, 4, and 5

	$3a \cdot CH_2Cl_2$	$4.3CH_2Cl_2$	$5 \cdot CH_2Cl_2$
formula	$C_{73}H_{60}B_2Cl_2F_8N_2O_2P_2$	$C_{65}H_{58}Cl_8NOP_3Ru$	$C_{45}H_{38}BCl_4F_4NP_2Ru$
$M_{ m r}$	1303.69	1346.70	984.38
color	yellow	yellow	green
temp, K	173(2)	173(2)	173(2)
radiation (Mo Kα), Å	0.71073	0.71073	0.71073
cryst syst	monoclinic	monoclinic	triclinic
space group	$P2_1/c$	$P2_1/c$	$P\overline{1}$
a, Å	22.8041(13)	12.9636(3)	11.3830(3)
b, Å	14.1895(6)	20.3607(7)	12.8300(5)
c, Å	19.9794(9)	23.0029(7)	15.3047(4
α , deg	90	90.00	83.862(3)
β , deg	93.628(5)	94.751(3)	80.728(2)
γ, deg	90	90.00	87.617(3)
<i>V</i> , Å ³	6452.0(5)	6050.7(3)	2192.63(12)
Z	4	4	2
$ ho_{ m calcd}$, g cm $^{-3}$	1.342	1.478	1.491
θ range, deg	3.00-25.00	2.74-25.00	2.74-25.00
F(000)	2696	2752	996
cryst size, mm	$0.4 \times 0.3 \times 0.2$	$0.3\times0.2\times0.2$	$0.25\times0.15\times0.1$
reflns collected	31 452	30 962	22 325
indep reflns	11 331	10 659	7703
data/restraints/params	11 331/3/820	10 659/0/667	7703/0/523
GOF on F^2	1.025	1.050	0.953
R_1/wR_2	$R_1 = 0.0918$	$R_1 = 0.0573$	$R_1 = 0.0408$
$[I \ge 2\sigma(I)]$	$wR_2 = 0.2000$	$wR_2 = 0.1430$	$wR_2 = 0.1199$
R_1/wR_2 (all data)	$R_1 = 0.1462$	$R_1 = 0.0832$	$R_1 = 0.0500$
	$wR_2 = 0.2286$	$wR_2 = 0.1505$	$wR_2 = 0.1306$
largest peak/hole [e Å ⁻³]	1.584 and −1.007	2.141 and -1.461	1.185 and -0.841

oily precipitate was collected by filtration, washed with CHCl₃ (2 × 3 mL), and dried as a green solid (809 mg, 90%). Mp = 185–191 °C (dec). ^1H NMR (400 MHz, CD₂Cl₂): δ 17.1 (dd, apprant t, J(PH) = 12.5 Hz, 1 H, RuCH), 9.4 (d, J(HH) = 4.7, 1 H, NCH), 8.0–7.1 (m, 34 H, other aromatic carbon atoms). ^{31}P NMR (162 MHz, CD₂Cl₂): δ 40.3 (s, RuPPh₃), 22.0 ppm (s, CPPh₃). ^{13}C NMR (100 MHz, CD₂Cl₂): δ 258.3 (m, RuCH), 151.2 (d, J(PC) = 18.2 Hz, RuCHC(PPh₃)CH), 150.9 (s, NCH), 138.6–125.2 (m, other aromatic carbon atoms), 116.3 (d, J(PC) = 87.4 Hz, $C(\text{PPh}_3)$). HRMS (ESI): m/z calcd for $[C_{44}H_{36}\text{Cl}_2\text{NRuP}_2]^+$, 812.0744; found 812.0739.

Preparation of Indolizine 3b. To a suspension of compound 5 (450 mg, 0.50 mmol) and HBF₄/Et₂O (0.20 mL, 1.5 mmol) in CH_2Cl_2 (10 mL) was added $CH_3OCOC \equiv CCOOCH_3$ (0.19 mL, 1.5 mmol). The resulting solution was concentrated to ca. 2 mL after stirring for 4 h at room temperature and then purified by chromatography over neutral alumina eluting with CH₂Cl₂/ CH₃COCH₃ (10:1), affording 3b as a yellow solid (242 mg, 80%). Mp: 236–238 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.85–7.52 ppm (m, 17 H), 6.98 (t, J(HH) = 8.4 Hz, 1 H), 6.80 (s, 1 H, 17 H) $CH_3OCOCH)$, 6.76 (t, J(HH) = 6.9 Hz, 1 H), 6.74 (d, J(PH) = 4.3Hz, 1 H, C(PPh₃)CH), 3.89 (s, 3 H, CH₃O), 3.85 (s, 3 H, CH₃O). ³¹P NMR (202 MHz, CDCl₃): δ 14.37(s, CPPh₃). 13 C NMR (125 MHz, CDCl₃): δ 163.8 (s, CH₃OCO), 163.4 (s, CH₃OCO), 136.3 (s, CH_3OCOCH), 135.4 (d, J(PC) = 2.36 Hz), 135.1 (d, J(PC) = 14.7Hz), 134.4 (d, J(PC) = 10.5 Hz), 131.9, 130.2 (d, J(PC) = 12.8 Hz), 123.5 (d, J(PC) = 19.35 Hz), 122.5, 121.3, 120.1, 119.2, 118.5, 114.6 (other carbon atoms), 106.5 (d, I(PC) = 10.8 Hz, $CPPh_3CH$), 100.6(d, J(PC) = 112.5 Hz, $CPPh_3$), 53.3 (s, CH_3OCO), 52.6 (s, CH₃OCO). HRMS (ESI): m/z calcd for $[C_{32}H_{27}NO_4P]^+$, 520.1672; found 520.1678.

