Tetrahedron Letters 52 (2011) 1700-1704

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of indenoindene-fused α -methylene- γ -butyrolactones via a tandem intra- and intermolecular Friedel–Crafts reaction

Bo Ram Park, Se Hee Kim, Yu Mi Kim, Jae Nyoung Kim*

Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 500-757, Republic of Korea

ARTICLE INFO

ABSTRACT

Article history: Received 11 January 2011 Revised 28 January 2011 Accepted 31 January 2011 Available online 19 February 2011

Keywords: α-Methylene-γ-butyrolactone Indenoindene Friedel-Crafts reaction

 α -Methylene- γ -butyrolactone derivatives have attracted much attention,^{1,2} because they are found in a wide range of natural substances and are pivotal units for the observed biological activities.^{1,2} Furthermore, α -methylene- γ -butyrolactones serve as versatile starting materials for many important compounds.^{1–4} In addition, various fused α -methylene- γ -butyrolactones^{4a–d} and their double-bond isomerized butenolide derivatives^{4e–j} have also attracted much attention. The most straightforward method for the synthesis of α -methylene- γ -butyrolactones involves the reaction of allylic

metal reagents and carbonyl compounds to generate homoallyl alcohols followed by acid-catalyzed lactonization.^{2b-e,3}

© 2011 Elsevier Ltd. All rights reserved.

An efficient synthesis of indenoindene-fused α -methylene- γ -butyrolactones was carried out via a tan-

dem intra- and intermolecular Friedel-Crafts reaction from the spiro-lactone, which can be easily pre-

pared from ninhydrin by indium-mediated Barbier reaction of cinnamyl bromide.

Recently, we have been interested in the development of efficient synthetic methods for various α -methylene- γ -butyrolactones from Baylis–Hillman adducts.³ In continuation of our studies, we decided to synthesize indenoindene-fused α -methylene- γ -butyrolactones^{5,6} using the spiro-lactone derivative derived from ninhydrin and Baylis–Hillman bromide,^{3c} as shown in Scheme 1. The indenoindene moiety should fix the target compound **6a** as a

* Corresponding author. Tel.: +82 62 530 3381; fax: +82 62 530 3389. *E-mail address:* kimjn@chonnam.ac.kr (J.N. Kim).

^{0040-4039/\$ -} see front matter \odot 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.01.153

Figure 1.

Table 1 Synthesis of pentacyclic lactones

butterfly-like conformation, which was known to be essential in some NNRTIs (Non-Nucleoside Reverse Transcriptase Inhibitors) including nevirapine.⁷

Required starting material 4a was prepared according to our previous paper.^{3c} The reaction of ninhydrin (1) and cinnamyl bromide **2a** in the presence of indium metal afforded γ -hydroxy ester 3a, and subsequent acid-catalyzed lactonization of 3a with p-TsOH provided the spiro-lactone 4a in good yield (77%).^{3c,8} With compound 4a in hand, we examined Friedel-Crafts type reactions in

4c

Figure 2. ORTEP drawing of compound 6e.

benzene in the presence of H_2SO_4 .⁹ The reactions proceeded via an initial intramolecular Friedel–Crafts type reaction to form intermediate **5a** via the corresponding oxonium intermediate, and the subsequent intermolecular Friedel–Crafts reaction with benzene generates the final pentacyclic lactone **6a** in good yield (95%).⁸ We did not observe the formation of **5a** or **7a-9a** (Fig. 1), which could be formed if the intermolecular Friedel–Crafts reaction was more facile than the intramolecular reaction.^{5g,h} Based on these results, the reaction sequence presumably involves sequential intramolecular cyclization followed by an intermolecular Friedel–Crafts reaction. When we used AcOH as the acid catalyst, compound **6a** was not formed even after refluxing for a long time. When TfOH was used, the amounts of intractable side products were increased. Thus H₂SO₄ was chosen as the acid catalyst.

