ORGANOMETALLICS


Reduction of CO₂ to Trimethoxyboroxine with BH₃ in THF

Koji Fujiwara, Shogo Yasuda, and Tsutomu Mizuta*

Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526, Japan

S Supporting Information

ABSTRACT: Commercially available THF solutions of BH₃·THF, which contain 0.5 mol % of NaBH₄ as a stabilizing reagent for BH₃. THF, react with 1 atm of CO₂ at room temperature to form trimethoxyboroxine, (MeOBO)₃, in 87% yield after 12 h. Since no reaction took place in the absence of NaBH₄, NaBH₄ was found to work as a promoter or catalyst for the reduction of CO₂ with BH₃ to the

methoxy compound. A similar reaction using HCOONa in place of NaBH₄ also gave (MeOBO)₃ in comparable yield.

dramatic increase in global fuel consumption and the A resulting emissions of enormous quantities of CO_2 are contemporary energy and environmental issues. Since the utilization of CO_2 as the C_1 building block for fuels and chemicals is one of the most promising strategies to solve both issues, reduction of CO₂ has been extensively investigated.¹ Most of these studies are on the formation of formic acid, which is obtained with excellent turnover numbers of up to 222 000 using half-sandwich iridium(III) complexes reported by Himeda et al. and 3 500 000 using an iridium(III) trihydride pincer complex by Nozaki et al.² On the other hand, a relatively limited number of studies have been reported for further reduction to give methoxy products. Recent examples employ nickel and ruthenium complexes as catalysts for hydroboration reactions.³ In addition to these transition-metal-catalyzed CO₂ reductions, transition-metal-free systems such as frustrated Lewis acid-base pair systems have also attracted recent interest.⁴ Another notable example using an organic catalyst is an ambiphilic phosphine-borane system reported by Fontaine.⁵ They demonstrated that not only catecholborane, which has been frequently used as the reducing reagent for CO₂, but also BH₃ are excellent reagents to afford methoxy derivatives.

In the course of our study on the transition-metal-catalyzed CO_2 reduction with BH₃, we discovered a simple and very effective method for CO_2 reduction to a methoxy group using only a commercially available BH₃. THF solution or a purified BH₃. THF solution in the presence of a catalytic amount of NaBH₄. The reactions do not require any sophisticated additives such as transition-metal catalysts or organocatalysts.⁶ Here, we report the reaction conditions and discuss the reaction mechanisms.

To the best of our knowledge, a reaction between CO_2 and BH_3 . THF in THF without any additives has not been reported. We confirmed that CO_2 at ambient temperature and pressure did not react with a "purified" BH_3 . THF solution, which was prepared by the trap-to-trap technique from a commercially available THF solution of BH_3 . THF. The ${}^{11}B{}^{1}H{}$ NMR spectrum of the solution kept under a CO_2 atmosphere for 6 h

showed a major ${}^{11}B{}^{1}H$ NMR signal assigned to the starting BH_3 ·THF at -0.4 ppm.

On the other hand, in the presence of a catalyst, there are several reports in which BH_3 THF was used as the reducing reagent for CO_2 . To our surprise, however, when the commercially available BH_3 THF solution (ca. 1 M in THF) was used as received without purification, the BH_3 THF solution reacted with CO_2 to give trimethoxyboroxine, $(CH_3OBO)_3$ (eq 1), which was characterized by a ${}^{11}B{}^{1}H{}$

$$\begin{array}{c} \text{NaBH}_4 & \text{OCH}_3 \\ 3 \text{ CO}_2 + 3 \text{ H}_3\text{B} \cdot \text{THF} & \underbrace{\begin{array}{c} 0.5 \text{ mol}\% \\ 0.5 \text{ mol}\% \\ \text{THF, r.t.,} \end{array}} & \begin{array}{c} \text{O}_-\text{B}_-\text{O} \\ \text{O}_-\text{B}_-\text{O}_-\text{CH}_3 \end{array} \end{array}$$

NMR signal at 19.3 ppm and a ${}^{13}C{}^{1}H{}$ NMR signal at 51.6 ppm assigned to the methoxy carbon.^{3i,5}Monitoring of the reaction mixture with ${}^{11}B{}^{1}H{}$ NMR spectroscopy showed a decrease of BH₃·THF and the concomitant increase of (CH₃OBO)₃ as shown in Figure 1. After 12 h, the hydrolysis

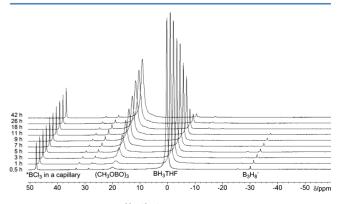


Figure 1. Stack plot of $^{11}B\{^1H\}$ NMR spectra for the reaction of a commercially available $BH_3{\cdot}THF$ solution with 1 atm of CO₂ at rt.

