The Journal of Organic Chemistry

Article

Ru-Catalyzed Chemo- and Enantioselective Hydrogenation of 2,4-Pentadien-1-ones: Synthesis of Chiral 2,4-Pentadien-1-ols

Chengyang Li, Wenkui Lu, Bin Lu, Wanfang Li, Xiaomin Xie, and Zhaoguo Zhang

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b02576 • Publication Date (Web): 18 Nov 2019

Downloaded from pubs.acs.org on November 18, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Ru-Catalyzed Chemo- and Enantioselective Hydrogenation of 2,4-Pentadien-1ones: Synthesis of Chiral 2,4-Pentadien-1-ols

Chengyang Li,[†] Wenkui Lu,[†] Bin Lu,[†] Wanfang Li,[‡] Xiaomin Xie,[†] and Zhaoguo Zhang*,^{†,§}

[†]Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical

Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China

[‡]College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China

[§]Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

zhaoguo@sjtu.edu.cn

ABSTRACT

The asymmetric hydrogenation of 2,4-pentadien-1-ones has been achieved by using *trans*-RuCl₂[(R)-XylylSunPhos][(R)-Daipen] as catalyst under basic conditions. This hydrogenation demonstrated exclusive C1-carbonyl selectivity and thus the conjugated 2,4-diene motifs remained untouched, which provides a synthetically useful method for various chiral 2,4-pentadien-1-ols.

INTRODUCTION

Over the past few decades, homogeneous catalytic asymmetric hydrogenation of porchiral ketones has become a mature and powerful method for the synthesis of secondary chiral alcohols.¹ In this field, selective hydrogenation of carbonyl groups in unsaturated ketones has been considered difficult for a long time (Scheme 1a). The two hydrogenation systems, Ir-DIOP² and [Ir(BINAP)(COD)]BF4- aminophosphine³ gave good chemoselectivities but with only moderate enantioselectivities. Since the 1990s, Noyori and co-workers has made a great progress by introducing novel and efficient Ru-diphosphane-diamine bifunctional catalysts.^{1b,4} This significant discovery characterized excellent compatibility of various functional groups and the reversion of the classical chemoseletivitity in the hydrogenation of C=C and C=C over C=O groups. Subsequently, Ru-diphosphane-diamine catalyzed hydrogenation represents one of the most reliable approach to various types of valuable chiral allylic alcohols.⁵ Besides, several other catalytic hydrogenation systems,⁶ kinetic resolution,⁷ enantioselective aldehydevinylation,⁸ asymmetric transfer hydrogenation,⁹ and other asymmetric reduction of unsaturated

ketones¹⁰ have been developed for this purpose with high chemoselectivities and moderate to excellent enantioselectivities.

Scheme 1. The Asymmetric Hydrogenation of Conjugated Ketones

However, the asymmetric hydrogenation of $\alpha,\beta-\gamma,\delta$ -unsaturated ketones, which possessed multiple unsaturated bonds conjugated carbonyl, is rarely explored. To the best of our knowledge, only the hydrogenation of β -ionone which contains a low activity tetrasubstituted double bond, has been reported (Scheme 1b).^{3,4b,4d,6e} Furthermore, the polyene-conjugated chiral allyl alcohols are important units of a number of natural compounds and biologically active molecules (Figure 1). On the other hand, these motifs with conjugated polyenes could be further exploited through subsequent diverse transformations, for example, they could serve as both dienes and dienophiles in Diels-Alder rection.¹¹ Up to now, only a few methods are available for the synthersis of chiral secondary polyenols, such as asymmetric reduction,^{10a,10d,10f} asymmetric addition,¹² reductive coupling¹³ and (dynamic) kinetic resolution.¹⁴ Nevertheless, these synthetic methods suffered from limited scope of substrates, low efficiency and/or poor enantioselectivity. Accordingly, the search for effective and highly selective approaches to synthesize enantiomerically pure polyenols is still a significant and challenging work.

Figure 1. Selected Chiral 2,4-Pentadiene-1-ol Units in Drugs and Natural Products

Our group has been devoted to the Ru-catalyzed asymmetric hydrogenation of functionalized and

simple ketones using SunPhos and its derivatives as chiral ligands.^{1j,15} As our continued interest, we reported herein an efficient and selective synthetic approach for polyene-conjugated chiral allyl alcohol through Ru-SunPhos-catalyzed asymmetric hydrogenation of $\alpha, \beta-\gamma, \delta$ -unsaturated ketones.

RESULTS AND DISCUSSION

Inspired by the fact that in 1998 Noyori et al. adopted the weak base K₂CO₃, instead of conventional BuOK, in the hydrogenation of some highly base sensitive unsaturated ketones with improvement of ee values, 4d we chose the easily available (3E, 5E)-6-phenylhexa-3, 5-dien-2-one (1a) as the model substrate, and initially carried out the reaction in *i*-PrOH containing *trans*-RuCl₂[(S)-SunPhos][(S)-Daipen] and K₂CO₃ under 10 bar of H₂ at 30 °C for 15 h. To our surprises, the corresponding chiral alcohol 2a was obtained with nearly quantitative yield and 91.3% ee (Table 1, entry 1). Next, various chiral diphosphines (shown in Figure 2) were also tested to explore the effect of the ligand structure on the reactivity and enantioselectivity for the asymmetric hydrogenation of $\alpha, \beta - \gamma, \delta$ -unsaturated ketones. The results are showed in Table 1. Tol-SunPhos or DMM-SunPhos with matching configuration diamine-DAIPEN also gave good enantioselectivities but slightly lower than that using Xylyl-SunPhos as the ligand (Table 1, entries 1-4, 91.3%-95.6% ee). The matching/mismatching effect between diphosphine and diamine was also included here. Mismatching ligands led to disappointed result (Table 1, entries 5, 77.0% ee, 35% conv.). Employing other several commercially available diphosphine ligands, such as (S)-BINAP, (S)-SEGPhos, (S)-C3-TunePhos and (S)-MeO-Biphep with matching (S)-DAIPEN resulted in good ee values (Table 1, entries 6-9, 83.1%-92.9% ee). Overall, the diphosphine Xylyl-SunPhos was the ligand of choice in terms of enantioselectivity.

Figure 2. Structures of bidentate ligands.

		Ru-Cat	он Л		
		H ₂			
	1a	2a			
entry	с	at	ee (%) ^b		
1	trans-{RuCl ₂ [(S)-DA	IPEN][(S)-SunPhos]}	-91.3		
2	trans-{RuCl ₂ [(R)-DAIP	EN][(<i>R</i>)-Tol-SunPhos]}	94.7		
3	trans-{RuCl ₂ [(R)-DAIPE	EN][(<i>R</i>)-Xylyl-SunPhos]}	95.6		
4 ^{<i>c</i>}	trans-{RuCl ₂ [(S)-DAIPE	EN][(<i>R</i>)-Xylyl-SunPhos]}	77.0		
5	trans-{RuCl ₂ [(S)-DAIPE	N][(S)-DMM-SunPhos]}	-95.2		
6	trans-{RuCl ₂ [(S)-DA	AIPEN][(S)-BINAP]}	-83.1		
7	trans-{RuCl ₂ [(S)-DAIP	EN][(S)-MeO-Biphep]}	-90.0		
8	trans-{RuCl ₂ [(S)-DA	IPEN][(S)-SegPhos]}	-89.6		
9	trans-{RuCl ₂ [(S)-DAIP]	EN][(S)-C3-TunePhos]}	-92.9		
a Unless otherwise stated, all reactions were carried out with a substrate (0.25					
mmol)	in 1 mL <i>i</i> -PrOH unde	er 10 bar H_2 at 30 °C	C for 15 h,		
substrate/catalyst/K ₂ CO ₃ = 100/1/10. All in full conversion. ^b Determined by					
HPLC on a Chiralpak IA-3 column. ^c 35% conversion by ¹ H NMR					

Table 1. Effects of Ligands in Asymmetric Hydrogenation^a

Next, the effects of the solvent, reaction temperature, and hydrogen pressure were explored and the results were depicted in Table 2. Both protic solvents (*i*-PrOH, MeOH, EtOH, *i*-BuOH and isoamyl alcohol, Table 2, entries 1-5) and aprotic solvents (THF, DCM and toluene, Table 2, entries 5-7) were tested, and it turned out that *i*-PrOH was the best choice for this hydrogenation. The enantioselectivity of the hydrogenation was dramatically influenced by the reaction temperature. Increased the temperature caused an obvious drop of enantiomeric excess (Table 2, entry 9, 50 °C, 87.3% ee). Unexpectedly, the hydrogen pressures exhibited little effect on the reaction (Table 2, entry 10, 30 bar, 94.2% ee). Moreover, the transfer hydrogenation process was also excluded by the result that **1a** was fully recovered in the absence of hydrogen (Table 2, entry 11).

Table 2. Optimization of Solvent, Temperature, and Pressure^a

entry	solvent	P (bar)	$\operatorname{conv.}(\%)^b$	ee (%) ^c
1	<i>i</i> -PrOH	10	> 99	95.6
2	MeOH	10	90	92.4
3	EtOH	10	> 99	93.4
4	<i>i</i> -BuOH	10	> 99	92.3
5	Isoamyl alcohol	10	> 99	94.9
6	DCM	10	0	
7	THF	10	0	
8	Toluene	10	0	
9 ^d	<i>i</i> -PrOH	10	> 99	87.3
10	<i>i</i> -PrOH	30	> 99	94.2
11^e	<i>i</i> -PrOH	0	0	

^{*a*}Unless otherwise stated, all reactions were carried out using *trans*-{RuCl₂[(*R*)-DAIPEN][(*R*)-Xylyl-SunPhos]} as the catalyst with substrate (43.0 mg, 0.25 mmol) in 1 mL solvent under 10 bar of H₂ at 30 °C for 15 h, substrate/catalyst/K₂CO₃ = 100/1/10. ^{*b*}Determined by NMR. ^cDetermined by HPLC on a Chiralpak IA-3 column. ^{*d*}Reaction temperature 50 °C. ^{*c*}Without H₂.