Encouraged by the results, we carried out the synthesis of similar pentacyclic lactones, as shown in Table 1. The reaction of **4a** in chlorobenzene required larger excess amounts of H_2SO_4 (20 equiv), and compound **6b** was obtained in 87% (entry 2). It is interesting to note that only the *p*-isomer was formed. The corresponding

ortho-isomer was not formed presumably due to steric hindrance. The reaction of 4a and ethylbenzene also produced the *p*-isomer 6c in 53% (entry 3). The reaction of 4a in p-xylene required a longer reaction time (20 h) to obtain moderate yield (58%) of 6d (entry 4). The reason might be due to steric crowding around the carbocation in the second intermolecular Friedel-Crafts reaction with p-xylene. Product 6d showed atropisomeric restricted rotation around the C–C bond between the xylyl moiety and indenoindene ring based on its ¹H and ¹³C NMR spectra.^{5h,8,11} The reaction of **4b** in benzene or toluene afforded **6e** and **6f** in good yields, respectively (entries 5 and 6). However, the reaction of methoxy derivative **4c** in benzene did not produce the expected product **6g**, which might be attributed to the loss of nucleophilicity of the *p*-anisole moiety by protonation with H₂SO₄. When we used PPA (polyphosphoric acid), compound **6g** was obtained (entry 7), albeit in low yield (28%). The structure of indenoindene-fused α -methylene- γ butyrolactone **6** was confirmed unequivocally by its crystal structure (**6e** as an example, Fig. 2)¹⁰ and the spectroscopic data.⁸

As a last entry, spiro-lactone **10** was prepared by the reaction of **4a** and allylindium reagents (Scheme 2). When we ran the reaction of **10** in benzene in the presence of H_2SO_4 , we did not obtain the corresponding pentacyclic lactone via the intramolecular Friedel–Crafts reaction. Instead, 1,3-diene derivative **11** was isolated as a *cis/trans* mixture in 72%.⁸

The α -methylene- γ -butyrolactone moiety of **6a** could be converted easily to a butenolide moiety of **12** by treatment with DBU in CH₃CN at room temperature, as shown in Scheme 3. Such a fused butenolide moiety is found in many natural substances,^{4e-j} and our method could provide an alternative route for numerous fused butenolides.

In summary, we disclose an efficient synthesis of indenoindenefused α -methylene- γ -butyrolactones via a tandem intra- and intermolecular Friedel–Crafts reaction from the spiro-lactone, which can be easily obtained from ninhydrin and Baylis–Hillman adduct. Further studies on the structure modification and screening of their antiviral activities are currently underway.

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0015675). Spectroscopic data were obtained from the Korea Basic Science Institute, Gwangju branch.

References and notes

- For the leading reviews on the synthesis and biological activity of αmethylene-γ-butyrolactones, see: (a) Kitson, R. R. A.; Millemaggi, A.; Taylor, R. J. K. Angew. Chem., Int. Ed. 2009, 48, 9426-9451; (b) Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed. Engl. 1985, 24, 94–110; (c) Lepoittevin, J.-P.; Berl, V.; Gimenez-Arnau, E. Chem. Record 2009, 9, 258–270; (d) Elford, T. G.; Hall, D. G. Synthesis 2010, 893–907.
- For the synthesis of α-methylene-γ-butyrolactones, see: (a) Lee, A. S.-Y.; Chang, Y.-T.; Wang, S.-H.; Chu, S.-F. *Tetrahedron Lett.* **2002**, *43*, 8489–8492; (b) Paquette, L. A.; Mendez-Andino, J. *Tetrahedron Lett.* **1999**, *40*, 4301–4304; (c) Ramachandran, P. V.; Garner, G.; Pratihar, D. Org. Lett. **2007**, *9*, 4753–4756; (d) Le Lamer, A.-C.; Gouault, N.; David, M.; Boustie, J.; Uriac, P. J. Comb. Chem. **2006**,

8, 643-645; (e) Kabalka, G. W.; Venkataiah, B. *Tetrahedron Lett.* **2005**, *4*6, 7325-7328.

- For our recent synthesis of lactone derivatives, see: (a) Park, B. R.; Kim, K. H.; Kim, J. N. *Tetrahedron Lett.* 2010, *51*, 6568–6571; (b) Kim, K. H.; Lee, H. S.; Kim, S. H.; Lee, K. Y.; Lee, J.-E.; Kim, J. N. *Bull. Korean Chem. Soc.* 2009, *30*, 1012–1020; (c) Lee, K. Y.; Park, D. Y.; Kim, J. N. *Bull. Korean Chem. Soc.* 2006, *27*, 1489–1492.
- For the synthesis of fused α-methylene-γ-butyrolactones and butenolides, see:

