

Synthetic Communications

An International Journal for Rapid Communication of Synthetic Organic Chemistry

ISSN: 0039-7911 (Print) 1532-2432 (Online) Journal homepage: http://www.tandfonline.com/loi/lsyc20

Metal-free sequential dual oxidative amination of C(sp³)–H bonds: A direct approach to benzothiadiazine 1,1-dioxide derivatives

Dongyin Wang, Xiaokang Li, Yongli Zhao & Junmin Chen

To cite this article: Dongyin Wang, Xiaokang Li, Yongli Zhao & Junmin Chen (2016): Metal-free sequential dual oxidative amination of C(sp³)–H bonds: A direct approach to benzothiadiazine 1,1-dioxide derivatives, Synthetic Communications, DOI: 10.1080/00397911.2016.1265128

To link to this article: http://dx.doi.org/10.1080/00397911.2016.1265128

View supplementary material

	O.	1	1
F	Ŧ	F	Η
C			

Accepted author version posted online: 05 Dec 2016. Published online: 05 Dec 2016.

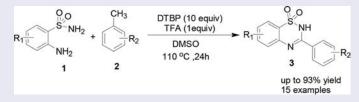
🖉 Submit your article to this journal 🗹

View related articles

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=lsyc20

Metal-free sequential dual oxidative amination of C(sp³)–H bonds: A direct approach to benzothiadiazine 1,1-dioxide derivatives


Dongyin Wang^a, Xiaokang Li^{a,b}, Yongli Zhao^a, and Junmin Chen^a

^aKey Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi, China; ^bKey Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou, Jiangxi, China

ABSTRACT

An efficient and metal-free Di-*tert*-butyl peroxide (DTBP)-promoted dual oxidative amination annulation of 2-amino arylsulfonamide with methylarene has been developed. This protocol provides straightforward access to benzothiadiazine 1,1-dioxide derivatives without using prefunctionalized substrates in good to excellent yields with good functional group tolerance.

GRAPHICAL ABSTRACT

ARTICLE HISTORY

Received 22 June 2016

KEYWORDS

2-Amino arylsulfonamide; benzothiadiazine 1,1-dioxide; metal free; oxidative amination

Introduction

Benzothidiazine-1,1-dioxides are a class of important fused heterocyclic scaffolds that exhibit a wide range of biological and pharmacological activities, including diuretic,^[1] antihypertensive,^[2] KATP channel activators,^[3] and anticancer activities.^[4] In connection with this, numerous methods have been developed for the synthesis of benzothidiazine-1,1dioxide ring system. The typical procedures are the reactions of *o*-aminobenzene sulfonamide with either carboxylic acid derivatives under harsh conditions^[5] or aldehydes^[6] with subsequent oxidation using strong oxidants. An alternative approach to the 1,2,4benzothiadiazine-1,1-dioxide ring is based on transition metal catalyzed reactions, for example, Yang et al.^[7] developed an efficient method for the synthesis of 1,2,4-benzothiadiazine through iron-catalyzed cascade coupling reactions of *o*-bromobenzenesulfonamide with amidine hydrochlorides. Cherepakha et al.^[8a] reported a facile approach to 1,2,4-benzothiadiazine-1,1-dioxides through Cu(I)-catalyzed intramolecular cyclization of *o*-bromoarylsulfonylated amidines, in addition, the same

CONTACT Junmin Chen i jxnuchenjm@163.com i Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China. Supplemental data (detailed experimental procedures, characterization data, and copies of ¹H and ¹³C NMR spectra for all of the products **3a–n**) can be accessed on the publisher's website.