Subsequently, we turned our attention to the effect of bases (Table 3). 'BuOK, which was mostly used in Ru/diphosphine/diamine hydrogenation systems, gave very poor enantioselectivity (Table 3, entry 2, 5.2% ee). And it was investigated that the lack of enantioselectivity using 'BuOK as base was not due to product racemization. When we treat the product **2a** in the presence of 'BuOK in ^{*i*}PrOH, no racemization was observed. Other potassium bases (KOH, K₃PO₄ and KOAc) other carbonates (Cs₂CO₃, Na₂CO₃) and organic base (NEt₃) led to lower enantioselectivities and/or activities than using K₂CO₃ as the base.

	o la	Ru-Cat H ₂	O⊢ J 2a
entry	solvent	$\operatorname{conv.}(\%)^b$	ee (%) ^c
1	K ₂ CO ₃	> 99	95.6
2	'BuOK	> 99	5.2
3	КОН	> 99	8.3
4	K ₃ PO ₄	> 99	12.7

Table 3. S	Screening	of Base ^a
------------	-----------	----------------------

5	Cs_2C	CO_3		> 9	99			66.	3	
6	Na ₂ C	CO3		4	8			95.	3	
7	Et ₃	N		0)					
8	KO	Ac		0)					
"Unless otherwise stated, all reactions were carried out										
using trans-{RuCl ₂ [(R)-DAIPEN][(R)-Xylyl-SunPhos]}										
as the catalyst with substrate (43.0 mg, 0.25 mmol) in 1 mL										
<i>i</i> -PrOH	under	10 bar	of	H_2	at	30	°C	for	15	h,
substrate/catalyst/base = 100/1/10. ^b Determined by NMR.										
^c Determined by HPLC on a Chiralpak IA-3 column.										

With the optimized conditions in hand, the scope of substrates was investigated and the results were summarized in Scheme 2. A series of polyene-conjugated chiral allyl alcohols were synthesized with perfect chemical selectivities, good to excellent ee values and wide functional group tolerance. The model substrate 1a (R = Me) was hydrogenated in 99% yield and 95.6% ee. When the substrate with a longer chain, the activity and enantioselectivity was still remained (R = n-Pr, 1b; 98% yield, 94.9% ee). However, when the substrate **1c** containing a bulkier isopropyl group was subjected to the reaction, the corresponding product 2c was obtained in only 37.5% ee. Substituents on the conjugated diene motifs had little influence on the selective hydrogenation reactions wherein the desired chiral alcohols 2d-f were isolated with good enantioselectivities and high yields. When the substrates possessing meta-CF3 (1g) or ortho-Me (1h) were subjected to this hydrogenation, the corresponding hydrogenation products 2g and **2h** were obtained in 90.4% and 94.0% ee, respectively. Besides, a range of *para*-substituted substrates delivered universally high enantiomeric excess, and halogen (1i-1k), methoxyl (11) and dimethylamino group (1m) were tolerated. Notably, the nitro group was also bearable in the reaction, affording the product 2n in 93.3% ee, albeit in 62% conversion. Interestingly, compound 10 with conjugated triple and double bonds was also hydrogenated in good chemo- and enantioselectivity. Moreover, under the reaction conditions, substrate 1p and 1q both gave high yield and Enantioselectivity. In addition, hydrogenation of heterocyclic compound 1r and 1s afforded the corresponding alcohols with good ee values in full conversion.

With *tarns*-RuCl₂[(*R*)-XylylSunPhos][(*R*)-Daipen]-K₂CO₃ as catalyst, hydrogenation of **1t** afforded **2t** in full conversion but only 67.5% ee. The *ortho*-Cl compound **1u** was attempted delivering desired alcohol with excellent enantioselectivity (**2u**, 92.2% ee). This phenomenon is under further investigation to find whether steric hindrance or electronic effect dominate the difference.

Scheme 2. Substrate Scope^a

56

57 58

59 60

determined according to 2a. ^b62% conversion by ¹H NMR.

Finally, to further evaluate the catalytic efficiency of this hydrogenation system, a gram scale hydrogenation of **1a** (7.5 mmol, 1.29 g) was carried out (S/C = 1000) under 30 bar of H₂ at 30 °C for 48 h, and the chiral product (S_3E_5E)-6-phenylhexa-3,5-dien-2-ol (**2a**) could be obtained in 98% yield and 95.2% ee (Scheme 3).

Scheme 3. Gram-Scale Asymmetric Hydrogenation of 1a

CONCLUSION

In summary, we realized a general and practical selective hydrogenation of 2,4-pentadiene-1-ones to 2,4-pentadiene-1-ols. The conjugated disubstituted C=C bonds remained untouched to afford a wide range of enantiopure 1,3-dieneols. The bifunctional catalyst *trans*-{RuCl₂[(R)-DAIPEN][(R)-Xylyl-SunPhos]} showed high enantioselectivity (up to 98% ee) and reactivity (S/C up to 1000) for a wide range of 2,4-pentadiene-1-ones under very mild conditions. Further applications of this protocol are currently under investigation in our group.

EXPERIMENTAL SECTION

General Procedures. Unless those noted below, commercially available reagents purchased from macklin chemical company were used throughout without further purification. EtOH and MeOH were distilled from magnesium under nitrogen. ¹PrOH and DCM were dried over CaH₂ under nitrogen. Toluene and THF were freshly distilled from Na-benzophenone under nitrogen. Unless otherwise noted, all reactions were performed using standard Schlenk techniques under an atmosphere of nitrogen. Oil bath was used in all experiments for reactions that require heating. Flash column chromatography was performed using 300-400 mesh silica gel. ¹HNMR spectra were recorded at 500 MHz with TMS as an internal standard. ¹³C {¹H} NMR spectra were recorded at 125 MHz and referenced to the central peak of 39.52 ppm for *d*6-DMSO or 77.00 ppm for CDCl₃. Coupling constants (*J*) are reported in units (Hz) and refer to apparent peak multiplications. Specific rotation [α]_D were obtained in a 0.5 dm cell using the D-line (589 nm) of a sodium lamp. HRMS data were measured on an ESI-TOF mass spectrometer. IR data determinated from Perkin Elmer Spectrum 100 (KBr).

Typical Procedure for the Preparation of 1a, 1e, 1g-1n, 1q, 1r, 1s.

To a solution of the corresponding aldehyde (10 mmol) in acetone (10 mL) and H_2O (10 mL) was added dropwise 10 mL 5% NaOH aqueous solution slowly at room temperature; Upon completion of the reaction (monitored by TLC), the pH value was adjusted to 6-7 with 10% HCl, and the resulting solution was extracted with DCM (20 mL × 3). The combined organic phase was washed with saturated brine before dried over anhydrous Na₂SO₄, and the concentration was conducted under vacuum. The crude product was purified by flash column chromatography or recrystallized from DCM/ PE (petroleum ether).

Typical Procedure for the Preparation of 1b, 1t, 1u.

To a solution of the corresponding aldehyde (10 mmol) and ketone (11 mmol) in EtOH (10 mL) was added dropwise 10 mL 5% NaOH aqueous solution slowly at room temperature; Upon completion of the reaction (monitored by TLC), the pH value was adjusted to 6-7 with 10% HCl, and the resulting solution was extracted with DCM (20 mL \times 3). The combined organic phase was washed with saturated brine before dried over anhydrous Na₂SO₄, and the concentration was conducted under vacuum. The crude product was purified by flash column chromatography or recrystallized from DCM/ PE.

(*3E*,*5E*)-6-Phenylhexa-3,5-dien-2-one (1a):¹⁶ Recrystallized from DCM/ PE. Yellow solid: 1.41 g, 82% yield; mp: 60–61 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.48–7.46 (m, 2H), 7.38–7.26 (m, 4H), 6.97 –6.85 (m, 2H), 6.26 (d, *J* = 15.5 Hz, 1H), 2.31 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.3, 143.4, 141.2, 135.9, 130.4, 129.2, 128.8, 127.2, 126.6, 27.3.

(5*E*,7*E*)-8-Phenylocta-5,7-dien-4-one (1b):¹⁷ Recrystallized from DCM/ PE. Pale yellow solid: 0.41 g, 21% yield; mp: 41–43 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.48–7.47 (m, 2H), 7.38–7.30 (m, 4H), 6.95 (d, *J* = 15.5 Hz, 1H), 6.88 (dd, *J* = 15.5 Hz, 10.5Hz, 1H), 6.29 (d, *J* = 15.5 Hz, 1H), 2.58 (t, *J* = 7.5 Hz, 2H), 1.73–1.65 (m, 2H), 0.97 (t, *J* = 7.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 200.6, 142.3, 141.1, 136.0, 129.7, 129.1, 128.8, 127.1, 126.7, 42.6, 17.8, 13.8.

(4*E*,6*E*)-2-Methyl-7-phenylhepta-4,6-dien-3-one (1c): Under nitrogen atmosphere, to a pre-cooled solution of diisopropylamine (2.42 g, 12 mmol), THF (20 mL) was added *n*-butyl lithium solution dropwisely (11 mmol, 2.4 M, 4.6 mL) at -20°C, and the resulting solution was stirred at -20°C for 0.5 h. Then 3-methyl-2-butanone(0.86 g, 10 mmol) in 5 mL THF was added dropwisely, keeping the temperature at -20°C, after the addition the mixture was stirred for another 0.5 h, then cinnamaldehyde

The Journal of Organic Chemistry

(1.45 g, 11 mmol) in 5 mL THF added dropwise at -20°C. After completion of addition, the reaction was stirred for 1 h, then quenched with 3 mL 10% HCl at -20°C. The mixture was extracted by ethyl acetate $(30 \text{ mL} \times 3)$.and the combined organic phase was washed by brine before dried using Na₂SO₄. Combined organic phase was washed by brine before dried using Na₂SO₄.

After removing the solvents under vacuum, Ac₂O (4 mL) and NaOAc (1 g) was added and the resulting mixture was stirred over night at room temperature under nitrogen atmosphere. Then the mixture was heated to 110°C for 10 minutes before ethanol (10 mL) was added at RT, then the mixture was stirred for another 2h. Finally the mixture was filtered and the solvent was evaporated before it was subjected to column separation.

Petroleum ether/ Ethyl acetate = 50/1 as the eluent. Then recrystallized from DCM/ PE. Pale yellow solid: 1.34 g, 67% yield; mp: 59.4–61.0 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.48–7.46 (m, 2H), 7.41–7.29 (m, 4H), 6.97–6.87 (m, 2H), 6.37 (d, *J* = 15.0 Hz, 1H), 2.90–2.82 (m, 1H), 1.15 (d, *J* = 6.5 Hz, 6H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 204.0, 142.4, 141.1, 136.1, 129.1, 128.8, 127.8, 127.1, 126.8, 39.1, 18.50. FT-IR (KBr, cm⁻¹): 3553, 3479, 3417, 3239, 2976, 2966, 1681, 1639, 1615, 1590, 1464, 1450, 1385, 1456, 1285, 1227, 1184, 1124, 1084, 1051, 1022, 760, 707, 690, 617, 511, 475. HRMS-ESI (m/z): (M + H)⁺ calcd. for C₁₄H₁₇O, 201.1279; found 201.1272.