 (a) Chen, V. X.; Boyer, F.-D.; Rameau, C.; Retailleau, P.; Vors, J.-P.; Beau, J.-M.
 Chem. Eur. J. **2010**, *16*, 13941–13945; (b) Rodriguez, C. M.; Martin, T.; Martin, V.
 S. J. Org. Chem. **1996**, *61*, 8448–8452; (c) Barrero, A. F.; Oltra, J. E.; Alvarez, M.;
 Rosales, A. J. Org. Chem. **2002**, *67*, 5461–5469; (d) Marshall, J. A.; Griot, C. A.;
 Chobanian, H. R.; Myers, W. H. Org. Lett. **2010**, *12*, 4328–4331; (e) Matsuo, K.;
 Shindo, M. Org. Lett. **2010**, *12*, 5346–5349; (f) Krawczyk, E.; Koprowski, M.;
 Luczak, J. Tetrahedron: Asymmetry **2007**, *18*, 1780–1787; (g) Delaunay, J.;
 Orliac-Le Moing, A.; Simonet, J. Tetrahedron **1988**, *44*, 7089–7094; (h) Demir, A.
 S.; Gercek, Z.; Duygu, N.; Igdir, A. C.; Reis, O. Can. J. Chem. **1999**, 77, 1336–1339; (i) Wu, Q.-H.; Wang, C.-M.; Cheng, S.-G.; Gao, K. Tetrahedron Lett. **2004**, *45*, 8855–8858; (j) Wu, Q.-H.; Liu, C.-M.; Chen, Y.-J.; Gao, K. Helv. Chim. Acta **2006**, 89, 915–922.
- For the synthesis of indenoindene and its derivatives, see: (a) Paisdor, B.; Kuck, D.J. Org. Chem. **1991**, 56, 4753–4759; (b) Harig, M.; Neumann, B.; Stammler, H.-G.; Kuck, D. Eur. J. Org. Chem. **2004**, 2381–2397; (c) Harig, M.; Kuck, D. Eur. J. Org. Chem. **2006**, 1647–1655; (d) Kuck, D.; Schuster, A.; Fusco, C.; Fiorentino, M.; Curci, R. J. Am. Chem. Soc. **1994**, 116, 2375–2381; (e) Ramaiah, D.; Kumar, S. A.; Asokan, C. V.; Mathew, T.; Das, S.; Rath, N. P.; George, M. V. J. Org. Chem. **1996**, 61, 5468–5473; (f) Slemon, C.; Macel, B.; Trifonov, L.; Vaugeois, J. WO **03**, 064501 A1, 2003; Chem. Abstr. **2003**, 139, 165073.; (g) Kuck, D. Chem. Rev. **2006**, 106, 4885–4925; (h) Kuck, D.; Seifert, M. Chem. Ber. **1992**, 125, 1461–1469.
- For our contribution to the synthesis of indenoindene derivatives, see: (a) Kim, K. H.; Lee, H. S.; Kim, S. H.; Kim, S. H.; Kim, J. N. *Chem. Eur. J.* 2010, *16*, 2375– 2380; (b) Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. *Tetrahedron* 2005, *61*, 1493– 1499.
- For the examples of butterfly conformation NNRTIs, see: (a) Mertens, A.; Zilch, H.; Konig, B.; Schafer, W.; Poll, T.; Kampe, W.; Seidel, H.; Leser, U.; Leinert, H. J. Med. Chem. 1993, 36, 2526–2535; (b) Wang, J.; Kang, X.; Kuntz, I. D.; Kollman, P. A. J. Med. Chem. 2005, 48, 2432–2444. Further references were cited in Ref. 6a.
- 8. Typical procedure for the synthesis of 4a:^{3c} To a stirred solution of ninhydrin (231 mg, 1.3 mmol) and cinnamyl bromide 2a (255 mg, 1.0 mmol) in aqueous THF (1:1, 3.0 mL) was added indium powder (148 mg, 1.3 mmol), and the reaction mixture was stirred at room temperature for 2 h under N₂ atmosphere. After the usual aqueous extractive workup and removal of solvent afforded crude γ-hydroxy ester 3a. To the crude 3a in CH₂Cl₂ (2.0 mL) was added *p*-TsOH (19 mg, 0.1 mmol), and the reaction mixture was stirred at room temperature for 12 h. After the usual aqueous extractive workup and column chromatographic purification process (hexanes/EtOAc/CH₂Cl₂, 5:1:1) compound 4a was obtained as a white solid, 234 mg (77%).^{3c} Other compounds were synthesized similarly, and the spectroscopic data of unknown compounds 4b and 4c are as follows.

