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Abstract: Protected derivatives of 3-pyrrolylalanine (3-PA) have been synthesized starting with N- 
tri(isopropyl)silylpyrrole. Following formylation and Boc protection, treatment with (+)-N- 
0aenzyloxycarbonyl)-~-phosphonoglycine trimethyl ester provided a fully protected dehydro-3- 
pyrrolylalanine. Reduction of the double bond and removal of the methyl ester groups yielded 3- 
PA protected at the ct- and pyrrole nitrogens. 3-PA is only transiently stable following N- 
deprotection. © 1998 Elsevier Science Ltd. All fights reserved. 

Genetic engineering combined with in vivo bacterial protein synthesis offers a novel approach to the design 
and preparation of macromolecular materials, in that precise control of chain length, sequence, and 
stereochemistry can be achieved. 1 Since materials properties are closely fled to polymer microstructure, this 
synthetic strategy offers unique advantages in the creation of functionally novel biopolymers. 24 In addition, 
protein-based materials can be engineered to combine natural and artificial domains to create polymers with unique 
structural and biological properties, s 

The monomers available for/n vivo protein synthesis include the 20 natural amino acids, as well as some 
analogues, 6'7 which can be used to introduce novel functional groups into engineered proteins, s'm° One of our 
specific goals is the synthesis of proteins containing electroactive residues, which are of interest in the 
development of materials for the control of cell growth, H drug delivery, ~2 and biosensors, m3 While no translational 
studies of pyrrolylalanine have been reported, the ability of 3-thienylalanine t° to be incorporated into E. coli 

proteins in place of phenylalanine suggests that 3-pyrrolylalanine (3-PA) might be similarly incorporated, and the 
structural similarity of 3-PA and histidine indicates that 3-PA might also act as a histidine surrogate. Regardless of 
its translational activity, 3-PA and its derivatives should be useful building blocks for solution- and solid-phase 
peptide synthesis. After incorporation into target peptide or protein, 3-PA residues should be susceptible to 
oxidative polymerization through the 2- and 5- positions of the heterocycle to create materials with electrochemical 
properties analogous to those of the polypyrroles. '1 In addition, artificial heterocyclic amino acids, such as 
pyrrolylalanine, are useful in the design of potential therapeutic agents.~4 

Efficient polymerization of pyrroles requires use of derivatives free of substitution in the 2- and 5- positions; 
3-PA (1) must be used rather than the known 2-isomer. ~4'~s 

The initial reaction in the synthesis of 3-PA derivatives (Scheme) is the introduction of an aldehyde moiety at 
the 3-position of the pyrrolyl ring. While pyrrole is activated to electrophilic attack in the 2- and 5-positions, 
substitution can be directed to the 3-position by the introduction of a large protecting group, such as 
tri(isopropyl)silyl (TIPS), on the pyrrole nitrogen. 16 Reaction of N-tri(isopropyl)silylpyrrole with the Vilsmeier- 
Haack reagent, followed by aqueous workup under alkaline conditions afforded pyrrolyl-3-carboxaldehyde (2) in 
72% yield, m7 After protection with (tert-butyloxycarbonyl) (Boc), 18 3 was treated with (_+)-N- 
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(benzyloxycarbonyl)-~-phosphonoglycine trimethyl ester in a Homer Emmons reaction to provide the dehydro-3- 
pyrrolylalanine derivative (4) in 85% yieldfl Reduction of the double bond with sodium borohydride in the 
presence of catalytic nickel(II) chloride hexahydrate produced the fully protected 3-PA (5) in 69% yield. 2° The 

methyl ester protecting group was removed in 
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aqueous sodium hydroxide to give the free 
carboxylic acid derivative (6). 2t Finally, 3-PA 
(1) was liberated from the remaining protecting 
groups by reaction with trimethylsilyl iodide 
and pyridine in 77% yield. 22'23 3-PA 

decomposes rapidly in aqueous acid, less 
rapidly in neutral water, and negligibly in 
aqueous base. 
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