Received: August 21, 2014

of the reaction mixture gave MeOH in 87% yield against the starting BH₃·THF. The reaction was further examined using ${}^{13}CO_2$, which enabled more direct observation of the reaction products using ${}^{13}C{}^{1}H$ NMR spectroscopy. The spectrum recorded after the reaction showed only two signals, at 125.8 and 51.6 ppm, in addition to those of THF. These signals were assigned to starting ${}^{13}CO_2$ and $({}^{13}CH_3OBO)_3$ produced, respectively. Without proton decoupling, the latter signal was split into a quartet due to the coupling with three hydrogens, proving it was a methoxy carbon.

Commercially available BH₃·THF contains <0.5 mol % of NaBH₄ as a stabilizing reagent. It is known that BH₃·THF in THF gradually decomposes through a ring-opening reaction of a THF molecule to form "BuOBH₂ when the solution is stored above 0 °C.⁷ The "BuOBH₂ thus formed undergoes a redistribution reaction to give a mixture of ("BuO)₂BH, ("BuO)₃B, and BH₃.⁸ A small amount of NaBH₄ is used to prevent the formation of "BuOBH₂.^{7d} The remarkably different reactivity against CO₂ between the purified and commercially available BH₃·THF suggests that NaBH₄ in the latter solution plays an important role in promoting the reduction of CO₂. To confirm the role of NaBH₄, a catalytic amount (1.0 mol %) of NaBH₄ was added to the purified BH₃·THF solution, and under the same reaction conditions, the mixture gave (CH₃OBO)₃ in 83% yield, which is comparable to that of the commercially available BH₃·THF.

To examine the hydroborate species in the BH₃·THF solution, both the commercial BH₃·THF solution and the BH₃·THF solution mixed with 1.0 mol % of NaBH₄ after trapto-trap purification were checked using ¹¹B NMR spectroscopy. The former solution was found to contain $B_3H_8^-$ having a signal at -30.1 ppm that splits into a septet when the spectrum was recorded in nondecoupled mode, as shown in Figure S6.⁹ Similarly, NaBH₄ added to the purified BH₃·THF solution was not observed. Instead, a broad signal at -26 ppm was observed, which could be assigned to $B_2H_7^{-.10}$ Since both $B_3H_8^-$ and $B_2H_7^-$ are reported to be in an equilibrium with BH₄⁻, the reaction of BH₄⁻ with CO₂ is of interest.^{9,10}

There are several relevant reactions of a BH₄⁻ anion with CO_2 in the literature. The first one appeared in the 1950s. Heller et al. examined the reaction of radioactive ¹⁴CO₂ with LiBH4 in ether and found the formation of HCOOLi and $1/{}_{2}B_{2}H_{6}$ as well as a small amount of MeOH.¹¹ Pearson et al. reported the formation of methoxy and formate compounds from the reaction of CO₂ with NaBH₄, but they did not spectroscopically characterize the products.¹² Thirty years later, La Monica et al. carried out the reduction of CO₂ with free BH_4^- , which was dissociated from tetrahydroborate-metal complexes formulated as $(diimine)(Ph_3P)Cu(BH_4)$ (diimine = 1,10-phenanthroline and 3,4,7,8-tetramethyl-1,10-phenanthroline).¹³ The reaction gave $(HCOO)_2BH_2^-$ and $(HCOO)_3BH^-$, which were spectroscopically identified. The latter species was thermodynamically unstable and obtained only when the reaction was carried out at -50 °C. Otherwise, it decomposed to $(HCOO)_2BH_2^-$ and CO_2 .

