One-pot synthesis of gem-difluorostyrenes from benzyl bromide via olefination of phosphonium ylide with difluorocarbene

Xiao-Yun Deng, Jin-Hong Lin, Ji-Chang Xiao*
Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

ARTICLE INFO

Article history:

Received 20 April 2015
Received in revised form 3 June 2015
Accepted 6 June 2015
Available online xxx

Keywords:

One-pot
gem-Difluorostyrenes
Benzyl bromide
Olefination
Phosphonium ylide
Difluorocarbene

Abstract

A new approach for the synthesis of gem-difluorostyrenes from benzyl bromide is described. Quaternization of triphenylphosphine with benzyl bromide to give phosphonium salts, deprotonation of the corresponding phosphonium salts to produce phosphonium ylide, and the subsequent olefination of phosphonium ylide with difluorocarbene generated from difluoromethylene phosphobetaine $\left(\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CF}_{2} \mathrm{CO}_{2}^{-}\right)$by decarboxylation can occur smoothly in one-pot, furnishing the final gemdifluorostyrenes in good yields.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

As gem-difluoroolefins have proved to be important intermediates in organic synthesis and the gem-difluorovinyl moiety is a valuable functionality in medicinal and agricultural chemistry and materials science [1], intensive studies have been devoted to the exploration of efficient methods for the synthesis of gemdifluoroolefins. The traditional β-elimination or addition-elimination protocols require the tedious preparation of fluorinated precursors [2]. The use of building blocks such as gem-difluorovinylmetals is a promising approach, but suffers from the multistep synthesis of moisture-sensitive building blocks [3]. A straightforward alternative is the gem-difluoroolefination of carbonyl groups, including Wittig reaction [4], Julia reaction [5] and Horner-Wadsworth-Emmons reaction [6]. Interestingly, nucleophilic substitution of alkyl halides with in situ generated functionalized difluoromethyl anion species $\left[\mathrm{XCF}_{2}{ }^{-}, \mathrm{X}=\mathrm{PhSO}_{2}\right.$, PhSO(NTBS)] followed by a base-mediated 1,2-elimination reaction can also lead to gem-difluoroolefins, but the nucleophilic substitution products need to be isolated first or the air-sensitive base must be used in the 1,2-elimination reaction [2g,2i,7]. Clearly, the attractive protocol is the convenient reactions starting from

[^0]commercially available materials by employing easily accessible reagents. Our efforts have been aimed at the development of attractive methods for the synthesis of gem-difluoroolefins [$4 \mathrm{e}, 4 \mathrm{f}, 8$], not only from the perspective of synthetic interest, but also from the perspective of theoretical investigation. Herein we describe a one-pot synthesis of gem-difluorostyrenes from benzyl bromide via olefination of phosphonium ylide with difluorocarbene generated by decarboxylation.

The synthesis of gem-difluoroolefins via olefination of phosphonium ylide with difluorocarbene was once explored by Burton (Eq. (a), Scheme 1) [9]. They found that the phosphonium ylide can not only deprotonate $\mathrm{HCF}_{2} \mathrm{Cl}$ to produce difluorocarbene, but also trap difluorocarbene to afford the final products. Although this approach is promising, it suffers from the need to prepare the pure phosphonium salts, the use of air-sensitive lithium reagent as the base, and the use of volatile ozone-depleting reagent. We found that the phosphonium ylide produced from benzyl bromide can further react with difluoromethylene phosphobetaine $\left(\mathrm{Ph}_{3} \mathrm{P}^{+} \mathrm{CF}_{2} \mathrm{CO}_{2}^{-}, \mathrm{PDFA}, \mathbf{1}\right)$, which has been shown to be an efficient difluorocarbene reagent [10], to furnish the expected gemdifluorostyrenes in one-pot (Eq. (b), Scheme 1).