2 🔄 D. WANG ET AL.

author developed a facile approach to hetaryl-annulated 1,2,4-thiadiazine-1,1-dioxides through a reaction of hetaryl-sulfonyl chlorides with amidines under mild noncatalytic conditions.^[8b] Recently, benzyl alcohols as acylating reagents were also used for preparation of 1,2,4-benzothiadiazine-1,1-dioxide through ruthenium-catalyzed hydrogen transfer reaction.^[9] Very recently, a transition-metal-free, K₂S₂O₈-mediated intramolecular oxidative nitrogenation of C(sp³)–H in *N*-aryl benzylic amines followed by oxidation at the benzylic center has been developed for the synthesis of benzothidiazine-1,1-dioxide ring.^[10] It was worth to mention that all synthetic routes mentioned above depended on the use of functional groups in the substrates.

In recent years, direct oxidative $C(sp^2)$ -H/N-H coupling reaction has received tremendous attraction, and great progress was made in the synthesis of *N*-heterocycles.^[11] However, $C(sp^3)$ -H, which are naturally more abundant, still face great challenges in C-N bond formation. Recently, the C-N bond formation through $C(sp^3)$ -H activation has been the focus of recent interest,^[12] and various methodologies were developed, including transition metal catalyzed,^[13] iodide salt catalyzed,^[14] and hypervalent iodine-mediated^[15] benzylic $C(sp^3)$ -H amination. Very recently, Li reported an elegant metal-free approach for the synthesis of *o*-aryl quinazolinones through dual benzylic $C(sp^3)$ -H bond amination, using *o*-amino benzamides and methylarenes as the accessible starting materials.^[16] Encouraged by the above results, and in the continuation of our research in C-H

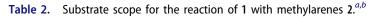
	S ⁻ NH ₂ +	H ₃ Additive (10 equiv) Additive (1equiv) Solvent 110 °C ,24h		
Entry	Oxidant ^b	Additive	Solvent	Yield (%) ^c
1	Benzoquinone	CF₃COOH	DMSO	0
2	H_2O_2	CF₃COOH	DMSO	Trace
3	BPO	CF₃COOH	DMSO	Trace
4	TBHP	CF ₃ COOH	DMSO	23
5	KIO ₃	CF ₃ COOH	DMSO	26
6	DTBP	CF ₃ COOH	DMSO	93
7	DTBP	TsOH	DMSO	76
8	DTBP	H ₃ PO ₄	DMSO	65
9	DTBP	KH ₂ PO ₄	DMSO	52
10	DTBP	CH₃COOH	DMSO	85
11 ^d	DTBP	CF ₃ COOH	DMSO	37
12 ^e	DTBP	CF ₃ COOH	DMSO	51
13	DTBP	CF ₃ COOH	Toluene	15
14	DTBP	CF ₃ COOH	CH ₃ CN	19
15	DTBP	CF ₃ COOH	1,4-Dioxane	17
16	DTBP	CF ₃ COOH	H ₂ O	Trace
17 ^f	DTBP	CF ₃ COOH	DMSO	56
18 ^g	DTBP	CF ₃ COOH	DMSO	78
19	DTBP	١	DMSO	32

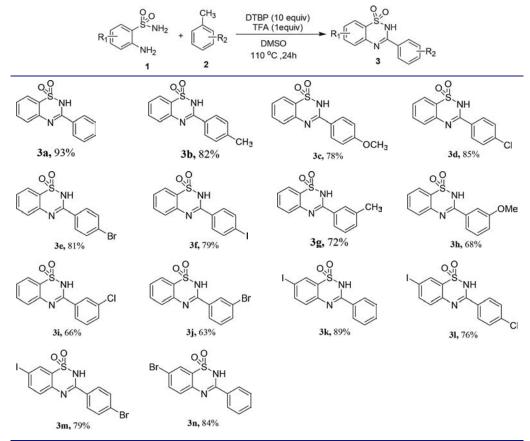
Table 1.	Optimization	of the	reaction	conditions. ^a
----------	--------------	--------	----------	--------------------------

^{*a*}Reaction conditions: **1a** (0.2 mmol), **2a** (8 mmol), oxidant (2 mmol), additive (0.2 mmol), DMSO (1 mL), 110 °C, 24 h. ^{*b*}H₂O₂: 30% H₂O₂ in water, TBHP: 70% *t*-BuOOH in water, BPO: (PhCOO)₂, TBPB: PhCOOO*t*-Bu. ⁽¹solated yield.