Compound **4b**: 75%; white solid, mp 146–148 °C; IR (KBr) 1789, 1755, 1724, 1226 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.19 (s, 3H), 4.60 (dd, *J* = 3.6 and 3.3 Hz, 1H), 5.63 (d, *J* = 3.3 Hz, 1H), 6.59 (d, *J* = 3.6 Hz, 1H), 6.88 (d, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.76 (t, *J* = 7.5 Hz, 1H), 7.84 (t, *J* = 7.5 Hz, 1H), 8.00 (d, *J* = 7.5 Hz, 1H), 1³C NMR (CDCl₃, 75 MHz) δ 20.95, 52.86, 84.11, 123.63, 123.71, 124.64, 128.68, 129.22, 129.48, 135.41, 136.67, 137.09, 138.51, 140.74, 141.04, 168.49, 194.13, 194.30; ESIMS (positive ion) *m*/*z* 319 (M*+H). Anal. Calcd for C₂₀H₁₄O₄: C, 75.46; H, 4.43. Found: C, 75.75; H, 4.54.

Compound **4c**: 71%; white solid, mp 123–125 °C; IR (KBr) 1788, 1755, 1725, 1514, 1255 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.68 (s, 3H), 4.59 (dd, *J* = 3.6 and 3.0 Hz, 1H), 5.63 (d, *J* = 3.0 Hz, 1H), 6.58 (d, *J* = 3.6 Hz, 1H), 6.65 (d, *J* = 8.7 Hz, 2H), 6.92 (d, *J* = 8.7 Hz, 2H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.78 (t, *J* = 7.5 Hz, 1H), 8.01 (d, *J* = 7.5 Hz, 1H), 17.78 (CDCl₃, 75 MHz) δ 52.58, 55.11, 84.17, 114.14, 123.44, 123.60, 123.69, 124.55, 130.54, 135.59, 136.67, 137.15, 140.68, 141.04, 159.51, 168.46, 194.14, 194.44; ESIMS (positive ion) *m*/*z* 335 (M*+H). Anal. Calcd for C₂₀H₁₄O₅: C, 71.85; H, 4.22. Found: C, 71.79; H, 4.52.

Typical procedure for the synthesis of **6a**: A mixture of compound **4a** (152 mg, 0.5 mmol) and H₂SO₄ (245 mg, 2.5 mmol) in benzene (2.0 mL) was heated to reflux for 9 h under nitrogen atmosphere. After the usual aqueous extractive workup and column chromatographic purification process (hexanes/EtOAc/CH₂Cl₂, 17:1:4) compound **6a** was obtained as a white solid, 173 mg (95%). Other compounds were synthesized similarly, and the spectroscopic data of **6a**-**g** are as follows. Compounds **10–12** were prepared as shown in Scheme 2 and Scheme 3, and the spectroscopic data of **10–12** are also noted herewith.

Compound **6a**: 95%; white solid, mp 227–229 °C; IR (KBr) 1778, 1727, 1219 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 4.51 (dd, *J* = 2.7 and 2.1 Hz, 1H), 6.01 (d, *J* = 2.1 Hz, 1H), 6.38 (d, *J* = 2.7 Hz, 1H), 6.70–6.77 (m, 2H), 7.19–7.28 (m, 3H), 7.34–7.46 (m, 4H), 7.53 (t, *J* = 7.5 Hz, 1H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.90 (d, *J* = 7.5 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 51.19, 67.29, 95.18, 124.08, 124.37, 124.74, 125.88, 126.61, 127.76, 128.21, 129.14, 129.19, 129.48, 129.49, 133.20, 135.84, 137.16, 140.05, 140.25, 145.03, 155.96, 168.53, 199.18; ESIMS (positive ion) *m*/*z* 365 (M⁺+H). Anal. Calcd for C₂₅H₁₆O₃: C, 82.40; H, 4.43. Found: C, 82.65; H, 4.71.