On the other hand, the formation of trimethoxyboroxine was reported by Brown, who obtained it by the reaction of formic acid (HCOOH) with BH_3 ·THF at 0 °C in THF.¹⁴ The reaction gave HCOOBH₂ as an intermediate with the evolution of dihydrogen. HCOOBH₂ thus formed reacted further and eventually formed trimethoxyboroxine in good yield (eq 2). Brown also reported the reaction of carbon monoxide (CO) with BH_3 ·THF. Interestingly, the reaction gave a simple

$$HCOOH + BH_3 \longrightarrow HCOOBH_2 + H_2$$

$$\longrightarrow 1/3 (CH_3OBO)_3$$
(2)

donor–acceptor adduct of $BH_3 \cdot CO$, but in the presence of a catalytic amount of $NaBH_4$, the reaction gave tri*methyl*boroxine, $(CH_3BO)_3$, which is the methyl version of the present CO_2 reduction forming trimethoxyboroxine, $(CH_3OBO)_3$.¹⁵

More recent transition-metal-free systems for the activation of CO_2 commonly use strong Lewis bases, such as N-heterocyclic carbenes and P^tBu₃.¹⁶ These bases attack the carbon center of CO_2 to make the oxygen atoms more nucleophilic, leading to a stronger interaction with a Lewis acid such as BAr₃ and hydrosilane. In the present case, BH₄⁻ works as a Lewis base to activate CO_2 . Thus, the activated CO_2 is reduced by BH₃ to give the initial reduction product of HCOOBH₂, which transforms to the final product of trimethoxyboroxine as reported by Brown.¹⁴

In the present reaction, since the BH₄⁻ itself can directly reduce CO₂ to form HCOOBH₃⁻, another catalytic mechanism is also possible as shown in eqs 3 and 4. The initial step is the formation of $HCOOBH_3^-$, which further reacts with CO_2 to give $(HCOO)_2BH_2^{-}$ as in eq 3. La Monica et al. observed that HCOO⁻ dissociates from (HCOO)₂BH₂⁻. Since further reaction with CO₂ does not proceed at ambient temperature, $(HCOO)_2BH_2^-$ reacts with BH₃, which can then abstract a HCOO⁻ group from (HCOO)₂BH₂⁻ to form HCOOBH₃⁻ and HCOOBH₂ as in eq 4. The former HCOOBH₃⁻ returns to the catalytic cycle, while the latter turns into the final product. In this mechanism, it is considered that a catalytic amount of HCOO⁻ can also initiate the catalytic cycle. In fact, addition of 1.0 mol % of HCOONa in place of NaBH₄ to the BH₃·THF solution led to the similar efficient transformation of CO₂ into trimethoxyboroxine in 78% yield. The sodium cation commonly contained in both NaBH4 and HCOONa did not contribute to the CO₂ reduction, since the reduction did not proceed at all in the presence of sodium tetrakis[(3,5trifluoromethyl)phenyl]borate.

$$\text{HCOOBH}_{3}^{-} + \text{CO}_{2} \rightarrow (\text{HCOO})_{2}\text{BH}_{2}^{-}$$
(3)

$$(\text{HCOO})_2\text{BH}_2^- + \text{BH}_3$$

$$\xrightarrow{\text{HCOO}^- \text{transfer}} \text{HCOOBH}_2 + \text{HCOOBH}_3^- \qquad (4)$$

In summary, BH_3 ·THF with a catalytic amount of $NaBH_4$ or HCOONa efficiently reduces CO_2 to trimethoxyboroxine under ambient conditions. This reaction is simple and very effective for the synthesis of trimethoxyboroxine, which is a useful material as an electrolyte of lithium-ion batteries and a flame retardant.

EXPERIMENTAL SECTION

General Comments. All manipulations of the reactions were carried out under an atmosphere of dry nitrogen using Schlenk tube techniques. BH₃·THF solutions were obtained from Aldrich Inc. or Tokyo Kasei Co. and purified by trap-to-trap transfer in vacuo. The concentration of BH₃·THF was determined by a titration of boric acid after hydrolysis of BH₃. CO₂ (99.995%) and ¹³CO₂ were purchased from NIPPON EKITAN Co. and Taiyo Nippon Sanso, respectively. Other reagents were used as received. NMR spectra were recorded on a Jeol LA-300 spectrometer. ¹³C NMR chemical shifts were reported relative to Me₄Si and were determined by reference to the solvent peaks. ¹¹B NMR chemical shifts were reported relative to BF₃·OEt₂.