Preparation of Indolizine 3c. To a suspension of compound 5 (450 mg, 0.50 mmol) and CF₃COOH (0.12 mL, 1.5 mmol) in CH₂Cl₂ (10 mL) was added CH₃CH₂C≡CCOCH₃ (0.15 mL, 1.5 mmol). The solution was concentrated to ca. 2 mL after stirring at room temperature for 4 h. The resulting solution was then purified by

chromatography over neutral alumina eluting with CH₂Cl₂/ CH₃COCH₃ (10:1), affording 3c as a yellow solid (255 mg, 91%). Mp: 214–216 °C. ¹H NMR plus ¹H–¹³C HSQC and ¹H–¹H COSY (400 MHz, CDCl₃): δ 7.76 (t, J = 7.4 Hz, 3 H), 7.64–7.55 (m, 12 H), 7.49 (d, J = 7.2 Hz, 1 H), 7.43 (d, J = 9.5 Hz, 1 H), 6.92 (t, J = 7.3 Hz, 1 H, CH₃CH₂CH), 6.86 (dd, J = 9.1, 6.6 Hz, 1 H), 6.66 (t, J = 6.9 Hz, 1 H), 6.62 (d, J = 5.2 Hz, 1 H, C(PPh₃)CH), 1.91 (s, 3 H, CH₃CO), 1.75 (m, 2 H, CH₃CH₂), 0.85 (t, J = 5.2 Hz, 3 H, CH₃CH₂). ³¹P NMR (162 MHz, CDCl₃): δ 14.5 (s, CPPh₃). ¹³C NMR plus DEPT 135 and ¹H–¹³C HSQC (100 MHz, CDCl₃): δ 197.7 (s, CH₃CO), 157.4 (s, CH₃CH₂CH), 105.8 (d, ²J(PC) = 10.9 Hz, C(PPh₃)CH), 99.8 (d, ¹J(PC) = 112.1 Hz, C(PPh₃)), 29.2 (s, CH₃CO), 25.8 (s, CH₃CH₂), 12.1 (s, CH₃CH₂), 135.2–114.3 (other carbon atoms). HRMS (ESI): m/z calcd for $[C_{32}H_{29}NOP]^+$, 474.1981; found 474.1984.

Crystallographic Analysis. Crystals suitable for X-ray diffraction were grown from CH₂Cl₂ solutions layered with diethyl ether for 3a, 4, and 5. Data collections were performed on an Oxford Gemini S Ultra or a Rigaku R-AXIS SPIDER IP CCD area detector using graphitemonochromated Mo K α radiation (λ = 0.71073 Å). Multiscan absorption corrections (SADABS) were applied. All of the data were corrected for absorption effects using the multiscan technique. The structures were solved by direct methods, expanded by difference Fourier syntheses, and refined by full matrix least-squares on F^2 using the Bruker SHELXTL (version 6.10) program package. Non-H atoms were refined anisotropically unless otherwise stated. Hydrogen atoms were introduced at their geometric positions and refined as riding atoms unless otherwise stated. CCDC 941265 (3a), 941263 (4), and 941264 (5) contain the supplementary crystallographic data for this paper. Further details on crystal data, data collection, and refinements are summarized in Table 1.

Organometallics Article

ASSOCIATED CONTENT

S Supporting Information

CIF files giving crystallographic data of compounds 3a, 4, and 5. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: hpxia@xmu.edu.cn; hejin@xmu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Basic Research Program of China (No. 2012CB821600), the National Natural Science Foundation of China (Nos. 20925208, 21174115, 21272193), and the program for Changjiang Scholars and Innovative Research Team in University.