(*E*)-2-((*E*)-3-Phenylallylidene)cyclobuta-1-one (1d):¹⁸ Petroleum ether/ Ethyl acetate = 100/1 as the eluent. Pale yellow solid: 0.59 g, 32% yield; mp: 104.1–105.9 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.49–7.47 (m, 2H), 7.38–7.30 (m, 3H), 6.94 (d, *J* = 15.0 Hz, 1H), 6.84–6.72 (m, 2H), 3.03–2.99 (m, 2H), 2.80–2.77 (m, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 199.2, 147.6, 142.5, 136.1, 129.2, 128.8, 127.2, 126.6, 123.4, 43.7, 20.8.

(*3E*,5*E*)-5-Methyl-6-phenylhexa-3,5-dien-2-one (1e):¹⁹ Recrystallized from DCM/ PE. Pale yellow solid: 0.71 g, 38% yield; mp: 68.6–69.4 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.40–7.28 (m, 6H), 6.89 (s, 1H), 6.26 (d, *J* = 16.0 Hz, 1H), 2.34 (s, 3H), 2.06 (d, *J* = 1.0 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.6, 148.7, 139.7, 136.6, 134.4, 129.4, 128.3, 127.8, 126.7, 27.5, 13.7.

(*3E*,5*Z*)-5-Bromo-6-phenylhexa-3,5-dien-2-one (1f):²⁰ Synthesized according to the literature.²⁰ Petroleum ether/ Ethyl acetate = 20/1 as the eluent. Yellow solid: 1.05 g, 42% yield; mp: 38.4–39.1 °C; ¹H NMR (500 MHz, DMSO): δ 7.83–7.81 (m, 3H), 7.60 (d, *J* = 15.0 Hz, 1H), 7.50–7.42 (m, 3H), 6.45 (d, *J* = 15.0 Hz, 1H), 2.34 (s, 1H). ¹³C {¹H} NMR (125 MHz, DMSO): δ 197.4, 143.6, 140.3, 134.6, 130.7, 129.8, 129.7, 128.5, 120.1, 28.0.

(*3E*,*5E*)-6-(3-(Trifluoromethyl)phenyl)hexa-3,5-dien-2-one (1g): Petroleum ether/ Ethyl acetate = 50/1 as the eluent. Yellow oil: 1.35g, 56% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.70 (s, 1H), 7.64–7.63 (m, 1H), 7.57–7.55 (m, 1H), 7.50–7.47 (m, 1H), 7.31–7.26 (m, 1H), 6.98–6.91 (m, 2H), 6.32 (d, *J* = 15.5 Hz, 1H), 2.33 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.2, 142.4, 139.1, 136.7, 131.5, 131.3 (q, *J* = 32.3 Hz), 130.1, 129.3, 128.3, 125.5 (q, *J* = 3.8 Hz), 123.8 (q, *J* = 270.8 Hz), 123.7 (q, *J* = 3.8 Hz), 27.50. ¹⁹F NMR (471 MHz, CDCl₃): δ -62.9. FT-IR (KBr, cm⁻¹): 3551, 3479, 3417, 3041, 1669, 1619, 1436, 1363, 1327, 1281, 1254, 1207, 1125, 1098, 1073, 996, 962, 914, 877, 795, 695, 664, 641, 597, 561, 520. HRMS-ESI (m/z): (M + H)⁺ calcd. for C₁₃H₁₂F₃O, 241.0840; found 241.0832.

(3E,5E)-6-(o-Tolyl)hexa-3,5-dien-2-one (1h):¹⁹ Petroleum ether/ Ethyl acetate = 50/1 as the eluent. Yellow oil: 1.41g, 76% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.57–7.55 (m, 1H), 7.33 (dd, *J* = 15.5, 10.5) Hz, 1H), 7.24–7.17 (m, 4H), 6.81 (dd, J = 15.5, 11.0 Hz, 1H), 6.26 (d, J = 15.5 Hz, 1H), 2.40 (s, 3H), 2.33 (s, 3H). ${}^{13}C{}^{1}H$ NMR (125 MHz, CDCl₃): δ 198.4, 143.7, 138.9, 136.6, 134.8, 130.7, 130.3, 129.0, 127.6, 126.3, 125.6, 27.4, 19.7.

(*3E*,*5E*)-6-(4-Chlorophenyl)hexa-3,5-dien-2-one (1i):¹⁶ Recrystallized from DCM/ PE. Yellow solid: 1.31 g, 63% yield; mp: 73.5–74.7 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.41–7.39 (m, 2H), 7.35–7.32 (m, 2H), 7.29–7.24 (m, 1H), 6.92–6.82 (m, 2H), 6.27 (d, *J* = 16.0 Hz, 1H), 2.32 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.3, 142.9, 139.7, 134.9, 134.4, 130.8, 129.1, 128.3, 127.2, 27.4.

(*3E*,*5E*)-6-(4-Bromophenyl)hexa-3,5-dien-2-one (1j):¹⁹ Recrystallized from DCM/ PE. Yellow solid: 1.97 g, 78% yield; mp: 100.7–102.5 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.50–7.48 (m, 2H), 7.35–7.33 (m, 2H), 7.29–7.24 (m, 1H), 6.91–6.83 (m, 2H), 6.27 (d, *J* = 15.5 Hz, 1H), 2.32 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.3, 142.9, 139.7, 134.9, 132.0, 130.9, 128.6, 127.3, 123.2, 27.5.

(3*E*,5*E*)-6-(4-Fluorophenyl)hexa-3,5-dien-2-one (1k):^{14a} Petroleum ether/ Ethyl acetate = 20/1 as the eluent. Yellow oil: 1.70 g, 89% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.47–7.43 (m, 2H), 7.30–7.24 (m, 1H), 7.08–7.03 (m, 2H), 6.91 (d, *J* = 15.5 Hz, 1H), 6.80 (dd, *J* = 15.5, 10.5 Hz, 1H), 6.25 (d, *J* = 15.5 Hz, 1H), 2.31 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.3, 163.1 (d, *J* = 250.6 Hz), 143.1, 139.8, 132.2 (d, *J* = 3.5 Hz), 130.4 (d, *J* = 1.1 Hz), 128.9 (d, *J* = 8.1 Hz), 126.3 (d, *J* = 2.5 Hz), 115.8(d, *J* = 21.8 Hz), 27.4. ¹⁹F NMR (471 MHz, CDCl₃): δ -111.2.

(3*E*,5*E*)-6-(4-Methoxyphenyl)hexa-3,5-dien-2-one (11):^{14a} Recrystallized from DCM/ PE. Yellow solid: 1.82g, 90% yield; mp: 103.9–104.8 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.44–7.41 (m, 2H), 7.31–7.26 (m, 1H), 6.92–6.88 (m, 3H), 6.79–6.74 (m, 1H), 6.22 (d, *J* = 15.5 Hz, 1H), 3.84 (s, 3H), 2.31 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.5, 160.6, 144.0, 141.1, 129.4, 128.8, 128.7, 124.5, 114.3, 55.4, 27.3.

(3*E*,5*E*)-6-(4-(Dimethylamino)phenyl)hexa-3,5-dien-2-one (1m): Recrystallized from DCM/ PE. Red solid: 1.70g, 79% yield; mp: 131.1–132.4 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.38–7.35 (m, 2H), 7.32–7.27 (m, 1H), 6.88 (d, *J* = 15.5 Hz, 1H), 6.73–6.66 (m, 3H), 6.16 (d, *J* = 15.5 Hz, 1H), 3.01 (s, 6H), 2.29 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.5, 151.1, 144.9, 142.2, 128.8, 127.9, 124.1, 122.1, 112.0, 40.2, 27.1. FT-IR (KBr, cm⁻¹): 3554, 3478, 3416, 1639, 1619, 1385, 1365, 1258, 1156, 1085, 994, 669, 618, 476. HRMS-ESI (m/z): (M + H)⁺ calcd. for C₁4H₁₈NO, 216.1388; found 216.1380.

(*3E*,*5E*)-6-(4-Nitrophenyl)hexa-3,5-dien-2-one (1n):¹⁶ Recrystallized from DCM/ PE. Brown solid: 1.70 g, 78% yield; mp: 115.6–116.3 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.25–8.22 (m, 2H), 7.64–7.60 (m, 2H), 7.32–7.26 (m, 1H), 7.05–6.97 (m, 2H), 6.36 (d, *J* = 16.0 Hz, 1H), 2.35 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.1, 147.6, 142.1, 141.7, 138.0, 132.6, 130.8, 127.6, 124.2, 27.7.

(*E*)-6-Phenylhex-3-en-5-yn-2-one (10):²¹ Synthesized according to the literature.²¹ Petroleum ether/ Ethyl acetate = 20:1 as the eluent. Yellow solid: 0.63 g, 37% yield; mp: 40.1–42.3 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.50–7.48 (m, 2H), 7.40–7.34 (m, 3H), 6.84 (d, *J* = 16.0 Hz, 1H), 6.57 (d, *J* = 16.0 Hz, 1H), 2.31 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 197.0, 137.7, 131.9, 129.4, 128.5, 123.8, 122.1, 99.6, 86.7, 27.6.

(3*E*,5*E*)-hepta-3,5-dien-2-one (1q): ¹⁷ Petroleum ether/ Ethyl acetate = 50:1 as the eluent. Pale yellow oil: 0.53 g, 48% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.13–7.07 (m, 1H), 6.24–6.17 (m, 2H), 6.05 (d, *J* = 15.0 Hz, 1H), 2.26 (s, 3H), 1.88 (d, *J* = 5.0 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.7, 143.7,

140.2, 130.1, 128.5, 27.0, 18.7.

(3*E*,5*E*)-6-(Furan-2-yl)hexa-3,5-dien-2-one (1r):^{14a} Petroleum ether/ Ethyl acetate = 10/1 as the eluent. Red solid: 1.18g, 73% yield; mp: 34.2–35.8°C; ¹H NMR (500 MHz, CDCl₃): δ 7.45 (d, *J* = 1.5 Hz, 1H), 7.22 (dd, *J* = 15.0, 10.5 Hz, 1H), 6.81–6.70 (m, 2H), 6.48–6.44 (m, 2H), 6.24 (d, *J* = 15.5 Hz, 1H), 2.30 (s, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.2, 152.1, 143.8, 142.9, 130.2, 127.6, 124.9, 112.2, 112.1, 27.4.