^d5 equiv. of DTBP relative to **1a**.

^e2 equiv. of CF₃COOH relative to 1a.


^f30 equiv. of toluene relative to **1a**.


⁹50 equiv. of toluene relative to **1a**.

activation,^[17] we envisaged whether *o*-aminobenzene sulfonamide and methylarenes were used as substrates for the synthesis of 1,2,4-benzothiadiazine-1,1-dioxides. To certify our purpose, herein, we would like to report our recent efforts toward the synthesis of benzothiadiazine-1,1-dioxide derivatives through metal-free sequential dual oxidative amination of $C(sp^3)$ -H bonds.

Results and discussion

To verify our hypothesis, our study began with a model reaction of *o*-aminobenzene sulfonamide (1a), 40 equiv. of toluene 2a and 1 equiv. of CF₃COOH as the additive in the presence of 10 equiv. of various oxidants (Table 1). We first examined benzoquinone as oxidant; in DMSO at 110 °C for 24 h, none of the desired 3a was detected (Table 1, entry 1). When using H₂O₂ and BPO: (PhCOO)₂, only trace amount of product 3a was obtained (Table 1, entries 2, 3). Other oxidants such as TBHP and KIO₃ afforded the desired product in moderate yield (Table 1, entries 4, 5). To our delight, 3a was obtained in excellent yield when using di-*tert*-butyl peroxide (DTBP) as an oxidant (93%, Table 1,

^{*a*}Reaction conditions: 1 (0.2 mmol), 2 (8 mmol), DTBP (2 mmol), CH₃COOH (0.2 mmol), DMSO (1 mL), 110 °C, 24 h. ^{*b*}Isolated yield.

4 🔄 D. WANG ET AL.

entry 6). In addition, various additives were also examined using DTBP as oxidant; we found that organic acid such as *p*-toluenesulfonic acid (TsOH) as additive can afford 76% yield (Table 1, entry 7) and inorganic acids such as H_3PO_4 and NaH_2PO_4 offer the desired product in 65 and 52%, respectively (Table 1, entry 8, 9). Significantly, CH₃COOH was also able to work in this transformation, affording the desired product in 85% yield (Table 1, entry 10). Furthermore, the amount of DTBP was also optimized, reducing the amount of DTBP to 5 equiv. obviously decreased the yield of **3a** (Table 1, entry 11). Interestingly, only 51% yield was obtained when the amount of CF₃COOH was increased to 2 equiv. (Table 1, entry 12). Various solvents were also examined, and DMSO was turned out to be the best choice still (Table 1, entries 13–16). The yields dropped after varying the amount of toluene **2a** (Table 1, entries 17, 18). Finally, we found that only 32% yield of **3a** was obtained in the absence of CF₃COOH, (Table 1, entry 19). Therefore, the optimal conditions are those described in entry 6.

Under the optimal reaction conditions, we investigated the substrate scope of intermolecular annulation of 1 with methylarenes 2. First, we performed the generality of this methodology with different methylarenes (Table 2). Most of the toluenes 2 with electron-donating and -withdrawing substituents were found to be suitable reaction partners with 1 to provide the corresponding benzothidiazine-1,1-dioxide derivatives in good to excellent yields. For example, p-methyl- and p-methoxy-substituted toluenes were successfully converted and gave the corresponding products in 82, 78% yields, respectively (3b, 3c). Halogen-substituted toluenes such as p-chloro, p-bromo, and p-iodo can be reacted as well the desired products were isolated in 73-85% yields (3d-f). Furthermore, *m*-substituted methylarenes 2 can also generate the corresponding products in good yields. For example, *m*-methyl, *m*-methoxyl, *m*-chloro, and *m*-bromo gave the corresponding products 3g-j in 63-72% yields. Remarkably, halogen groups substituted at the aromatic ring of 1, such as bromo and even iodo, were all well tolerated and afforded the desired products in high to excellent yields (3k-n), which provided the possibility for further functionalization. However the steric hindrance played a key role in the present reaction, an attempt to use o-substituted methylarenes 2 failed to afford the desired products.