2. Results and discussion

4-Phenyl-benzyl bromide (2a) was selected as the substrate to screen the reaction conditions (Table 1). Due to our previous

Previous work:

This work:

Scheme 1. Olefination of phosphonium ylide with difluorocarbene.
observation that the generation of difluorocarbene from PDFA occurred smoothly in p-xylene, it was firstly used as the reaction solvent. The quaternization of triphenylphosphine with substrate 2a proceeded very well in p-xylene to give the corresponding phosphonium salt. To our delight, deprotonation of this salt by ${ }^{t} \mathrm{BuOK}$ and the subsequent olefination with PDFA at $70^{\circ} \mathrm{C}$ occurred smoothly, albeit in low yield of the desired product (entry 1). But no desired product was observed with the use of other base to deprotonate the phosphonium salt (entries 2 and 3). The temperature was found to be crucial for olefination step (entries $4-6$). Lowering the temperature to $40^{\circ} \mathrm{C}$ resulted in an obvious decrease in the yield (entry 4). The yield was increased to 53% (entry 5) while elevating the temperature to $100^{\circ} \mathrm{C}$. But further increasing the temperature didn't improve the yield (entry 6). The reaction was influenced by the choice of solvent (entries 7-9). The reaction worked very well in 1,4-dioxane or toluene, giving the difluoroolefinated product in 47-48\% yield (entries 7-8). But polar solvent such as DMF was not suitable for this conversion (entry 9). The molar ratio of $\mathbf{2 a}: \mathrm{Ph}_{3} \mathrm{P} \cdot{ }^{t} \mathrm{BuOK}:$ PDFA greatly influenced the reaction (entries $10-13$). 1:1.2:1.8:2 of 2a: $\mathrm{Ph}_{3} \mathrm{P}:{ }^{t} \mathrm{BuOK}:$ PDFA was found to be the optimal choice (entry 13). The product was isolated in 70% yield under these conditions.

With the optimal reaction conditions in hand (entry 13, Table 1), we then explored the substrate scope of this reactions. As shown in Scheme 2, the reactions can tolerate a variety of functional groups and proceeded smoothly to give the desired products in good yields. Interestingly, small amount of (Z)monofluorostyrene ($<9 \%$) was detected by ${ }^{19} \mathrm{~F}$ NMR spectroscopy in each reaction system, which could be explained by the following proposed reaction mechanism. Although 3'-MeO-substituted
substrate could be converted well into the expected product in moderate yield ($\mathbf{3 b}$), lower yield was obtained for the transformation of the 4^{\prime}-MeO-substituted substrate (3c). The electrondeficient substrates seemed quite reactive under these conditions (3d-3m). The ketonic carbonyl group remains intact in this conversion (3f), meaning the side Wittig reaction of carbonyl group with PDFA was suppressed [4e]. Unactivated alkyl bromide such as 2-phenylethyl bromide cannot quaternize triphenylphosphorus to give phosphonium salt under these conditions. This phosphonium salt could be obtained with the use of 2-phenylethyl iodide instead of 2-phenylethyl bromide, but it could not be transformed into the corresponding gem-difluoroolefin. Some products are too volatile to be isolated ($\mathbf{3 b} \mathbf{- 3 c}, \mathbf{3 h}, \mathbf{3 j}, \mathbf{3 n}$), so the corresponding yields were determined by ${ }^{19} \mathrm{~F}$ NMR. It is noteworthy that the gemdifluorovinyl moiety does not further react with difluorocarbene to generate cyclopropanes.

The olefination of phosphonium ylide with PDFA should involve the difluorocarbene species. In order to support our hypothesis, further experimental evidence was collected. In the olefination step, tetramethylethylene ($\mathrm{Me}_{2} \mathrm{C}=\mathrm{CMe}_{2}, 2$ equiv.), a difluorocarbene scavenger, was added into the reaction system. The yield of the desired gem-difluorostyrene 3a was reduced dramatically (Scheme 3). The cyclopropanation product $\mathbf{5}$ was obtained in very low yield (8\%), which might be due to its high volatility. The reaction was carried out at high temperature in Schlenk tube, meaning that it is difficult to keep the compound 5 in the solution. As a result, low yield of $\mathbf{5}$ was offered. The reaction proved that difluorocarbene is involved.