Compound **6b**: 87%; white solid, mp 260–262 °C; IR (KBr) 1779, 1728, 1218 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 4.51 (dd, *J* = 2.4 and 2.1 Hz, 1H), 6.03 (d, *J* = 2.1 Hz, 1H), 6.39 (d, *J* = 2.4 Hz, 1H), 6.68 (d, *J* = 8.7 Hz, 2H), 7.19 (d,

J = 8.7 Hz, 2H), 7.34–7.42 (m, 4H), 7.54 (t, J = 7.8 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.76 (t, J = 7.8 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H); $^{13}{\rm C}$ NMR (CDCl₃, 75 MHz) δ 51.18, 66.78, 95.06, 124.37, 124.50, 124.90, 125.70, 126.46, 128.43, 129.43, 129.68, 129.71, 130.49, 133.09, 133.59, 135.58, 137.35, 138.69, 140.23, 144.56, 155.38, 168.40, 198.79; ESIMS (positive ion) m/z 399 (M*+H), 401 (M*+H+2). Anal. Calcd for C₂₅H₁₅ClO₃: C, 75.29; H, 3.79. Found: C, 75.03; H, 4.05.

Compound **6c**: 53%; white solid, mp 188–191 °C; IR (KBr) 1778, 1728, 1275 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 1.19 (t, J = 7.5 Hz, 3H), 2.59 (q, J = 7.5 Hz, 2H), 4.50 (s, 1H), 6.01 (s, 1H), 6.37 (s, 1H), 6.64 (d, J = 7.8 Hz, 2H), 7.05 (d, J = 7.8 Hz, 2H), 7.36–7.48 (m, 4H), 7.51 (t, J = 7.5 Hz, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.89 (d, J = 7.5 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 15.10, 28.26, 51.18, 67.04, 95.25, 123.99, 124.30, 124.67, 125.88, 126.64, 127.69, 129.07, 129.10, 129.39, 129.42, 133.12, 135.90, 137.09, 137.25, 140.19, 143.63, 145.21, 156.08, 168.62, 199.26; ESIMS (positive ion) m/z 393 (M*+H). Anal. Calcd for $C_{27}H_{20}O_{3}$: C, 82.63; H, 5.14. Found: C, 82.71; H, 5.02.

Compound **6d**: 58% (major/minor, 3:2); white solid, mp 226–229 °C; IR (KBr) 1778, 1727, 1219 cm⁻¹; ¹H NMR (major, CDCl₃, 300 MHz) δ 1.52 (s, 3H), 2.08 (s, 3H), 4.47 (dd, J = 2.7 and 2.4 Hz, 1H), 6.09 (d, J = 2.7 Hz, 1H), 6.14 (br s, 1H), 6.45 (dr s, 1H), 6.49 (br s, 2H), 7.33–7.91 (m, 8H); ¹H NMR (minor, CDCl₃, 300 MHz) δ 1.55 (s, 3H), 2.10 (s, 3H), 4.59 (dd, J = 3.3 and 3.0 Hz, 1H), 5.85 (d, J = 3.3 Hz, 1H), 6.24 (d, J = 3.0 Hz, 1H), 6.52 (br s, 1H), 6.96 (br s, 2H), 7.33–7.91 (m, 8H); ¹³C NMR (major + minor, CDCl₃, 75 MHz) δ 20.97 (2C), 22.03, 22.66, 51.32, 51.53, 67.47, 67.50, 93.36, 96.22, 123.59, 124.38, 124.43, 124.72, 124.76, 125.11, 125.34, 127.29, 127.57, 128.55, 128.81, 128.86, 129.04, 129.09 (2C), 129.46, 131.09, 132.06, 132.68, 133.50, 134.83, 135.17, 135.40, 135.57, 136.00, 136.58 (2C), 136.61, 136.82, 137.30, 138.75, 139.17, 145.84, 146.30, 156.06, 159.86, 168.53, 169.01, 199.03, 200.56 (four carbons are overlapped); ESIMS (positive ion) *m/z* 393 (M⁺+H). Anal. Calcd for C₂₇H₂₀O₃: C, 82.63; H, 5.14.