Reaction of Commercial BH₃·THF. Under an atmosphere of dry CO_2 , a Schlenk tube was charged with commercial BH₃·THF (Tokyo

Chemical Industry, 0.911 M in THF, 4.0 mL) that contained NaBH₄ (0.5 mol %) as a stabilizing reagent. After the THF solution was stirred 12 h, $^{13}C{^{1}H}$ and $^{11}B{^{1}H}$ NMR spectra of the solution were recorded. The yield of (MeOBO)₃ was 87%, which was determined with the GC analysis of MeOH formed by hydrolysis of (MeOBO)₃. $^{13}C{^{1}H}$ NMR (75.6 MHz, 297 K, THF): δ 51.6 (s). $^{11}B{^{1}H}$ NMR (96.4 MHz, 297 K, THF): δ 19.2 (s).

Monitoring the Reaction of Commercial BH₃·THF. Under an atmosphere of CO_2 , an NMR tube was charged with commercial BH₃·THF (Tokyo Chemical Industry, 0.911 M in THF, 0.5 mL), and then a sealed capillary containing BCl₃ was placed in the NMR tube to calibrate the chemical shifts of the spectra for 2 days.

Reaction of Purified BH₃·THF. Under an atmosphere of dry CO₂, a Schlenk tube was charged with BH₃·THF (0.993 M in THF, 2.8 mL), which was purified by trap-to-trap transfer. After the THF solution was stirred 12 h, an ¹¹B{¹H} NMR spectrum of the solution was recorded, showing a signal at -0.5 ppm assigned to BH₃·THF.

Reaction of Purified BH₃·THF in the Presence of NaBH₄. Under an atmosphere of dry CO_2 , a Schlenk tube was charged with NaBH₄ (1.52 mg) and BH₃·THF (0.893 M in THF, 4.5 mL), which was purified by trap-to-trap transfer. After the THF solution was stirred 12 h, (MeOBO)₃ was obtained in 83% yield.

Reaction of Purified BH₃·**THF in the Presence of HCOONa.** Under an atmosphere of dry CO₂, a Schlenk tube was charged with HCOONa (3.24 mg) and BH₃·**THF** (0.893 M in THF, 5.34 mL), which was purified by trap-to-trap transfer. After the THF solution was stirred 12 h, (MeOBO)₃ was obtained in 79% yield.

Reaction of Commercial BH₃·THF with ¹³CO₂. Under an atmosphere of N₂, an NMR tube with a J Young valve was charged with commercial BH₃·THF (Tokyo Chemical Industry, 0.911 M in THF, 0.5 mL), and then the headspace gas was replaced with ¹³CO₂. After 2.5 h, a ¹³C NMR spectrum of the solution was recorded. ¹³C NMR (75.6 MHz, 297 K, THF): δ 26.3 (t, THF), 51.6 (q, (MeOBO)₃), 68.3 (t, THF), 125.8 (s, CO₂).

ASSOCIATED CONTENT

Supporting Information

Additional experimental data details including NMR data. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: mizuta@sci.hiroshima-u.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid for Scientific Research No. 25105741 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

(1) (a) Federsel, C.; Jackstell, R.; Beller, M. Angew. Chem., Int. Ed. **2010**, 49, 6254. (b) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W.; Kuhn, F. Angew. Chem., Int. Ed. **2011**, 50, 8510. (c) Wang, W.; Wang, S.; Ma, X.; Gong, J. Chem. Soc. Rev. **2011**, 40, 3703. (d) Fan, T.; Chen, X. H.; Lin, Z. Y. Chem. Commun. **2012**, 48, 10808. (e) Finn, C.; Schnittger, S.; Yellowlees, L. J.; Love, J. B. Chem. Commun. **2012**, 48, 1392.