On the basis of the above results and the reported literature [9], we propose the reaction mechanism as shown in Scheme 4. The quarternization and deprotonation afford the phosphonium ylide A. The ylide is trapped by difluorocarbene generated from PDFA by decarboxylation [10] to produce 1,3-dipolar species B and threemembered cyclic phosphorane \mathbf{C}, between which an equilibrium is established. Both intermediates \mathbf{B} and \mathbf{C} can lead to the final product 3 via elimination of triphenylphosphine. Intermediate C can also undergo ring-cleavage to give benzyl anion species \mathbf{D}, which is driven by the fact the carbanion is stabilized by both the inductive effect of the neighbouring groups and resonance effect of the phenyl ring. Elimination of triphenylphosphine from intermediate \mathbf{D} also affords the desired product 3. Another pathway for intermediate \mathbf{D} is $\beta-\mathrm{F}$ elimination. Due to steric effect, $\beta-\mathrm{F}$ elimination prefers to the furnish phosphonium salt \mathbf{E} with

Table 1
Optimization of reaction conditions. ${ }^{\text {a }}$

Entry	Solvent	Base	2a: $\mathrm{Ph}_{3} \mathrm{P}:$ Base: 1	Temp (${ }^{\circ} \mathrm{C}$)	Yield ${ }^{\text {a }}$
1	p-Xylene	${ }^{\text {t }} \mathrm{BuOK}$	2.4:2:2:1	70	43
2	p-Xylene	NaH	2.4:2:2:1	70	0
3	p-Xylene	${ }^{n}$ BuLi	2.4:2:2:1	70	0
4	p-Xylene	${ }^{\text {t }} \mathrm{BuOK}$	2.4:2:2:1	40	26
5	p-Xylene	${ }^{\text {t }}$ BuOK	2.4:2:2:1	100	53
6	p-xylene	${ }^{t} \mathrm{BuOK}$	2.4:2:2:1	110	50
7	1,4-Dioxane	${ }^{\text {t }} \mathrm{BuOK}$	2.4:2:2:1	100	48
8	Toluene	${ }^{\text {t }} \mathrm{BuOK}$	2.4:2:2:1	100	47
9	DMF	${ }^{\text {t }} \mathrm{BuOK}$	2.4:2:2:1	100	0
10	p-Xylene	${ }^{\text {t }} \mathrm{BuOK}$	2.4:2:3:1	100	54
11	p-Xylene	${ }^{\text {t }}$ BuOK	3.0:2:2:1	100	43
12	p-Xylene	${ }^{\text {t }} \mathrm{BuOK}$	1:1:1.2:2	100	38
$13^{\text {b }}$	p-Xylene	${ }^{\text {t }} \mathrm{BuOK}$	1:1.2:1.8:2	100	$70^{\text {c }}$

[^1]

Scheme 2. Substrate scope. Reaction conditions: $\mathbf{2}(0.2 \mathrm{mmol}), \mathrm{Ph}{ }_{3} \mathrm{P}(0.24 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(0.36 \mathrm{mmol})$, PDFA (0.4 mmol$)$ in p-xylene. ${ }^{\mathrm{a}}$ The yields were determined by ${ }^{19} \mathrm{~F}$ NMR with trifluoromethylbenzene as an internal standard.

Scheme 3. Trap of difluorocarbene. Compound $\mathbf{4}$ was added in the olefination step. The yields were determined by ${ }^{19} \mathrm{~F}$ NMR and calculated on the basis of $\mathbf{2 a}$.

Scheme 4. Proposed mechanism.

E-stereoselectivity. Hydrolysis of intermediate \mathbf{E} gives the byproduct (Z)-monofluorostyrene $\mathbf{3}^{\prime}$.

3. Conclusion

In summary, we have described a one-pot synthesis of gemdifluorostyrenes from benzyl bromide. The sequential reaction including quaternization of triphenylphosphine, deprotonation of
phosphonium salts, and the olefination of phosphonium ylide with difluorocarbene generated from PDFA via decarboxylation proceeded smoothly to give the difluoroolefinated product in good yields. This mild procedure using commercially available substrates and easily accessible reagent PDFA would make this reaction become a convenient and practical method for the synthesis of difluoroolefins.