Compound **6e**: 94%; white solid, mp 260–262 °C; IR (KBr) 1778, 1727, 1263 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.37 (s, 3H), 4.47 (dd, J = 2.4 and 2.1 Hz, 1H), 5.98 (d, J = 2.1 Hz, 1H), 6.35 (d, J = 2.4 Hz, 1H), 6.73–6.77 (m, 2H), 7.18–7.24 (m, 6H), 7.52 (t, J = 7.8 Hz, 1H), 7.16 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 7.8 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 21.47, 50.89, 67.20, 95.43, 123.85, 124.03, 124.72, 126.12, 126.65, 127.71, 128.20, 129.12, 129.20, 130.49, 133.24, 136.12, 137.11, 137.39, 139.59, 140.16, 145.14, 156.05, 168.62, 199.31; ESIMS (positive ion) m/z 379 (M⁺+H). Anal. Calcd for $C_{26}H_{18}O_3$: C, 82.52; H, 4.79. Found: C, 82.33; H, 4.58.

Compound **6**f: 81%; white solid, mp 266–268 °C; IR (KBr) 1768, 1730, 1262 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.29 (s, 3H), 2.36 (s, 3H), 4.45 (s, 1H), 5.97 (s, 1H), 6.35 (s, 1H), 6.62 (d, J = 6.0 Hz, 2H), 7.03 (d, J = 6.0 Hz, 2H), 7.16–7.26 (m, 3H), 7.51 (t, J = 6.3 Hz, 1H), 7.60 (d, J = 6.3 Hz, 1H), 7.74 (t, J = 6.3 Hz, 1H), 7.88 (d, J = 6.3 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 20.97, 21.46, 50.84, 66.94, 95.43, 123.80, 123.98, 124.68, 126.11, 126.62, 128.95, 129.07 (2C), 130.42, 133.19, 136.19, 137.07, 137.20, 137.35, 137.44, 139.53, 145.26, 156.19, 168.70, 199.41; ESIMS (positive ion) *m*/*z* 393 (M*+H). Anal. Calcd for C₂₇H₂₀O₃: C, 82.63; H, 5.14. Found: C, 82.60; H, 5.45.

Compound **6g**: 28%; white solid, mp 232–234 °C; IR (KBr) 1777, 1727, 1263 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 3.79 (s, 3H), 4.44 (dd, *J* = 2.4 and 2.1 Hz, 1H), 5.97 (d, *J* = 2.1 Hz, 1H), 6.36 (d, *J* = 2.4 Hz, 1H), 6.72–6.78 (m, 2H), 6.91–6.96 (m, 2H), 7.20–7.29 (m, 4H), 7.54 (t, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 7.8 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 50.56, 55.62, 67.32, 95.73, 110.74, 115.77, 123.77, 124.79, 125.13, 126.60, 127.81, 128.26, 129.21 (2C), 132.27, 133.31, 136.27, 137.10, 139.89, 146.46, 155.77, 160.90, 168.64, 199.20; ESIMS (positive ion) *m*/z 395 (M*+H). Anal. Calcd for C₂₆H₁₈O₄: C, 79.17; H, 4.60. Found: C, 79.44; H, 4.56.

Compound **10**: 92%; white solid, mp 140–142 °C; IR (KBr) 3464, 1780, 1764, 1729, 1287 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 2.49 (dd, *J* = 13.8 and 7.2 Hz, 1H), 2.83 (dd, *J* = 13.8 and 7.8 Hz, 1H), 3.39 (s, OH), 5.07 (dd, *J* = 3.6 and 3.3 Hz, 1H), 5.16 (d, *J* = 17.4 Hz, 1H), 5.23 (d, *J* = 10.2 Hz, 1H), 5.53 (d, *J* = 3.1 Hz, 1H), 5.76 -5.90 (m, 1H), 6.53 (d, *J* = 3.6 Hz, 1H), 6.72–7.00 (m, 5H), 7.11–7.21 (m, 2H), 7.51–7.57 (m, 2H); ¹³C NMR (CDCl₃, 75 MHz) d 46.29, 50.17, 77.18, 96.09, 122.08, 122.71, 123.96, 127.46, 127.95 (2C), 129.15, 129.72, 131.40, 133.01, 134.34, 135.38, 137.37, 153.05, 169.48, 197.51; ESIMS (positive ion) *m/z* 347 (M⁺H). Anal. Calcd for $C_{22}H_{18}O_4$: C, 76.29; H, 5.24. Found: C, 76.47; H, 5.42.