(*3E*,5*E*)-6-(3-(4-Fluorophenyl)-1-isopropyl-1H-indol-2-yl)hexa-3,5-dien-2-one (1s): Petroleum ether/ Ethyl acetate = 10/1 as the eluent. Yellow solid: 1.18g, 37% yield; mp: 104.3–105.7 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.56–7.50 (m, 2H), 7.41–7.37 (m, 2H), 7.25–7.19 (m, 2H), 7.17–7.12 (m, 2H), 7.11–7.07 (m, 1H), 7.03 (d, J = 15.5 Hz, 1H), 6.38 (dd, J = 16.0, 11.5 Hz, 1H), 6.06 (d, J = 15.5 Hz, 1H), 4.94–4.86 (m, 1H), 2.27 (s, 3H), 1.70 (d, J = 7.0 Hz, 6H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 198.1, 161.7 (d, J = 246.5 Hz), 143.0, 136.2, 132.4, 131.8 (d, J = 7.9 Hz), 130.8 (d, J = 3.3 Hz), 130.7, 130.1, 129.8, 128.4, 123.1, 120.1, 120.0, 118.2, 115.6 (d, J = 21.4 Hz), 111.9, 47.9, 27.7, 21.8. ¹⁹F NMR (471 MHz, CDCl₃): δ -115.6. FT-IR (KBr, cm⁻¹): 3555, 3479, 3417, 1663, 1639, 1609, 1525, 1358, 1343, 1225, 1156, 1142, 999, 749, 669, 618, 566, 476. HRMS-ESI (m/z): (M + H)⁺ calcd. for C₂₃H₂₃FNO, 348.1764; found 348.1766.

(2*E*,4*E*)-1,5-Diphenylpenta-2,4-dien-1-one (1t):²² Recrystallized from EtOH. Yellow solid: 1.61 g, 69% yield; mp: 93.8–94.8 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.99–7.97 (m, 2H), 7.63–7.56 (m, 2H), 7.52–7.48 (m, 4H), 7.39–7.31 (m, 3H), 7.10 (d, *J* = 15.0 Hz, 1H), 7.07–7.00 (m, 2H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 190.4, 144.8, 141.9, 138.2, 136.1, 132.6, 129.2, 128.8, 128.5, 128.3, 127.3, 126.9, 125.4. (2*E*,4*E*)-1-(2-Chlorophenyl)-5-phenylpenta-2,4-dien-1-one (1u):²³ Recrystallized from DCM/ PE. Yellow solid: 1.32 g, 49% yield; mp: 66.6–68.3 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.48–7.31 (m, 9H), 7.22 (dd, *J* = 15.5, 9.5 Hz, 1H), 7.01–6.92 (m, 2H), 6.67 (d, *J* = 15.5 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 193.9, 146.4, 142.5, 139.2, 135.9, 131.19, 131.18, 130.2, 129.6, 129.4, 129.2, 128.9, 127.4, 126.8, 126.6.

Typical Procedure for the Asymmetric Hydrogenation.

To a 25 mL Schlenk tube were placed (*R*)-Xylyl-SunPhos (17.2 mg, 22 μ mol) and[RuCl₂(benzene)]₂ (5.0 mg, 10 μ mol), the tube was evacuated and purged with nitrogen three times before addition of freshly distilled and freeze-thaw degassed DMF (2 mL). The resulting mixture was heated at 100 °C for 10 min before it was cooled to room temperature, and then (*R*)-Daipen (7.5 mg, 24 μ mol) in DMF (1 mL) was added. The tube was heated to 40 °C for 4 h before the solvent was removed to give a brownish yellow solid. The catalyst was dissolved in freeze-thaw degassed ^{*i*}PrOH (8 mL), and then the solution was equally charged into eight vials which contained 0.25 mmol of substrates, K₂CO₃ (3.5 mg, 0.025 mmol). Then the vials were transferred into a 300 mL autoclave. The autoclave was purged three times with H₂, and the required pressure of H₂ was set under specified reaction conditions. After cooling to ambient temperature and hydrogen was released carefully, the autoclaves were opened and the solvent was evaporated. The residue was filtered through a short pad of silica gel column, and the enantiomeric excess was directly determined by HPLC. The crude product was further purified by flash column chromatography on silica gel to provide the pure compound.

(*S*,3*E*,5*E*)-6-Phenylhexa-3,5-dien-2-ol (2a):^{14a} White solid: 43.1 mg, 99% yield; mp: 70.5–71.8 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.37 (m, 2H), 7.32–7.29 (m, 2H), 7.23–7.20 (m, 1H), 6.75 (dd, *J* = 16.0, 10.5 Hz, 1H), 6.54 (d, *J* = 15.5 Hz, 1H), 6.37 (dd, *J* = 15.5, 10.5 Hz, 1H), 5.86 (dd, *J* = 15.5, 6.5 Hz, 1H), 4.43–4.38 (m, 1H), 1.32 (d, *J* = 6.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 137.6, 137.1, 132.6, 129.8, 128.6, 128.2, 127.5, 126.3, 68.5, 23.3. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 95/5, 1.0 mL/min, 254 nm): t₁ = 10.7 min, t₂ = 11.6 min. $[\alpha]_D^{25} = -16.5$ (*c* = 0.46 in CHCl₃) for (*S*)-enantiomer with 95.6% ee. (Lit.^{10d} $[\alpha]_D^{24} = +17.73$ (*c*=2.82 in CHCl₃) for (*R*)-enantiomer with 90% ee.)

(*S*,5*E*,7*E*)-8-Phenylocta-5,7-dien-4-ol (2b):²⁴ White solid: 49.5 mg, 98% yield; mp: 44.9–46.0 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.38–7.37 (m, 2H), 7.31–7.28 (m, 2H), 7.23–7.19 (m, 1H), 6.75 (dd, *J* = 15.5, 10.5 Hz, 1H), 6.53 (d, *J* = 15.5 Hz, 1H), 6.36 (dd, *J* = 15.5, 10.5 Hz, 1H), 5.81 (dd, *J* = 15.5, 7.0 Hz, 1H), 4.22–4.17 (m, 1H), 1.62–1.36 (m, 4H), 0.94 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 137.1, 136.8, 132.5, 130.5, 128.5, 128.3, 127.5, 126.3, 72.4, 39.4, 18.6, 14.0. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 90/10, 0.6 mL/min, 254 nm): t₁ = 11.4 min, t₂ = 12.5 min. [α]²⁵_D = – 1.7 (*c* = 0.23 in CHCl₃) for (*S*)-enantiomer with 94.9% ee.

(*S*,4*E*,6*E*)-2-Methyl-7-phenylhepta-4,6-dien-3-ol (2c):^{14c} Pale yellow oil: 49.6 mg, 98% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.37 (m, 2H), 7.31–7.28 (m, 2H), 7.23–7.20 (m, 1H), 6.77 (dd, *J* = 15.5, 10.5 Hz, 1H), 6.53 (d, *J* = 16.0 Hz, 1H), 6.37 (dd, *J* = 15.0, 10.5 Hz, 1H), 5.82 (dd, *J* = 15.0, 7.0 Hz, 1H), 3.95–3.93 (t, *J* = 6.5 Hz, 1H), 1.81–1.73 (m, 1H), 0.96 (d, *J* = 7.0 Hz, 3H), 0.92 (d, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 137.1, 135.0, 132.4, 131.5, 128.5, 128.3, 127.5, 126.3, 77.7, 34.0, 18.2, 18.0. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 90/10, 0.6 mL/min, 280 nm): t₁ = 11.9 min, t₂ = 12.5 min. [α]_D²⁵ = + 5.2 (*c* = 0.58 in CHCl₃) for (*S*)-enantiomer with 37.5% ee. (Lit.^{14c} [α]_D²⁰ = + 0.9 (*c*= 1.89 in CHCl₃) for (*S*)-enantiomer with 39.6% ee.)

(*E*)-2-((*E*)-3-Phenylallylidene)cyclobutan-1-ol (2d): White solid: 45.0 mg, 97% yield; mp: 99.4– 101.5 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.39–7.38 (m, 2H), 7.31–7.28 (m, 2H), 7.22–7.19 (m, 1H), 6.73 (dd, *J* = 16.0, 11.0 Hz, 1H), 6.50 (d, *J* = 15.5 Hz, 1H), 6.25–6.21 (m, 1H), 4.80–4.76 (m, 1H), 2.74– 2.66 (m, 1H), 2.45–2.37 (m, 2H), 2.15 (brs, 1H), 1.91–1.82 (m, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 149.5, 137.5, 131.3, 128.5, 127.3, 126.2, 124.4, 120.2, 71.7, 30.3, 22.5. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 90/10, 0.6 mL/min, 254 nm): t₁ = 11.4 min, t₂ = 13.3 min. [α]²⁵ = – 30.8 (*c* = 0.35 in CHCl₃) for (*S*)-enantiomer with 98.8% ee. FT-IR (KBr, cm⁻¹): 3554, 3478, 3417, 1639, 1619, 967, 669, 618, 477. HRMS-ESI (m/z): (M + H – H₂O)⁺ calcd. for C₁₃H₁₃, 169.1017; found 169.1010.

(*S*,*3E*,*5E*)-5-Methyl-6-phenylhexa-3,5-dien-2-ol (2e): Colorless oil: 45.6 mg, 97% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.35–7.32 (m, 2H), 7.29–7.27 (m, 2H), 7.24–7.20 (m, 1H), 6.52 (s, 1H), 6.40 (d, *J* = 15.5 Hz, 1H), 5.82 (dd, *J* = 16.0, 7.0 Hz, 1H), 4.47–4.41 (m, 1H), 1.99 (d, *J* = 1.0 Hz, 3H), 1.34 (d, *J* = 6.0 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 137.7, 135.0, 134.8, 132.8, 131.6, 129.1, 128.1, 126.6, 69.0, 23.5, 13.9. HPLC (Chiralcel OJ-H column, hexane/*i*-PrOH = 90/10, 0.9 mL/min, 280 nm): t₁ = 9.3 min, t₂ = 10.9 min. [α]_D²⁵ = – 9.7 (*c* = 0.39 in CHCl₃) for (*S*)-enantiomer with 92.4% ee. FT-IR (KBr, cm⁻¹): 3400, 3081, 3023, 2972, 2923, 1638, 1598, 1491, 1445, 1385, 1367, 1303, 1145, 1058, 1013, 965, 947, 917, 861, 847, 824, 748, 699, 509. HRMS-ESI (m/z): (M + H – H₂O)⁺ calcd. for C₁₃H₁₅, 171.1174; found 171.1167.