4. Experimental

Typical procedure for the synthesis of gem-difluorostyrenes
A dried Schlenk tube was charged with 2 (0.2 mmol), $\mathrm{Ph}_{3} \mathrm{P}$ ($63 \mathrm{mg}, 0.24 \mathrm{mmol}$) and p-xylene (2 mL) under N_{2}. The resulting mixture was stirred at $120^{\circ} \mathrm{C}$ for 6 h . After being cooled to room temperature, ${ }^{t} \mathrm{BuOK}(40 \mathrm{mg}, 0.36 \mathrm{mmol})$ and p-xylene (0.5 mL) were added into the mixture under N_{2} and stirred at room temperature for 15 min . PDFA ($143 \mathrm{mg}, 0.4 \mathrm{mmol}$) and p-xylene $(0.5 \mathrm{~mL})$ were added into the solution under N_{2} and stirred at $100^{\circ} \mathrm{C}$ for another 1 h . After being cooled to room temperature, the mixture was subjected to flash column chromatography to afford the pure product.

4-(2,2-Difluorovinyl)-1,1'-biphenyl (3a): 70\%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.32$ (dd, $J=26.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-81.91$ (dd,
$J=30.7,26.4 \mathrm{~Hz}, 1 \mathrm{~F}$), -83.84 (dd, $J=30.7,3.5 \mathrm{~Hz}, 1 \mathrm{~F})$. GC-MS(EI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{2}[\mathrm{M}]^{+}$216.1. Found 216.1.

Methyl 4-(2,2-difluorovinyl)-2-methoxybenzoate (3d): 53\%; Light yellow liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78$ (d, $J=8.0 \mathrm{~Hz}$, 1 H), 6.96-6.91 (m, 2H), 5.30 (dd, $J=25.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.91 ($\mathrm{s}, 3 \mathrm{H}$), $3.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-79.00(\mathrm{t}, \mathrm{J}=25.1,1 \mathrm{~F}$), -81.12 (dd, $J=25.1,3.6 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.17 (s), 159.42 (s), 156.78 (dd, $J=300.2,290.7 \mathrm{~Hz}$), 135.94 (dd, $J=7.3,6.4 \mathrm{~Hz}$), 132.16 (s), 119.51 (dd, $J=6.5,3.5 \mathrm{~Hz}), 118.46$ (s), 111.05 (dd, $J=7.0,3.5 \mathrm{~Hz}$), 82.16 (dd, $J=29.8,12.9 \mathrm{~Hz}$), 55.99 (s), 51.97 (s). IR (neat) $v=2953,1725,1611,1566,1508,1465,1435$ $1413,1354,1300,1261,1220,1185,1165,1089,1037,982,923$, 894, 859, 817, $779,754 \mathrm{~cm}^{-1}$. HRMS (EI): calcd. for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{3}$: 228.0598. Found: 228.0595

Methyl 4-(2,2-difluorovinyl)benzoate (3e): 71\%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $5.31(\mathrm{dd}, \mathrm{J}=25.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{FNMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-79.16$ (dd, $J=25.8,23.8 \mathrm{~Hz}, 1 \mathrm{~F}),-81.11$ (dd, $J=23.8,3.6 \mathrm{~Hz}, 1 \mathrm{~F})$. $\mathrm{GC}-\mathrm{MS}(\mathrm{EI})$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}$198.1. Found 198.1

1-(4-(2,2-Difluorovinyl)phenyl)ethanone (3f): 61\%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 5.34 (dd, $J=25.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.59 (s, 3H). ${ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-79.01$ (dd, $J=25.9,23.1 \mathrm{~Hz}, 1 \mathrm{~F}$), -80.83 (dd, $J=23.1$ $3.5 \mathrm{~Hz}, 1 \mathrm{~F})$. GC-MS(EI) calcd. for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~F}_{2} \mathrm{O}[\mathrm{M}]^{+}$182.1. Found 182.1.