Compound **11**: 72% (*cis/trans*, 1:1); white solid, mp 248–250 °C (decomp.); IR (KBr) 1779, 1726, 1228 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 4.47 (t, *J* = 0.6 Hz, 0.5H), 4.69 (t, *J* = 0.6 Hz, 0.5H), 5.52–5.70 (m, 2H), 5.59 (d, *J* = 3.3 Hz, 0.5H), 6.57 (d, *J* = 3.9 Hz, 0.5H), 6.62 (d, *J* = 3.9 Hz, 0.5H), 6.70 (d, *J* = 1.7 Hz, 0.5H), 6.88–7.57 (m, 9.5H), 7.62 (d, *J* = 7.8 Hz, 0.5H), 6.88–7.57 (m, 9.5H), 7.62 (d, *J* = 7.8 Hz, 0.5H), 6.73 (d, *J* = 1.7 Hz, 0.5H), 1.23.23, 123.58, 123.73, 123.89, 123.96, 124.24, 124.79, 125.94, 127.49, 128.15, 128.21, 128.31 (2C), 129.05, 129.18, 129.23, 129.37, 130.80, 131.45, 132.16, 132.27, 132.37, 132.75, 133.72, 133.88, 136.01, 136.03, 136.58, 146.63, 148.52, 169.43 (2C), 198.04, 198.42 (one carbon is overlapped); ESIMS (positive ion) *m/z* 329 (M*+H). Anal. Calcd for C₂₂H₁₆O₃: C, 80.47; H, 4.91. Found: C, 80.61; H, 5.03. Compound **12**: 81%; white solid, mp 207–209 °C; IR (KBr) 1767, 1726, 1286 cm^{-1; 1}H NMR (CDCl₃, 300 MHz) δ 2.14 (s, 3H), 6.85–6.88 (m, 2H), 7.75 (d, *J* = 8.1 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 9.79, 63.78, 96.73, 121.84, 124.59, 125.34, 125.43, 127.31, 127.93, 128.44, 128.88, 129.13, 129.27, 130.97, 131.77, 133.45, 136.71, 137.06, 150.87, 158.06, 158.24, 174.96, 197.17; ESIMS (positive ion) *m/z* 365 (M*+H). Anal. Calcd for C₂₅H₁₆O₃: C, 82.40; H, 4.45. Found: C, 82.59; H, 4.56.

9. For the similar Friedel–Crafts type reaction of ketone and arenes under strong acid conditions, see: (a) Sai, K. K. S.; Esteves, P. M.; da Penha, E. T.; Klumpp, D. A.

J. Org. Chem. **2008**, 73, 6506–6512; (b) O'Connor, M. J.; Boblak, K. N.; Topinka, M. J.; Kindelin, P. J.; Briski, J. M.; Zheng, C.; Klumpp, D. A. *J. Am. Chem. Soc.* **2010**, *132*, 3266–3267; (c) Klumpp, D. A.; Rendy, R.; Zhang, Y.; Gomez, A.; McElrea, A. Org. Lett. **2004**, 6, 1789–1792; (d) Olah, G. A.; Klumpp, D. A. *Acc. Chem. Res.* **2004**, 37, 211–220; (e) Song, H. N.; Lee, H. J.; Seong, M. R.; Jung, K. S.; Kim, J. N. Synth. Commun. **2000**, *30*, 1057–1066.

10. Crystal data of compound **6e**: solvent of crystal growth (EtOH/CH₂Cl₂); empirical formula $C_{26}H_{18}O_3$, F_w = 378.40, crystal dimensions $0.38 \times 0.35 \times 0.23$ mm³, monoclinic, space group *P*2(1)/n, *a* = 9.1254(2) Å, b = 21.5910(5) Å, c = 10.0847(3) Å, $\alpha = 90^\circ$, $\beta = 105.9510(10)^\circ$, $\gamma = 90^\circ$, V = 1910.45(8) Å³, Z = 4, $D_{calcd} = 1.316 \text{ mg/m}^3$, $F_{000} = 792$, MoKα ($\lambda = 0.71073$ Å), $R_1 = 0.0453$, $wR_2 = 0.1118$ ($I > 2\sigma(I)$). The X-ray data has been deposited in CCDC with number 802634.

 For the examples of atropisomerism, see: (a) Boiadjiev, S. E.; Lightner, D. A. *Tetrahedron: Asymmetry* **2002**, *13*, 1721–1732; (b) Casarini, D.; Foresti, E.; Gasparrini, F.; Lunazzi, L.; Macciantelli, D.; Misiti, D.; Villani, C. J. Org. Chem. **1993**, *58*, 5674–5682.