(S,3E,5Z)-5-Bromo-6-phenylhexa-3,5-dien-2-ol (2f): Yellow oil: 59.2 mg, 94% yield; ¹H NMR (500

MHz, CDCl₃): δ 7.67–7.65 (m, 2H), 7.38–7.34 (m, 2H), 7.32–7.28 (m, 1H), 6.96 (s, 1H), 6.43 (d, J = 15.0 Hz, 1H), 6.27 (dd, J = 14.5, 5.5 Hz, 1H), 4.55–4.49 (m, 1H), 1.36 (d, J = 6.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 138.9, 135.6, 131.9, 129.8, 129.4, 128.2, 128.1, 122.6, 67.9, 23.5. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 90/10, 0.6 mL/min, 280 nm): t₁ = 12.0 min, t₂ = 12.9 min. [α]_D²⁵ = + 1.0 (c = 0.39 in CHCl₃) for (S)-enantiomer with 91.1% ee. FT-IR (KBr, cm⁻¹): 3434, 2920, 2849, 1645, 1446, 1384, 1265, 1066, 954, 751, 696. HRMS-ESI (m/z): (M + H – H₂O)⁺ calcd. for C₁₂H₁₂Br, 235.0122; found 235.0123.

(*S*,3*E*,5*E*)-6-(3-(Trifluoromethyl)phenyl)hexa-3,5-dien-2-ol (2g): Yellow oil: 60.2 mg, 99% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.61 (s, 1H), 7.54 (d, *J* = 7.5 Hz, 1H), 7.47–7.40 (m, 2H), 6.81 (dd, *J* = 16.0, 10.5 Hz, 1H), 6.55 (d, *J* = 16.0 Hz, 1H), 6.39 (dd, *J* = 15.5, 10.5 Hz, 1H), 5.93 (dd, *J* = 15.5, 6.5 Hz, 1H), 4.46–4.41 (m, 1H), 1.34 (d, *J* = 6.0 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 139.1, 137.9, 131.0 (q, *J* = 31.9 Hz), 130.9, 130.0, 129.3 (d, *J* = 0.9 Hz), 129.1, 129.0, 124.1 (q, *J* = 270.8 Hz), 123.9 (q, *J* = 3.6 Hz), 122.9 (q, *J* = 3.8 Hz), 68.4, 23.3. ¹⁹F NMR (471 MHz, CDCl₃): δ -62.8. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 99/1, 0.9 mL/min, 280 nm): t₁ = 17.8 min, t₂ = 18.7 min. [α]₂₅²⁵ = + 12.6 (*c* = 0.35 in CHCl₃) for (*S*)-enantiomer with 90.4% ee. FT-IR (KBr, cm⁻¹): 3400, 2974, 2929, 1620, 1448, 1384, 1331, 1204, 1165, 1125, 1096, 1072, 987, 946, 906, 791, 696, 663. HRMS-ESI (m/z): (M + H – H₂O)⁺ calcd. for C₁₃H₁₂F₃, 225.0891; found 225.0883.

(*S*,3*E*,5*E*)-6-(o-Tolyl)hexa-3,5-dien-2-ol (2h): Yellow oil: 45.3 mg, 96% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.48–7.46 (m, 1H), 7.18–7.13 (m, 3H), 6.77 (d, *J* = 15.5 Hz, 1H), 6.66 (dd, *J* = 15.5, 10.5 Hz, 1H), 6.41 (dd, *J* = 15.0, 10.0 Hz, 1H), 5.86 (dd, *J* = 15.0, 6.0 Hz, 1H), 4.44–4.39 (m, 1H), 2.34 (s, 3H), 1.33 (d, *J* = 6.5 Hz, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 137.4, 136.0, 135.5, 130.4, 130.3, 130.1, 129.3, 127.4, 126.1, 125.1, 68.5, 23.3, 19.8. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 99/1, 0.6 mL/min, 280 nm): t₁ = 39.4 min, t₂ = 41.7 min. $[\alpha]_D^{25} = -11.5$ (*c* = 0.33 in CHCl₃) for (*S*)-enantiomer with 94.0% ee. FT-IR (KBr, cm⁻¹): 3411, 3023, 2972, 2927, 1644, 1615, 1600, 1485, 1462, 1383, 1294, 1135, 1099, 1057, 989, 945, 866, 748, 715. HRMS-ESI (m/z): (M + H – H₂O)⁺ calcd. for C₁₃H₁₅, 171.1174; found 171.1167.

(*S*,3*E*,5*E*)-6-(4-Chlorophenyl)hexa-3,5-dien-2-ol (2i):²⁵ White solid: 50.1 mg, 96% yield; mp: 84.5– 85.7 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.32–7.26 (m, 4H), 6.72 (dd, *J* = 16.0, 10.5 Hz, 1H), 6.49 (d, *J* = 16.0 Hz, 1H), 6.36 (dd, *J* = 15.0, 10.5 Hz, 1H), 5.88 (dd, *J* = 15.5, 6.5 Hz, 1H), 4.45–4.40 (m, 1H), 1.33 (d, *J* = 6.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 138.2, 135.6, 133.1, 131.3, 129.4, 128.81, 128.76, 127.5, 68.5, 23.3. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 95/5, 0.9 mL/min, 280 nm): t₁ = 14.1 min, t₂ = 15.8 min. [α]_D²⁵ = + 0.6 (*c* = 0.36 in CHCl₃) for (*S*)-enantiomer with 93.0% ee.

(*S*,3*E*,5*E*)-6-(4-Bromophenyl)hexa-3,5-dien-2-ol (2j): White solid: 62.0 mg, 98% yield; mp: 90.1-91.0 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.44–7.41 (m, 2H), 7.26–7.23 (m, 2H), 6.73 (dd, *J* = 15.5, 10.5 Hz, 1H), 6.47 (d, *J* = 15.5 Hz, 1H), 6.35 (dd, *J* = 15.0, 10.5 Hz, 1H), 5.88 (dd, *J* = 15.0, 6.0 Hz, 1H), 4.44–4.39 (m, 1H), 1.32 (d, *J* = 6.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 138.4, 136.1, 131.7, 131.3, 129.4, 128.9, 127.8, 121.2, 68.4, 23.3. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 90/10, 0.6 mL/min, 280 nm): t₁ = 13.9 min, t₂ = 15.2 min. [α]²⁵_D = – 15.8 (*c* = 0.43 in CHCl₃) for (*S*)-enantiomer with 94.4% ee. FT-IR (KBr, cm⁻¹): 3555, 3478, 3417, 1639, 1619, 994, 669, 618, 480. HRMS-ESI (m/z): (M + H – H₂O)⁺ calcd. for C₁₂H₁₂Br, 235.0122; found 235.0114. (*S*,3*E*,5*E*)-6-(4-Fluorophenyl)hexa-3,5-dien-2-ol (2k):^{14a} Pale yellow solid: 46.7 mg, 97% yield; mp: 96.2–97.1 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.35–7.31 (m, 2H), 7.01–6.97 (m, 2H), 6.65 (dd, *J* = 16.0, 10.5 Hz, 1H), 6.49 (d, *J* = 15.5 Hz, 1H), 6.34 (dd, *J* = 15.5, 10.5 Hz, 1H), 5.85 (dd, *J* = 15.5, 6.5 Hz, 1H), 4.43–4.38 (m, 1H), 1.32 (d, *J* = 6.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 162.2 (d, *J* = 245.6 H), 137.7 (d, *J* = 0.8 Hz), 133.3 (d, *J* = 3.3 Hz), 131.3, 129.5, 128.0 (d, *J* = 2.4 Hz), 127.8 (d, *J* = 7.8 Hz), 115.5 (d, *J* = 21.5 Hz), 68.4, 23.3. ¹⁹F NMR (471 MHz, CDCl₃): δ -114.2. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 95/5, 0.9 mL/min, 280 nm): t₁ = 13.4 min, t₂ = 14.9 min. $[\alpha]_{D}^{25} = -18.0$ (*c* = 0.40 in CHCl₃) for (*S*)-enantiomer with 95.5% ee.

(*S*,3*E*,5*E*)-6-(4-Methoxyphenyl)hexa-3,5-dien-2-ol (21):^{14a} Pale yellow solid: 50.2 mg, 98% yield; mp: 122.2–124.8 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.33–7.30 (m, 2H), 6.86–6.83 (m, 2H), 6.62 (dd, J = 15.5, 10.5 Hz, 1H), 6.49 (d, J = 15.5 Hz, 1H), 6.34 (dd, J = 15.5, 10.5 Hz, 1H), 5.80 (dd, J = 15.0, 6.5 Hz, 1H), 4.42–4.37 (m, 1H), 3.80 (s, 3H), 1.31 (d, J = 6.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 159.2, 136.5, 132.2, 130.0, 129.9, 127.5, 126.2, 114.0, 68.6, 55.2, 23.3. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 90/10, 0.6 mL/min, 280 nm): t₁ = 16.6 min, t₂ = 18.2 min. [α]_D²⁵ = – 26.2 (c = 0.29 in CHCl₃) for (*S*)-enantiomer with 95.3% ee.

(*S*,3*E*,5*E*)-6-(4-(Dimethylamino)phenyl)hexa-3,5-dien-2-ol (2m): Red solid: 52.7mg, 97% yield; mp: 67.2–70.1 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.29–7.27 (m, 2H), 6.67–6.65 (m, 2H), 6.57 (dd, *J* = 15.5, 10.5 Hz, 1H), 6.47 (d, *J* = 15.5 Hz, 1H), 6.33 (dd, *J* = 15.5, 10.5 Hz, 1H), 5.75 (dd, *J* = 15.0, 6.5 Hz, 1H), 4.40–4.35 (m, 1H), 2.95 (s, 6H), 1.30 (d, *J* = 6.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 150.0, 135.1, 133.0, 130.6, 127.4, 125.6, 124.1, 112.4, 68.8, 40.4, 23.3. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 90/10, 0.6 mL/min, 290 nm): t₁ = 16.6 min, t₂ = 19.5 min. [α]²⁵ = – 30.7 (*c* = 0.52 in CHCl₃) for (*S*)-enantiomer with 94.0% ee. FT-IR (KBr, cm⁻¹): 3434, 2969, 2873, 1610, 1522, 1442, 1384, 1357, 1228, 1190, 1156, 1128, 1060, 984, 941, 870, 825, 798, 669, 527. HRMS-ESI (m/z): (M + H – H₂O)⁺ calcd. for C₁₄H₁₈N, 200.1439; found 200.1433.