(2) (a) Wang, W. H.; Hull, J. F.; Muckerman, J. T.; Fujita, E.; Himeda, Y. Energy Environ. Sci. 2012, 5, 7923. (b) Tanaka, R.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2009, 131, 14168.
(c) Sanz, S.; Benítez, M.; Peris, E. Organometallics 2010, 29, 275.
(d) Langer, R.; Diskin-Posner, Y.; Leitus, G.; Shimon, L. J.; Ben-David, Y.; Milstein, D. Angew. Chem,. Int. Ed. 2011, 50, 9948. (e) Chakraborty, S.; Patel, Y. J.; Krause, J. A.; Guan, H. R. Polyhedron 2012, 32, 30. (f) Hull, J. F.; Himeda, Y.; Wang, W. H.; Hashiguchi, B.; Periana, R.; Szalda, D. J.; Muckerman, J. T.; Fujita, E. *Nat. Chem.* 2012, *4*, 383.
(g) Kang, P.; Cheng, C.; Chen, Z. F.; Schauer, C. K.; Meyer, T. J.; Brookhart, M. *J. Am. Chem. Soc.* 2012, *134*, 5500. (h) Motokura, K.; Kashiwame, D.; Miyaji, A.; Baba, T. *Org. Lett.* 2012, *14*, 2642.

(3) (a) Huang, F.; Zhang, C. G.; Jiang, J. L.; Wang, Z. X.; Guan, H. R. Inorg. Chem. 2011, 50, 3816. (b) Huff, C. A.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18122. (c) Bontemps, S.; Vendier, L.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2012, 51, 1671. (d) Mitton, S. J.; Turculet, L. Chem.—Eur. J. 2012, 18, 15258. (e) Park, S.; Bezier, D.; Brookhart, M. J. Am. Chem. Soc. 2012, 134, 11404. (f) Sgro, M. J.; Stephan, D. W. Angew. Chem., Int. Ed. 2012, 51, 11343. (g) Wesselbaum, S.; vom Stein, T.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed. 2012, 51, 7499. (h) Berkefeld, A.; Piers, W. E.; Parvez, M.; Castro, L.; Maron, L.; Eisenstein, O. Chem. Sci. 2013, 4, 2152. (i) Chakraborty, S.; Zhang, J.; Patel, Y. J.; Krause, J. A.; Guan, H. R. Inorg. Chem. 2013, 52, 37. (j) Bontemps, S.; Vendier, L.; Sabo-Etienne, S. J. Am. Chem. Soc. 2014, 136, 4419.

(4) (a) Ashley, A. E.; Thompson, A. L.; O'Hare, D. Angew. Chem., Int. Ed. 2009, 48, 9839. (b) Riduan, S. N.; Zhang, Y.; Ying, J. Y. Angew. Chem,. Int. Ed. 2009, 48, 3322. (c) Huang, F.; Lu, G.; Zhao, L. L.; Li, H. X.; Wang, Z. X. J. Am. Chem. Soc. 2010, 132, 12388. (d) Roy, L.; Zimmerman, P. M.; Paul, A. Chem.-Eur. J. 2011, 17, 435. (e) Courtemanche, M.-A.; Larouche, J.; Legare, M.-A.; Bi, W.; Maron, L.; Fontaine, F.-G. Organometallics 2013, 32, 6804. (f) Menard, G.; Stephan, D. W. Dalton Trans. 2013, 42, 5447. (g) LeBlanc, F. A.; Piers, W. E.; Parvez, M. Angew. Chem., Int. Ed. 2014, 53, 789. (h) Kwon, H. J.; Kim, H. W.; Rhee, Y. M. Chem.-Eur. J. 2011, 17, 6501. (i) Binding, S. C.; Zaher, H.; Chadwick, F. M.; O'Hare, D. Dalton Trans. 2012, 41, 9061. (j) Barry, B. M.; Dickie, D. A.; Murphy, L. J.; Clyburne, J. A. C.; Kemp, R. A. Inorg. Chem. 2013, 52, 8312. (k) Lu, Z.; Wang, Y.; Liu, J.; Lin, Y.-J.; Li, Z. H.; Wang, H. Organometallics 2013, 32, 6753. (1) Das Neves Gomes, C.; Blondiaux, E.; Thuery, P.; Cantat, T. Chem.-Eur. J. 2014, 20, 7098.

(5) Courtemanche, M.-A.; Legare, M.-A.; Maron, L.; Fontaine, F.-G. J. Am. Chem. Soc. **2013**, 135, 9326.