4'-(2,2-Difluorovinyl)-[1,1'-biphenyl]-2-carbonitrile (3g): 62\%; A white solid. M.p. $91-92{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.41(\mathrm{~m}, 6 \mathrm{H}), \delta 5.34(\mathrm{dd}$, $J=27.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.93(\mathrm{t}$, $J=27.2 \mathrm{~Hz}, 1 \mathrm{~F}),-82.77$ (dd, $J=27.2,3.2 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.51$ (dd, $J=299.1,289.4 \mathrm{~Hz}$), 144.80 (s), $136.66(\mathrm{t}, J=2.0 \mathrm{~Hz}$), $133.80(\mathrm{~s}), 132.88$ (s$), 130.93(\mathrm{t}, J=6.6 \mathrm{~Hz}$), 129.90 (s), 129.05 (s), 127.88 (dd, $J=6.5,3.6 \mathrm{~Hz}$), 127.64 (s$), 118.68$ (s), 111.10 (s), 81.85 (dd, $J=29.5,13.4 \mathrm{~Hz}$). IR (neat) $v=3854,3079$, 3033, 2221, 1728, 1685, 1654, 1612, 1596, 1477, 1445, 1415, 1366, $1324,1289,1254,1198,1179,1168,1006,958,941,879,857,820$, $763,723,708,593,582,575,562,544,512,486 \mathrm{~cm}^{-1}$. HRMS (EI): calcd. for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~F}_{2} \mathrm{~N}$: 241.0703. Found: 241.0701.

1,2-Dichloro-4-(2,2-difluorovinyl)benzene (3i): 53\%; Light yellow liquid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.37$ (m, 2H), 7.15 (dd $J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.22 (dd, $J=25.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}$). ${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-79.98(\mathrm{t}, J=25.9 \mathrm{~Hz}, 1 \mathrm{~F}),-81.81$ (dd, $J=25.9,3.3 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.54(\mathrm{dd}$ $J=299.3,290.4 \mathrm{~Hz}$), 132.82 (s$), 130.93$ (t, $J=2.6 \mathrm{~Hz}$), 130.58 (s$)$ 130.41 (dd, $J=7.3,6.1 \mathrm{~Hz}$), 129.22 (dd, $J=6.9,3.7 \mathrm{~Hz}$), 126.77 (dd, $J=6.6,3.5 \mathrm{~Hz}$), 80.87 (dd, $J=30.7,13.5 \mathrm{~Hz}$). IR (neat) $v=3853$, 3042, 1728, 1594, 1556, 1474, 1396, 1351, 1275, 1240, 1175, 1136, $1095,1033,956,882,866,826,747,723,697,680,671,598,566$, 516, 506, $440 \mathrm{~cm}^{-1}$. HRMS (EI): calcd. for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~F}_{2}: 207.9658$. Found: 207.9662

1,3-Dibromo-5-(2,2-difluorovinyl)benzene (3k): 54\%; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.19 (dd, $J=24.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-78.62$ ($\mathrm{t}, J=24.4,1 \mathrm{~F}$), -80.61 (dd, $J=24.4,3.3 \mathrm{~Hz}, 1 \mathrm{~F}$). GC-MS(EI) calcd. for $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~F}_{2}[\mathrm{M}]^{+}$297.9. Found 298.0.
(E)-Methyl 3-(4-(2,2-difluorovinyl)phenyl)acrylate (31): 75\%; A yellow solid. M.p. $56-57{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.43$ (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.30 (dd, $J=26.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (s, 3H). ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-80.06$ (t, $J=26.1 \mathrm{~Hz}, 1 \mathrm{~F}$), -82.12 (dd, $J=26.1,3.3 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.42$ (s), 156.58 (dd, $J=299.9,290.1 \mathrm{~Hz}$), $144.11(\mathrm{~s}), 133.01(\mathrm{t}, J=2.2 \mathrm{~Hz}), 132.50(\mathrm{t}$, $J=6.6 \mathrm{~Hz}), 128.40(\mathrm{~s}), 127.98$ (dd, $J=6.7,3.6 \mathrm{~Hz}), 117.72$ (s), 82.06 (dd, $J=29.7,13.3 \mathrm{~Hz}$), 51.75 (s). IR (neat) $v=3406,3034,2955$, 1716, 1636, 1606, 1559, 1513, 1435, 1421, 1320, 1252, 1213, 1169, 1072, 1003, 981, 941, 850, 836, 819, 724, 710, 688, 521, $508 \mathrm{~cm}^{-1}$. HRMS (EI): calcd. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{2} \mathrm{O}_{2}$: 224.0649. Found: 224.0646.