(*S*,*SE*,*SE*)-6-(4-Nitrophenyl)hexa-3,5-dien-2-ol (2n): Yellow solid: 31.8 mg, 58% yield; mp: 58.9– 61.5 °C; ¹H NMR (500 MHz, CDCl₃): δ 8.19–8.16 (m, 2H), 7.52–7.49 (m, 2H), 6.91 (dd, *J* = 15.5, 10.5 Hz, 1H), 6.59 (d, *J* = 15.5 Hz, 1H), 6.42 (dd, *J* = 15.5, 10.5 Hz, 1H), 6.02 (dd, *J* = 15.5, 6.0 Hz, 1H), 4.48–4.45 (m, 1H), 1.35 (d, *J* = 6.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 146.7, 143.7, 141.0, 132.8, 130.0, 128.7, 126.7, 124.1, 68.3, 23.3. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 90/10, 0.6 mL/min, 254 nm): t₁ = 31.6 min, t₂ = 35.7 min. $[\alpha]_D^{25} = + 22.2$ (*c* = 0.45 in CHCl₃) for (*S*)-enantiomer with 93.3% ee. FT-IR (KBr, cm⁻¹): 3400, 2972, 2925, 1616, 1592, 1513, 1341, 1181, 1109, 1057, 990, 853, 825, 747, 691. HRMS-ESI (m/z): (M + H – H₂O)⁺ calcd. for C₁₂H₁₂NO₂, 202.0868; found 202.0860. (*S*,*E*)-6-Phenylhex-3-en-5-yn-2-ol (2o):²⁵ Colorless oil: 41.3 mg, 96% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.44–7.41 (m, 2H), 7.32–7.29 (m, 3H), 6.27 (dd, *J* = 16.0, 5.5 Hz, 1H), 5.92 (dd, *J* = 15.5, 1.5 Hz, 1H), 4.44–4.39(m, 1H), 1.33 (d, *J* = 6.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 146.6, 131.5, 128.3, 128.2, 123.2, 109.2, 90.1, 87.2, 68.3, 23.0. HPLC (Chiralcel OJ-H column, hexane/*i*-PrOH = 95/5, 0.9 mL/min, 280 nm): t₁ = 31.5 min, t₂ = 33.1 min. $[\alpha]_D^{25} = + 3.5$ (*c* = 0.34 in CHCl₃) for (*S*)-enantiomer with 90.3% ee.

(*S,E*)-6-Methylhepta-3,5-dien-2-ol (2p): Colorless oil: 31.1 mg, 99% yield; ¹H NMR (500 MHz, CDCl₃): δ 6.41 (dd, J = 15.0, 11.0 Hz, 1H), 5.81 (d, J = 11.5 Hz, 1H), 5.60 (dd, J = 15.0, 7.0 Hz, 1H),

4.39–4.34 (m, 1H), 1.78 (s, 3H), 1.76 (s, 3H), 1.29 (d, J = 6.5 Hz, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 136.1, 134.2, 126.3, 124.2, 68.9, 26.0, 23.4, 18.3. HPLC (Chiralcel AS-H column, hexane/*i*-PrOH = 99/1, 0.9 mL/min, 254 nm): t₁ = 7.7 min, t₂ = 8.2 min. $[\alpha]_D^{25} = + 6.8$ (c = 1.53 in CHCl₃) for (S)enantiomer with 90.7% ee. FT-IR (KBr, cm⁻¹): 3548, 3475, 3417, 2978, 2934, 1637, 1619, 1457, 1385, 1260, 1147, 1084, 618, 476. HRMS-ESI (m/z): (M + H – H₂O)⁺ calcd. for C₈H₁₃, 109.1017; found 109.1011.

(**S**,3*E*,5*E*)-hepta-3,5-dien-2-ol (2q): ^{14a} Colorless oil: 27.2 mg, 97% yield; ¹H NMR (500 MHz, CDCl₃): δ 6.16 (dd, *J* = 15.5, 10.5 Hz, 1H), 6.06–6.00 (m, 1H), 5.74–5.67 (m, 1H), 5.60 (dd, *J* = 15.0, 6.5 Hz, 1H), 4.31–4.29 (m, 1H), 1.83 (s, 1H), 1.75 (dd, *J* = 6.5, 1.0 Hz, 1H), 1.27 (d, *J* = 6.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 134.4, 130.7, 129.85, 129.81, 68.5, 23.3, 18.0. HPLC (Chiralcel OD-H column, hexane/*i*-PrOH = 99/1, 0.6 mL/min, 210 nm): t₁ = 8.2 min, t₂ = 8.8 min. [α]_D²⁴ = + 1.6 (*c* = 0.50 in CHCl₃) for (*S*)-enantiomer with 93.3% ee.

(*S*,3*E*,5*E*)-6-(Furan-2-yl)hexa-3,5-dien-2-ol (2r):^{14a} Yellow oil: 38.9 mg, 95% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.35 (d, *J* = 1.5 Hz, 1H), 6.66 (dd, *J* = 15.5, 11.0 Hz, 1H), 6.38–6.25 (m, 4H), 5.84 (dd, *J* = 15.5, 6.5 Hz, 1H), 4.41–4.36 (m, 1H), 2.11 (brs, 1H), 1.30 (d, *J* = 6.5 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 152.9, 142.1, 137.8, 129.2, 126.8, 120.1, 111.5, 108.3, 68.4, 23.2. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 95/5, 0.6 mL/min, 280 nm): t₁ = 17.2 min, t₂ = 18.8 min. [α]²⁵_D = -15.2 (*c* = 0.58 in CHCl₃) for (*S*)-enantiomer with 95.4% ee.

(*S*,3*E*,5*E*)-6-(3-(4-Fluorophenyl)-1-isopropyl-1H-indol-2-yl)hexa-3,5-dien-2-ol (2s): Yellow solid: 85.4 mg, 98% yield; mp: 43.8–45.7 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.55–7.52 (m, 2H), 7.43–7.39 (m, 2H), 7.21–7.17 (m, 1H), 7.14–7.06 (m, 3H), 6.58 (d, *J* = 15.5 Hz, 1H), 6.36–6.23 (m, 2H), 5.68 (dd, *J* = 15.0, 6.5 Hz, 1H), 4.92–4.84 (m, 1H), 4.41–4.37 (m, 1H), 1.67 (d, *J* = 7.0 Hz, 6H), 1.54 (d, *J* = 3.5 Hz, 1H), 1.30 (d, *J* = 6.5 Hz, 3H). ¹³C {¹H} NMR (125 MHz, CDCl₃): δ 161.4 (d, *J* = 243.3 Hz), 138.1, 135.5, 134.0, 133.7, 131.7 (d, *J* = 7.8 Hz), 131.4 (d, *J* = 3.3 Hz), 129.5, 128.4, 121.9, 121.5, 119.7, 119.4, 115.3 (d, *J* = 21.1 Hz), 115.2, 111.7, 68.3, 47.6, 23.4, 21.6. ¹⁹F NMR (471 MHz, CDCl₃): δ -116.6. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 95/5, 0.9 mL/min, 280 nm): t₁ = 9.0 min, t₂ = 9.8 min. $[\alpha]_{p}^{25}$ = -0.2 (c = 0.99 in CHCl₃) for (*S*)-enantiomer with 91.1% ee. FT-IR (KBr, cm⁻¹): 3551, 3478, 3417, 1640, 1619, 1385, 1222, 1157, 669, 650, 618. HRMS-ESI (m/z): (M + H)⁺ calcd. for C₂₃H₂₅FNO, 350.1920; found 350.1924.

(2*E*,4*E*)-1,5-Diphenylpenta-2,4-dien-1-ol (2t):²⁶ White oil: 57.8 mg, 98% yield; ¹H NMR (500 MHz, CDCl₃): δ 7.40–7.34 (m, 6H), 7.31–7.27 (m, 3H), 7.23–7.20 (m, 1H), 6.76 (dd, *J* = 15.5, 10.5 Hz, 1H), 6.56 (d, *J* = 15.5 Hz, 1H), 6.45 (dd, *J* = 15.0, 10.5 Hz, 1H), 5.98 (dd, *J* = 15.0, 6.5 Hz, 1H), 5.29 (d, *J* = 6.5 Hz, 1H), 2.13 (brs, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 142.7, 137.0, 135.5, 133.2, 130.9, 128.6, 128.0, 127.7, 127.6, 126.4, 126.3, 74.8. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 90/10, 0.6 mL/min, 254 nm): t₁ = 16.5 min, t₂ = 18.7 min. [α]_D²⁵ = – 13.7 (*c* = 0.48 in CHCl₃) with 67.5% ee.

(2*E*,4*E*)-1-(2-Chlorophenyl)-5-phenyl-113-penta-2,4-dien-1-ol (2u): Yellow solid: 64.9 mg, 96% yield; mp: 78.4–79.9 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.60–7.58 (m, 1H), 7.38–7.35 (m, 3H), 7.32–7.28 (m, 3H), 7.24–7.20 (m, 2H), 6.77 (dd, *J* = 15.5, 10.5 Hz, 1H), 6.58 (d, *J* = 15.5 Hz, 1H), 6.51 (dd, *J* = 15.5, 10.5 Hz, 1H), 5.96 (dd, *J* = 15.5, 6.5 Hz, 1H), 5.75–5.73 (m, 1H), 2.16 (d, *J* = 4.0 Hz, 1H). ¹³C{¹H} NMR (125 MHz, CDCl₃): δ 140.1, 137.0, 133.5, 133.4, 132.2, 131.4, 129.5, 128.7, 128.6, 128.0, 127.63, 127.57,

127.2, 126.4, 71.1. HPLC (Chiralcel IA-3 column, hexane/*i*-PrOH = 98/2, 0.9 mL/min, 280 nm): $t_1 = 42.2 \text{ min}$, $t_2 = 45.7 \text{ min}$. $[\alpha]_D^{25} = +75.6$ (c = 0.46 in CHCl₃) with 92.2% ee. FT-IR (KBr, cm⁻¹): 3369, 3024, 1469, 1449, 1436, 1390, 1328, 1276, 1208, 1191, 1122, 1074, 1042, 1023, 993, 947, 785, 754, 738, 693, 660. HRMS-ESI (m/z): (M + H – H₂O)⁺ calcd. for C₁₇H₁₄Cl, 253.0779; found 253.0788.

Typical Procedure for the Gram-Scale Asymmetric Hydrogenation.

Under a nitrogen atmosphere, the substrate **1a** (1.29 g, 7.5 mmol), the *trans*-{RuCl₂[(*R*)-DAIPEN][(*R*)-Xylyl-SunPhos]} catalyst (9.5 mg, 7.5 µmol), K₂CO₃ (210 mg, 1.5 mmol) was dissolved in freeze-thaw degassed *i*-PrOH (8 mL) in a 30 mL vial, Then the container was transferred into a 125 mL autoclave. The autoclave was purged three times with H₂, and the specified reaction conditions (30 bar H₂, 30 °C, 48 h) was set. After careful release of hydrogen, the autoclaves were opened and the solvent was evaporated. The residue was purified by flash column chromatography (PE/EA=10/1 as the eluent) to provide chiral product **2a** as white solid (1.28 g, 98% yield, 95.2% ee).

SUPPORTING INFORMATION

The Supporting Information is available free of charge on the ACS Publications website.

NMR spectra for compounds 1-2 (PDF)

HPLC data for racemic and chiral compounds 2 (PDF)

ACKNOWLEDGMENT

We thank the National Natural Science Foundation of China for the financial support.