(6) Recently, the reaction of $BH_3 \cdot SMe_2$ with CO_2 in the presence of strong bases was reported. Legare, M.-A.; Courtemanche, M.-A.; Fontaine, F.-G. *Chem. Commun.* **2014**, *50*, 11362.

(7) (a) Kollonitsch, J. J. Am. Chem. Soc. **1961**, 83, 1515. (b) Lane, C. F. Chem. Rev. **1976**, 76, 773. (c) Krishnamurthy, S.; Brown, H. C. J. Org. Chem. **1979**, 44, 3678. (d) Potyen, M.; Josyula, K. V. B.; Schuck,

M.; Lu, S.; Gao, P.; Hewitt, C. Org. Process Res. Dev. 2007, 11, 210. (8) (a) Pasto, D. J.; Balasubramaniyan, V.; Wojtkowski, P. W. Inorg. Chem. 1969, 8, 594. (b) Masuda, Y.; Nunokawa, Y.; Hoshi, M.; Arase, A. Chem. Lett. 1992, 349.

(9) (a) Buerchner, M.; Erle, A. M. T.; Scherer, H.; Krossing, I. *Chem.–Eur. J.* **2012**, *18*, 2254. (b) Godfroid, R. A.; Hill, T. G.; Onak, T. P.; Shore, S. G. *J. Am. Chem. Soc.* **1994**, *116*, 12107. (c) Hill, T. G.; Godfroid, R. A.; White, J. P., III; Shore, S. G. *Inorg. Chem.* **1991**, *30*, 2952.

(10) (a) Harder, S.; Spielmann, J. J. Organomet. Chem. 2012, 698, 7.
(b) Wrackmeyer, B. Z. Naturforsch, B: Chem. Sci. 2004, 59, 1192.
(c) Khan, S. I.; Chiang, M. Y.; Bau, R.; Koetzle, T. F.; Shore, S. G.; Lawrence, S. H. J. Chem. Soc., Dalton Trans. 1986, 1753. (d) Shore, S. G.; Lawrence, S. H.; Watkins, M. I.; Bau, R. J. Am. Chem. Soc. 1982, 104, 7669. (e) Hertz, R. K.; Johnson, H. D., II; Shore, S. G. Inorg. Chem. 1973, 12, 1875.

(11) Burr, J. G., Jr.; Brown, W. G.; Heller, H. E. J. Am. Chem. Soc. 1950, 72, 2560.

(12) Wartik, T.; Pearson, R. K. J. Inorg. Nucl. Chem. 1958, 7, 404.

(13) (a) La Monica, G.; Ardizzoia, G. A.; Cariati, F.; Cenini, S.; Pizzotti, M. *Inorg. Chem.* **1985**, *24*, 3920. (b) La Monica, G.; Angaroni, M. A.; Cariati, F.; Cenini, S. *Inorg. Chim. Acta* **1988**, *143*, 239.

(14) (a) Yoon, N. M.; Pak, C. S.; Brown, H. C.; Krishnamurthy, S.;
Stocky, T. P. J. Org. Chem. 1973, 38, 2786. (b) Brown, H. C.; Stocky,
T. P. J. Am. Chem. Soc. 1977, 99, 8218.

(15) Rathke, M. W.; Brown, H. C. J. Am. Chem. Soc. 1966, 88, 2606.

(16) (a) Moemming, C. M.; Otten, E.; Kehr, G.; Froehlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. *Angew. Chem., Int. Ed.* **2009**, *48*, 6643. (b) Peuser, I.; Neu, R. C.; Zhao, X.; Ulrich, M.; Schirmer, B.; Tannert, J. A.; Kehr, G.; Froehlich, R.; Grimme, S.; Erker, G.; Stephan, D. W. *Chem.—Eur. J.* **2011**, *17*, 9640. (c) Neu, R. C.; Menard, G.; Stephan, D. W. *Dalton Trans.* **2012**, *41*, 9016. (d) Reissmann, M.; Schaefer, A.; Jung, S.; Mueller, T. *Organometallics* **2013**, *32*, 6736. (e) Pu, M.; Privalov, T. *Inorg. Chem.* **2014**, *53*, 4598.