Methyl 4'-(2,2-difluorovinyl)-[1,1'-biphenyl]-2-carboxylate (3m): 61\%; Light yellow liquid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-$ 7.20 (m, 2H), 5.31 (dd, $J=26.4,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (s, 3H). ${ }^{19}$ F NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-81.80(\mathrm{dd}, J=30.6,26.4 \mathrm{~Hz}, 1 \mathrm{~F}),-83.86$ (dd, $J=30.6,3.7 \mathrm{~Hz}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.95$ (s), 156.33 (dd, $J=298.6,288.5 \mathrm{~Hz}$), $141.94(\mathrm{~s}), 140.00(\mathrm{t}, J=2.1 \mathrm{~Hz}), 131.37(\mathrm{~s})$, 130.65 (s), 129.91 (s), 129.34 (dd, $J=7.0,5.9 \mathrm{~Hz}$), 128.81 (s$), 128.66$ (s), 128.18 (s), 127.28 (dd, $J=6.3,3.7 \mathrm{~Hz}$), 82.00 (dd, $J=29.3$, 13.6 Hz), 52.01 (s). IR (neat) $v=3032,2952,2664,1728,1599$, 1575, 1519, 1482, 1448, 1433, 1410, 1351, 1290, 1248, 1191, 1168 $1127,1089,1048,1006,940,853,795,764,735,714,668,578,565$, $527,447 \mathrm{~cm}^{-1}$. HRMS (EI): calcd. for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{2} \mathrm{O}_{2}: 204.0805$. Found: 204.0801.

2-(2,2-Difluorovinyl)naphthalene (3o): 65\%; ${ }^{1} \mathrm{H} \quad$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 5.43$ (dd, $J=26.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-81.90$ (dd, $J=30.8,26.3 \mathrm{~Hz}, 1 \mathrm{~F}),-83.64$ (dd, $J=30.8,3.9 \mathrm{~Hz}, 1 \mathrm{~F})$. GC-MS(EI) calcd. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{2}[\mathrm{M}]^{+}$190.1. Found 190.1.

Acknowledgements

This work was financially supported by the National Natural Science Foundation (21172240, 21421002, 21472222), National Basic Research Program of China (2015CB931900, 2012CBA01200), and the Chinese Academy of Sciences.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.jfluchem.2015. 06.009.