Conclusion

In summary, we have developed an efficient and practical methodology for the synthesis of o-aryl benzothidiazine-1,1-dioxides derivatives. The present protocol is based on a metal-free sequential oxidative animation of benzylic $C(sp^3)$ -H bonds in the present of DTBP/TFA, using 2-aminobenzene sulfonamide and methylarenes as the accessible starting materials, this novel protocol shows some distinguished characteristics, such as the lack of any expensive transition metals, excellent functional group tolerance, and a broad substrate scope. Further applications of the oxidative C–H aminations for the synthesis of other heterocycles are going on in our laboratory.

Experimental

All reactions were performed in air. Chemicals were purchased from Aldrich, Acros, or Alfa Asar, and, unless otherwise noted, were used without further purification. Flash chromatography was performed on silica gel (silica gel, 200–300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker 400 MHz and Bruker 100 MHz spectrometers

with DMSO as the solvent. High-resolution mass spectral data were recorded on Bruker APEX IV Fourier transform ion cyclotron resonance mass spectrometer using ESI. 1b-c was prepared according to the literature.^[18]

Typical experimental procedure

A flask equipped a magnetic stirring bar was charged with *o*-amino arylsulfonamide **1** (0.2 mmol), methylarenes **2** (8 mmol), DTBP (2 mmol), and DMSO (1 mL). The reaction mixture was stirred under a nitrogen atmosphere at 110 °C for 24 h. The reaction mixture was cooled to room temperature; the reaction mixture was extracted with diethyl ether $(5 \times 3 \text{ mL})$. The combined extracts were washed with brine and dried over MgSO₄, and the crude product was purified by flash column chromatography on silica gel with petroleum ether/EtOAc as the eluent to give the desired product **3**.

Funding

We are grateful for the financial support from the National Natural Science Foundation of China (51463002), the Science and Technology Planning Project of Jiangxi Province, China (20142BAB203007).