REFERENCES

- (1) (a) Singh, G. S.; Mmatli, E. E. Eur. J. Med. Chem. 2011, 46, 5237. (b) Vemula, V. R.; Vurukonda, S.; Bairi, C. K. Int. J. Pharm. Sci. Rev. Res. 2011, 11, 159.
- (2) (a) Michael, J. P. Nat. Prod. Rep. 2001, 18, 520. (b) Fan, H.; Peng, J.; Hamann, M. T.; Hu, J. F. Chem. Rev. 2008, 108, 264. (c) Facompré, M.; Tardy, C.; Bal-Mahieu, C.; Colson, P.; Perez, C.; Manzanares, I.; Cuevas, C.; Bailly, C. Cancer Res. 2003, 63, 7392.
- (3) (a) Wen, J. J.; Zhu, Y.; Zhan, Z. P. Asian J. Org. Chem. 2012, 1, 108. (b) Basavaiah, D.; Rao, A. J. Tetrahedron Lett. 2003, 44, 4365. (c) Sonnenschein, H.; Theil, F.; Kreher, T.; Kóeckritz, A. Chem. Commun. 1997, 6, 551. (d) Kim, I.; Won, H. K.; Choi, J.; Lee, G. H. Tetrahedron 2007, 63, 12954. (e) Jung, Y.; Kim, I. Tetrahedron 2012, 68, 8198. (f) Furdui, B.; Dinica, R.; Demeunynck, M.; Druta, I. Rom. J. Phys. 2008, 53, 369. (g) Furdui, B.; Dinica, R.; Druta, I. I.; Demeunynck, M. Synthesis 2006, 16, 2640.
- (4) (a) Hardin, N. A. R.; Sarpong, R. Green Chem. 2010, 12, 1556. (b) Smith, C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. Org. Lett. 2007, 9, 1169. (c) Hardin, A. R.; Sarpong, R. Org. Lett. 2007, 9, 4547. (d) Chernyak, D.; Skontos, C.; Gevorgyan, V. Org. Lett. 2010, 12, 3242. (e) Dudnik, A. S.; Sromek, A. W.; Rubina, M.; Kim, J. T.; Kel'in, A. V.; Gevorgyan, V. J. Am. Chem. Soc. 2008, 130, 1440. (f) Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. Tetrahedron 2008, 64, 6876. (g) Xia, J. B.; Wang, X. Q.; You, S. L. J. Org. Chem. 2009, 74, 456. (h) Xia, J. B.; You, S. L. Org. Lett. 2009, 11, 1187. (i) Chai, D. I.; Lautens, M. J. Org. Chem. 2009, 74, 3054. (j) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (k) Thansandote, P.; Lautens, M. Chem.—Eur. J. 2009, 15, 5874.
- (5) (a) Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. Org. Lett. 2007, 9, 3433. (b) Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050. (c) Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868. (d) Xia, Y.; Dudnik, A. S.; Li, Y.; Gevorgyan, V. Org. Lett. 2010, 12, 5538
- (6) (a) Chuprakov, S.; Hwang, F. W.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 4757. (b) Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463.
- (7) Lozano-Vila, A. M.; Monsaert, S.; Bajek, A.; Verpoort, F. Chem. Rev. 2010, 110, 4865.
- (8) Gong, L.; Lin, Y. M.; Wen, T. B.; Xia, H. P. Organometallics 2009, 28, 1101.
- (9) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1992, 114, 3974.
- (10) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H. Angew. Chem., Int. Ed. 1995, 34, 2039.
- (11) Zhang, H.; Xia, H. P.; He, G. M.; Wen, T. B.; Gong, L.; Jia, G. C. Angew. Chem., Int. Ed. **2006**, 45, 2920.

- (12) (a) Chung, C. P.; Chen, C. C.; Lin, Y. C.; Liu, Y. H.; Wang, Y. J. Am. Chem. Soc. 2009, 131, 18366. (b) Shaffer, E. A.; Chen, C. L.; Beatty, A. M.; Valente, E. J.; Schanz, H. J. J. Organomet. Chem. 2007, 692, 5221. (c) Gandelman, M.; Naing, K. M.; Rybtchinski, B.; Poverenov, E.; Ben-David, Y.; Ashkenazi, N.; Gauvin, R. M.; Milstein, D. J. Am. Chem. Soc. 2005, 127, 15265. (d) Conrad, J. C.; Yap, G. P. A.; Fogg, D. E. Organometallics 2003, 22, 1986. (e) Volland, M. A. O.; Rominger, F.; Eisentrager, F.; Hofmann, P. J. Organomet. Chem. 2002, 641, 220.
- (13) Zhao, Q. Y.; Gong, L.; Xu, C. F.; Zhu, J.; He, X. M.; Xia, H. P. Angew. Chem., Int. Ed. 2011, 50, 1354.
- (14) (a) Casey, C. P.; Brady, J. T. Organometallics 1998, 17, 4620. (b) Wolf, J.; Werner, H. Organometallics 1987, 6, 1164.
- (15) (a) Esteruelas, M. A.; Lahoz, F. J.; Lopez, J. A.; Oro, L. A.; Schluenken, C.; Valero, C.; Werner, H. *Organometallics* 1992, 11, 2034. (b) Andriollo, A.; Esteruelas, M. A.; Meyer, U.; Oro, L. A.; Sanchez-Delgado, R. A.; Sola, E.; Valero, C.; Werner, H. *J. Am. Chem. Soc.* 1989, 111, 7431.
- (16) (a) Conejero, S.; Paneque, M.; Poveda, M. L.; Santos, L. L.; Carmona, E. *Acc. Chem. Res.* **2010**, *43*, 572. (b) Rankin, M. A.; McDonald, R.; Ferguson, M. J.; Stradiotto, M. *Angew. Chem., Int. Ed.* **2005**, *44*, 3603.