REFERENCES

[1] For selected reviews: (a) Noyori, R.; Takaya, H. BINAP: an efficient chiral element for asymmetric catalysis. Acc. Chem. Res. 1990, 23, 345-350; (b) Noyori, R.; Ohkuma, T. Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones. Angew. Chem. Int. Ed. 2001, 40, 40-73; (c) Tang, W.; Zhang, X. New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chem. Rev. 2003, 103, 3029-3070; (d) Wu, J.; Chan, A. S. C. P-Phos: A Family of Versatile and Effective Atropisomeric Dipyridylphosphine Ligands in Asymmetric Catalysis. Acc. Chem. Res. 2006, 39, 711-720; (e) Zhang, W.; Chi, Y.; Zhang, X. Developing Chiral Ligands for Asymmetric Hydrogenation. Acc. Chem. Res. 2007, 40, 1278-1290; (f) Xie, J.-H.; Zhou, Q.-L. Chiral Diphosphine and Monodentate Phosphorus Ligands on a Spiro Scaffold for Transition-Metal-Catalyzed Asymmetric Reactions. Acc. Chem. Res. 2008, 41, 581-593; (g) Ager, D. J.; de Vries, A. H. M.; de Vries, J. G. Asymmetric homogeneous hydrogenations at scale. Chem. Soc. Rev. 2012, 41, 3340-3380; (h) Li, Y.-Y.; Yu, S.-L.; Shen, W.-Y.; Gao, J.-X. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones. Acc. Chem. Res. 2015, 48, 2587-2598; (i) Morris, R. H. Exploiting Metal-Ligand Bifunctional Reactions in the Design of Iron Asymmetric Hydrogenation Catalysts. Acc. Chem. Res. 2015, 48, 1494-1502; (j) Li, W.; Lu, B.; Zhang, Z. A Decennary Journey towards the Efficient Asymmetric Hydrogenation of Highly Functionalized Ketones. Chem. Rec. 2016, 16, 2506-2520; (k) Ohkuma, T.; Arai, N. Advancement in Catalytic Asymmetric Hydrogenation of Ketones and Imines, and Development of Asymmetric Isomerization of Allylic Alcohols. Chem. Rec. 2016, 16, 2801-2819; (1) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Asymmetric Transfer and Pressure Hydrogenation with Earth-Abundant Transition Metal Catalysts. Chin. J. Chem . 2018, 36, 443-454.

[2] Spogliarich, R.; Vidotto, S.; Farnetti, E.; Graziani, M.; Gulati, N. V. Highly selective catalytic hydrogenation of cyclic enones. *Tetrahedron: Asymmetry* **1992**, *3*, 1001-1002.

[3] Mashima, K.; Akutagawa, T.; Zhang, X.; Takaya, H.; Taketomi, T.; Kumobayashi, H.; Akutagawa, S. Chemoselective asymmetric hydrogenation of α,β-unsaturated carbonyl compounds to allylic alcohols catalysed by [Ir(binap)(cod)]BF₄-aminophosphine. *J. Organomet. Chem.* **1992**, *428*, 213-222.

[4] (a) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. Practical Enantioselective Hydrogenation of Aromatic Ketones. J. Am. Chem. Soc. 1995, 117, 2675-2676; (b) Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. Preferential hydrogenation of aldehydes and ketones. J. Am. Chem. Soc. 1995, 117, 10417-10418; (c) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa, M.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. trans-[RuCl2(phosphane)2(1,2-diamine)] and Chiral trans-[RuCl2(diphosphane)(1,2-diamine)]: Shelf-Stable Precatalysts for the Rapid, Productive, and Stereoselective Hydrogenation of Ketones. Angew. Chem. Int. Ed. 1998, 37, 1703-1707; (d) Ohkuma, T.; Koizumi, M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.; Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R. Asymmetric Hydrogenation of Alkenyl, Cyclopropyl, and Aryl Ketones. RuCl₂(xylbinap)(1,2-diamine) as a Precatalyst Exhibiting a Wide Scope. J. Am. Chem. Soc. 1998, 120, 13529-13530; (e) Ohkuma, T.; Koizumi, M.; Muñiz, K.; Hilt, G.; Kabuto, C.; Noyori, R. trans-RuH(n¹-BH₄)(binap)(1,2-diamine): a catalyst for asymmetric hydrogenation of simple ketones under base-free conditions[J]. J. Am. Chem. Soc. 2002, 124, 6508-6509; (f) Arai, N.; Azuma, K.; Nii, N.; Ohkuma, T. Highly Enantioselective Hydrogenation of Aryl Vinyl Ketones to Allylic Alcohols Catalyzed by the Tol-Binap/Dmapen Ruthenium(II) Complex. Angew. Chem. Int. Ed. 2008, 47, 7457-7460; (g) Arai, N.; Suzuki, K.; Sugizaki, S.; Sorimachi, H.; Ohkuma, T. Asymmetric Hydrogenation of Aromatic, Aliphatic, and a, β-Unsaturated Acyl Silanes Catalyzed by Tol-binap/Pica Ruthenium(II) Complexes: Practical Synthesis of Optically Active α-Hydroxysilanes. Angew. Chem. Int. Ed. 2008, 47, 1770-1773; (h) Sandoval, C. A.; Li, Y.; Ding, K.; Noyori, R. The Hydrogenation/Transfer Hydrogenation Network in Asymmetric Reduction of Ketones Catalyzed by [RuCl₂(binap)(pica)] Complexes. Chem. Asian J. 2008, 3, 1801-1810;

[5] (a) Burk, M. J.; Hems, W.; Herzberg, D.; Malan, C.; Zanotti-Gerosa, A. A Catalyst for Efficient and Highly Enantioselective Hydrogenation of Aromatic, Heteroaromatic, and α,β -Unsaturated Ketones. Org. 2000, 2, 4173-4176; (b) Abdur-Rashid, K.; Lough, A. J.; Morris, R. Lett. H. RuHCl(diphosphine)(diamine): Catalyst Precursors for the Stereoselective Hydrogenation of Ketones and Imines1. Organometallics 2001, 20, 1047-1049; (c) Wu, J.; Ji, J.-X.; Guo, R.; Yeung, C.-H.; Chan, A. S. C. Chiral [RuCl₂(dipyridylphosphane)(1,2-diamine)] Catalysts: Applications in Asymmetric Hydrogenation of a Wide Range of Simple Ketones. Chem. Eur. J. 2003, 9, 2963-2968; (d) Xie, J.-H.; Wang, L.-X.; Fu, Y.; Zhu, S.-F.; Fan, B.-M.; Duan, H.-F.; Zhou, Q.-L. Synthesis of Spiro Diphosphines and Their Application in Asymmetric Hydrogenation of Ketones. J. Am. Chem. Soc. 2003, 125, 4404-4405; (e) Li, W.; Sun, X.; Zhou, L.; Hou, G.; Yu, S.; Zhang, X. Highly Efficient and Highly Enantioselective Asymmetric Hydrogenation of Ketones with TunesPhos/1,2-Diamine-Ruthenium(II) Complexes. J. Org. Chem. 2009, 74, 1397-1399; (f) Chen, X.; Zhou, H.; Zhang, K.; Li, J.; Huang, H. Highly Enantioselective Hydrogenation of Steric Hindrance Enones Catalyzed by Ru Complexes with Chiral Diamine and Achiral Phosphane. Org. Lett. 2014, 16, 3912-3915;

[6] (a) Genêt, J. P.; Pinel, C.; Ratovelomanana-Vidal, V.; Mallart, S.; Pfister, X.; Bischoff, L.; De Andrade, M. C. C.; Darses, S.; Galopin, C.; Laffitte, J. A. Enantioselective hydrogenation reactions with a full set of preformed and prepared in situ chiral diphosphine-ruthenium (II) catalysts. *Tetrahedron: Asymmetry* **1994**, *5*, 675-690; (b) Xie, J.-B.; Xie, J.-H.; Liu, X.-Y.; Kong, W.-L.; Li, S.; Zhou, Q.-L. Highly Enantioselective Hydrogenation of α-Arylmethylene Cycloalkanones Catalyzed by Iridium Complexes of Chiral Spiro Aminophosphine Ligands[J]. *J. Am. Chem. Soc.* **2010**, *132*, 4538-4539; (c) Ma, X.; Li,

W.; Li, X.; Tao, X.; Fan, W.; Xie, X.; Ayad, T.; Ratovelomanana-Vidal, V.; Zhang, Z. Ru-catalyzed highly chemo- and enantioselective hydrogenation of γ -halo- γ , δ -unsaturated- β -keto esters under neutral conditions[J]. Chem. Commun. 2012, 48, 5352-5354; (d) Lu, S.-M.; Gao, Q.; Li, J.; Liu, Y.; Li, C. A robust Ru-PNNP catalyst system for the asymmetric hydrogenation of α , β -unsaturated ketones to allylic alcohol. Tetrahedron Lett. 2013, 54, 7013-7016; (e) Patchett, R.; Magpantay, I.; Saudan, L.; Schotes, C.; Mezzetti, A.; Santoro, F. Asymmetric Hydrogenation of Ketones with H2 and Ruthenium Catalysts Containing Chiral Tetradentate S₂N₂ Ligands. Angew. Chem. Int. Ed. 2013, 52, 10352-10355; (f) Wang, Y.; Yang, G.; Xie, F.; Zhang, W. A Ferrocene-Based NH-Free Phosphine-Oxazoline Ligand for Iridium-Catalyzed Asymmetric Hydrogenation of Ketones. Org. Lett. 2018, 20, 6135-6139; (g) Li, J.; Lu, Y.; Zhu, Y.; Nie, Y.; Shen, J.; Liu, Y.; Liu, D.; Zhang, W. Selective Asymmetric Hydrogenation of Four-Membered Exo-α,β-Unsaturated Cyclobutanones Using RuPHOX–Ru as a Catalyst. Org. Lett. 2019, 21, 4331-4335; [7] (a) Martin, V. S.; Woodard, S. S.; Katsuki, T.; Yamada, Y.; Ikeda, M.; Sharpless, K. B. Kinetic resolution of racemic allylic alcohols by enantioselective epoxidation. A route to substances of absolute enantiomeric purity?. J. Am. Chem. Soc. 1981, 103, 6237-6240; (b) Vedejs, E.; Jure, M. Efficiency in Nonenzymatic Kinetic Resolution. Angew. Chem. Int. Ed. 2005, 44, 3974-4001; (c) Pellissier, H. Catalytic Non-Enzymatic Kinetic Resolution. Adv. Synth. Catal. 2011, 353, 1613-1666.