References

- (a) Novello, F. C.; Sprague, J. M. J. Am. Chem. Soc. 1957, 79, 2028; (b) Short, J.-H.; Biermacher, U. J. Am. Chem. Soc. 1960, 82, 1135–1138.
- (a) Rubin, A. A.; Roth, F. E.; Winbury, M. M.; Topliss, J. G.; Sherlock, M. H.; Sperber, N.; Black, J. Science 1961, 133, 2067–2069; (b) Topliss, J. G.; Konzelman, L. M.; Shapiro, E. P.; Sperber, N.; Roth, F. E. J. Med. Chem. 1964, 7, 269–273; (c) Topliss, J. G.; Yudis, M. D. J. Med. Chem. 1972, 15, 394–400.
- [3] Boverie, S.; Antoine, M.-H.; Somers, F.; Becker, B.; Sebille, S.; Ouedraogo, R.; Counerotte, S.; Pirotte, B.; Lebrun, P.; Tullio, P. J. Med. Chem. 2005, 48, 3492–3503.
- [4] (a) Kamal, A.; Khan, M. N. A.; Reddy, K. S.; Ahmed, S. K.; Kumar, M. S.; Juvekar, A.; Sen, S.; Zingde, S. *Bioorg. Med. Chem. Lett.* 2007, 17, 5345–5348; (b) Chern, J.-W.; Liaw, Y.-C.; Chen, C.-S.; Rong, J.-G.; Huang, C.-L.; Chan, C.-H.; Wang, A. H.-H. *Heterocycles* 1993, 36, 1091–1103.
- [5] (a) Purandare, A. V.; Gao, A. M.; Wan, H. H.; Somerville, J.; Burke, C.; Seachord, C.; Vaccaro, W.; Wityak, J.; Poss, M. A. *Bioorg. Med. Chem. Lett.* 2005, *15*, 2669–2672; (b) Potewar, T. M.; Nadaf, R. N.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. *Synth. Commun.* 2005, *35*, 231–241.
- [6] (a) Balakumar, C.; Lamba, P.; Kishore, D. P.; Narayana, B. L.; Rao, K. V.; Rajwinder, K.; Rao, A. R.; Shireesha, B.; Narsaiah, B. *Eur. J. Med. Chem.* 2010, 45, 4904–4913; (b) Mitobe, Y.; Ito, S.; Mizutani, T.; Nagase, T.; Sato, N.; Tokita, S. *Bioorg. Med. Chem. Lett.* 2009, 19, 4075–4078; (c) Sharif, M.; Opalach, J.; Langer, P.; Beller, M.; Wu, X. *RSC Adv.* 2014, 4, 8–17.
- [7] Yang, D.; Fu, H.; Hu, L.; Jiang, Y.; Zhao, Y. J. Comb. Chem. 2009, 11, 653-657.
- [8] (a) Cherepakha, A.; Kovtunenko, V. O.; Tolmachev, A.; Lukin, O.; Nazarenko, K. G. Synth. Commun. 2011, 41, 1977–1989. (b) Cherepakha, A.; Kovtunenko, V. O.; Tolmachev, A.; Lukin, O. J. Heterocycl. Chem. 2013, 50, 1071.
- [9] Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Org. Biomol. Chem. 2012, 10, 240-243.
- [10] Laha, J. K.; Tummalapalli, K. S. S.; Nair, A.; Patel, N. J. Org. Chem. 2015, 80, 11351-11359.
- [11] (a) Xu, X. F.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396–1405; (b) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41, 1013–1025; (c) Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199–2238.

6 🔄 D. WANG ET AL.

- [12] (a) Ni, Z.; Zhang, Q.; Xiong, T.; Zheng, Y.; Li, Y.; Zhang, H.; Zhang, J.; Liu, Q. Angew. Chem. Int. Ed. 2012, 51, 1244–1247; (b) Xiao, W.; Wei, J.; Zhou, C.-Y.; Che, C.-M. Chem. Commun. 2013, 49, 4619; (c) Huard, K.; Lebel, H. Chem. Eur. J. 2008, 14, 6222–6230.
- [13] (a) Powell, D. A.; Fan, H. J. Org. Chem. 2010, 75, 2726–2729; (b) Xia, Q.; Chen, W.; Qiu, H. J. Org. Chem. 2011, 76, 7577–7582.
- [14] Xue, Q.; Xie, J.; Li, H.; Cheng, Y.; Zhu, C. Chem. Commun. 2013, 49, 3700-3702.
- [15] (a) Kim, H. J.; Kim, J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2011, 133, 16382-16385;
 (b) Wiese, S.; Badiei, Y. M.; Gephart, R. T.; Mossin, S.; Varonka, M. S.; Melzer, M. M.; Meyer, K.; Cundari, T. R.; Warren, T. H. Angew. Chem. Int. Ed. 2010, 49, 8850-8855.
- [16] Zhao, D.; Wang, T.; Li, J. Chem. Commun. 2014, 50, 6471-6474.
- [17] Wang, D.; Liu, W.; Yi, F.; Zhao, Y.; Chen, J. Org. Biomol. Chem. 2016, 14, 1921-1924.
- [18] Mohamed, A. H. I.; Dalal, A. A. E. E.; Khaled, A. M. A.; Amr, H. M. Bio. & Med. Chem. 2012, 20, 2455–2478.