[8] (a) Wipf, P.; Kendall, C. Novel Applications of Alkenyl Zirconocenes. *Chem. Eur. J.* 2002, *8*, 1778-1784; (b) Wipf, P.; Nunes, R. L. Selective carbon–carbon bond formations with alkenylzirconocenes. *Tetrahedron* 2004, *60*, 1269-1279; (c) Skucas, E.; Ngai, M.-Y.; Komanduri, V.; Krische, M. J. Enantiomerically Enriched Allylic Alcohols and Allylic Amines via C–C Bond-Forming Hydrogenation: Asymmetric Carbonyl and Imine Vinylation. *Acc. Chem. Res.* 2007, *40*, 1394-1401.

[9] (a) Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. Asymmetric Transfer Hydrogenation of *α*, β-Acetylenic Ketones. *J. Am. Chem. Soc.* **1997**, *119*, 8738-8739; (b) Noyori, R.; Hashiguchi, S. Asymmetric Transfer Hydrogenation Catalyzed by Chiral Ruthenium Complexes. *Acc. Chem. Res.* **1997**, *30*, 97-102; (c) Iura, Y.; Sugahara, T.; Ogasawara, K. Oxidative resolution of 2-cyclopentenols by the asymmetric hydrogen transfer protocol. *Tetrahedron Lett.* **1999**, *40*, 5735-5738; (d) Ikariya, T.; Blacker, A. J. Asymmetric Transfer Hydrogenation of Ketones with Bifunctional Transition Metal-Based Molecular Catalysts. *Acc. Chem. Res.* **2007**, *40*, 1300-1308; (e) Bizet, V.; Pannecoucke, X.; Renaud, J.-L.; Cahard, D. Ruthenium-Catalyzed Redox Isomerization of Trifluoromethylated Allylic Alcohols: Mechanistic Evidence for an Enantiospecific Pathway. *Angew. Chem. Int. Ed.* **2012**, *51*, 6467-6470; (f) Liu, S.; Cui, P.; Wang, J.; Zhou, H.; Liu, Q.; Lv, J. Asymmetric transfer hydrogenation of cycloalkyl vinyl ketones to allylic alcohols catalyzed by ruthenium amido complexes. *Org. Biomol. Chem.* **2019**, *17*, 264-267; (g) Touge, T.; Sakaguchi, K.; Tamaki, N.; Nara, H.; Yokozawa, T.; Matsumura, K.; Kayaki, Y. Multiple Absolute Stereocontrol in Cascade Lactone Formation via Dynamic Kinetic Resolution Driven by the Asymmetric Transfer Hydrogenation of Keto Acids with Oxo-Tethered Ruthenium Catalysts. *J. Am. Chem. Soc.* **2019**, *141*, 16354

[10] (a) Noyori, R.; Tomino, I.; Tanimoto, Y.; Nishizawa, M. Asymmetric synthesis via axially dissymmetric molecules. 6. Rational designing of efficient chiral reducing agents. Highly enantioselective reduction of aromatic ketones by binaphthol-modified lithium aluminum hydride reagents. *J. Am. Chem. Soc.* **1984**, *106*, 6709-6716; (b) Brown, H. C.; Ramachandran, P. V. Asymmetric reduction with chiral organoboranes based on .alpha.-pinene. *Acc. Chem. Res.* **1992**, *25*, 16-24; (c) Corey, E. J.; Helal, C. J. Reduction of Carbonyl Compounds with Chiral Oxazaborolidine Catalysts: A New Paradigm for Enantioselective Catalysis and a Powerful New Synthetic Method. *Angew. Chem. Int. Ed.* **1998**, *37*, 1986-2012; (d) He, P.; Liu, X.; Zheng, H.; Li, W.; Lin, L.; Feng, X. Asymmetric 1,2-Reduction

of Enones with Potassium Borohydride Catalyzed by Chiral N,N'-Dioxide–Scandium(III) Complexes. *Org. Lett.* **2012**, *14*, 5134-5137; (e) Chen, F.; Zhang, Y.; Yu, L.; Zhu, S. Enantioselective NiH/Pmrox-Catalyzed 1,2-Reduction of α , β -Unsaturated Ketones. *Angew. Chem. Int. Ed.* **2017**, *56*, 2022-2025. (f) Szewczyk, M.; Bezłada, A.; Mlynarski, J. Zinc-Catalyzed Enantioselective Hydrosilylation of Ketones and Imines under Solvent-Free Conditions. *ChemCatChem.* **2016**, *8*, 3575-3579.

[11] (a) Eberle, M. K.; Weber, H. P. The regio- and stereoselectivity of intramolecular Diels-Alder reactions of fumarates: An unusual rearrangement-cyclization. J. Org. Chem. 1988, 53, 231-235; (b) Adam, W.; Glaeser, J.; Peters, K.; Prein, M. Highly Like-Selective [4 + 2] Cycloadditions of Chiral Dienols: The Importance of 1,3-Allylic Strain in the Hydroxy-Directed Stereocontrol. J. Am. Chem. Soc. 1995, 117, 9190-9193; (c) Carreño, M. C.; García-Cerrada, S.; Urbano, A.; Di Vitta, C. Studies of Diastereoselectivity in Diels–Alder Reactions of Enantiopure (SS)-2-(p-Tolylsulfinyl)-1,4-naphthoquinone and Chiral Racemic Acyclic Dienes. J. Org. Chem. 2000, 65, 4355-4363.

[12] Li, H.; Walsh, P. J. Catalytic Asymmetric Vinylation and Dienylation of Ketones[J]. J. Am. Chem. Soc. 2005, 127, 8355-8361.

[13] (a) Kong, J. R.; Krische, M. J. Catalytic Carbonyl Z-Dienylation via Multicomponent Reductive Coupling of Acetylene to Aldehydes and α-Ketoesters Mediated by Hydrogen: Carbonyl Insertion into Cationic Rhodacyclopentadienes. J. Am. Chem. Soc. 2006, 128, 16040-16041; (b) Kong, J.-R.; Ngai, M.-Y.; Krische, M. J. Highly Enantioselective Direct Reductive Coupling of Conjugated Alkynes and α-Ketoesters via Rhodium-Catalyzed Asymmetric Hydrogenation. J. Am. Chem. Soc. 2006, 128, 718-719.
[14] (a) Basak, S.; Kazmaier, U. Palladium-Catalyzed Dienylations of Chelated Enolates. Eur. J. Org. Chem. 2008, 2008, 4169-4177; (b) Akai, S.; Hanada, R.; Fujiwara, N.; Kita, Y.; Egi, M. One-Pot Synthesis of Optically Active Allyl Esters via Lipase–Vanadium Combo Catalysis. Org. Lett. 2010, 12, 4900-4903; (c) Yan, L.; Xu, J.-K.; Huang, C.-F.; He, Z.-Y.; Xu, Y.-N.; Tian, S.-K. Kinetic Resolution of Racemic Allylic Alcohols by Catalytic Asymmetric Substitution of the OH Group with Monosubstituted Hydrazines. Chem. Eur. J. 2016, 22, 13041-13045.

[15] Xie, X.; Lu, B.; Li, W.; Zhang, Z. Coordination determined chemo- and enantioselectivities in asymmetric hydrogenation of multi-functionalized ketones. *Coord. Chem. Rev.* **2018**, *355*, 39-53.

[16] Gao, Z.; Fletcher, S. P. Construction of β to carbonyl stereogenic centres by asymmetric 1,4-addition of alkylzirconocenes to dienones and ynenones. *Chem. Commun.* **2018**, *54*, 3601-3604.

[17] Lemhadri, M.; Battace, A.; Berthiol, F.; Zair, T.; Doucet, H.; Santelli, M. Palladium-Tetraphosphine Complex Catalysed Heck Reaction of Vinyl Bromides with Alkenes: A Powerful Access to Conjugated Dienes. *Synthesis* **2008**, 1142-1152.

[18] Yu, L.; Wu, Y.; Cao, H.; Zhang, X.; Shi, X.; Luan, J.; Chen, T.; Pan, Y.; Xu, Q. Facile synthesis of 2-methylenecyclobutanones via Ca(OH)₂-catalyzed direct condensation of cyclobutanone with aldehydes and (PhSe)₂-catalyzed Baeyer–Villiger oxidation to 4-methylenebutanolides. *Green Chem.* **2014**, *16*, 287-293.

[19] Wu, X.; Xie, F.; Ling, Z.; Tang, L.; Zhang, W. Regio- and Enantioselective Copper-Catalyzed 1,4-Conjugate Addition of Trimethylaluminium to Linear $\alpha,\beta,\gamma,\delta$ -Unsaturated Alkyl Ketones. *Adv. Synth. Catal.* **2016**, *358*, 2510-2518.

[20] Poladura, B.; Martínez-Castañeda, Á.; Rodríguez-Solla, H.; Llavona, R.; Concellón, C.; del Amo, V. General Metal-Free Baeyer–Villiger-Type Synthesis of Vinyl Acetates. *Org. Lett.* 2013, *15*, 2810-2813.
[21] Hack, D.; Chauhan, P.; Deckers, K.; Hermann, G. N.; Mertens, L.; Raabe, G.; Enders, D. Combining Silver Catalysis and Organocatalysis: A Sequential Michael Addition/Hydroalkoxylation One-Pot Approach to Annulated Coumarins. *Org. Lett.* 2014, *16*, 5188-5191.

[22] Gao, P.-S.; Zhang, K.; Yang, M.-M.; Xu, S.; Sun, H.-M.; Zhang, J.-L.; Gao, Z.-W.; Zhang, W.-Q.;
 Xu, L.-W. A robust multifunctional ligand-controlled palladium-catalyzed carbonylation reaction in water. *Chem. Commun.* 2018, *54*, 5074-5077.

[23] Wang, Z. S.; Chen, L. Z.; Zhou, H. P.; Liu, X. H.; Chen, F. H. Diarylpentadienone derivatives (curcumin analogues): Synthesis and anti-inflammatory activity. *Bioorg. Med. Chem. Lett.* **2017**, *27*, 1803-1807.

[24] Gallagher, W. P.; Terstiege, I.; Maleczka, R. E. Stille Couplings Catalytic in Tin: The "Sn-O" Approach. J. Am. Chem. Soc. 2001, 123, 3194-3204.

[25] Li, P.-F.; Wang, H.-L.; Qu, J. 1,n-Rearrangement of Allylic Alcohols Promoted by Hot Water: Application to the Synthesis of Navenone B, a Polyene Natural Product. *J. Org. Chem.* **2014**, *79*, 3955-3962.

[26] Gallagher, W. P.; Maleczka, R. E. Stille Reactions Catalytic in Tin: A "Sn-F" Route for Intermolecular and Intramolecular Couplings. *J. Org. Chem.* **2005**, *70*, 841-846.