References

[1] (a) J. Ichikawa, W. Wada, T. Okauchi, T.J. Minami, Chem. Soc., Chem Commun. (1997) 1537-1538;
(b) S. Hayashi, T. Nakai, N. Ichikawa, D.J. Burton, D.G. Naae, H.S. Kesling Chem. Lett. (1979) 983-986;
(c) S. Hayashi, T. Nakai, N. Ichikawa, Chem. Lett. (1980) 651-654 (d) I.A. McDonald, J.M. Lacoste, P. Bey, M.G. Palfreyman, M. Zreika, J. Med. Chem. 28 (1985) 186-193
(e) K. Kitano, M. Ushioda, M. Uchida, T. Suzuki, EP325796A1, 1989
(f) T. Kato, S. Matsui, H. Takeuchi, Y. Kubo, E. Nakagawa, EP1170352A2, 2002; (g) P.M. Weintraub, A.K. Holland, C.A. Gates, W.R. Moore, R.J. Resvick, P. Bey, N.P. Peet, Bioorg. Med. Chem. 11 (2003) 427-431;
(h) J.-M. Altenburger, G.Y. Lassalle, M. Matrougui, D. Galtier, J.-C. Jetha, Z. Bocskei, C.N. Berry, C. Lunven, J. Lorrain, J.-P. Herault, P. Schaeffer, S.E O'Connor, J.-M. Herbert, Bioorg. Med. Chem. 12 (2004) 1713-1730; (i) P. Maienfisch, R.G. Hall, Chimia 58 (2004) 93-99;
(j) T. Pitterna, M. Böger, P. Maienfisch, Chimia 58 (2004) 108-116;
(k) J. Ichikawa, M. Yokota, T. Kudo, S. Umezaki, Angew. Chem., Int. Ed. 47 (2008) 4870-4873
(1) Y. Qiao, T. Si, M. Yang, R.A. Altman, J. Org. Chem. 79 (2014) 7122-7131; (m) B. Gao, Y. Zhao, J. Hu, Angew. Chem., Int. Ed. 54 (2015) 638-642.
[2] (a) J.-P. Bégué, D. Bonnet-Delpon, M.H. Rock, Synlett (1995) 659-660; (b) J.-P. Bégué, D. Bonnet-Delpon, M.H. Rock, J. Chem. Soc., Perkin Trans. 1 (1996) 1409-1413;
(c) K. Uneyama, F. Yan, H. Hirama, T. Katagiri, Tetrahedron Lett. 37 (1996) 2045-2048;
(d) H.M. Park, T. Uegaki, T. Konno, T. Ishihara, H. Yamanaka, Tetrahedron Lett. 40 (1999) 2985-2988
(e) K. Funabiki, K.-I. Sawa, K. Shibata, M. Matsui, Synlett (2002) 1134-1136; (f) J. Ichikawa, H. Fukui, Y. Ishibashi, J. Org. Chem. 68 (2003) 7800-7805; (g) G.K.S. Prakash, J. Hu, Y. Wang, G.A. Olah, Angew. Chem., Int. Ed. 43 (2004) 5203-5206
(h) T. Miura, Y. Ito, M. Murakami, Chem. Lett. 37 (2008) 1006-1007; (i) X. Shen, Q. Liu, C. Ni, J. Hu, Chin. J. Chem. 32 (2014) 703-708.
[3] (a) For review, see J. Ichikawa, J. Fluor. Chem. 105 (2000) 257-263; (b) For examples, see T.M. Gøgsig, L.S. Søbjerg, A.T. Lindhardt, K.L. Jensen, T Skrydstrup, J. Org. Chem. 73 (2008) 3404-3410
(c) B.V. Nguyen, D.J. Burton, J. Org. Chem. 62 (1997) 7758-7764
[4] (a) S.A. Fuqua, W.G. Duncan, R.M. Silverstein, Tetrahedron Lett. (1964) 1461-1463;
(b) D.J. Burton, Z.Y. Yang, W.M. Qiu, Chem. Rev. 96 (1996) 1641-1716;
(c) I. Nowak, M.J. Robins, Org. Lett. 7 (2005) 721-724;
(d) F. Wang, L. Li, C. Ni, J. Hu, Beilstein J. Org. Chem. 10 (2014) 344-351;
(e) J. Zheng, J. Cai, J.-H. Lin, Y. Guo, J.-C. Xiao, Chem. Commun. 49 (2013) 7513-7515;
(f) Q. Li, J.-H. Lin, Z.-Y. Deng, J. Zheng, J. Cai, J.-C. Xiao, J. Fluor. Chem. 163 (2014) 38-41;
(g) C.S. Thomoson, H. Martinez, W.R. Dolbier Jr., J. Fluor. Chem. 150 (2013) 53-59.
[5] (a) M.L. Edwards, D.M. Stemerick, E.T. Jarvi, D.P. Matthews, J.R. McCarthy, Tetrahedron Lett. 31 (1990) 5571-5574;
(b) G.K.S. Prakash, Y. Wang, J. Hu, G.A. Olah, J. Fluor. Chem. 126 (2005) 1361-1367:
(c) Y. Zhao, W. Huang, L. Zhu, J. Hu, Org. Lett. 12 (2010) 1444-1447;
(d) B. Gao, Y. Zhao, J. Hu, J. Hu, Org. Chem. Front. 2 (2015) 163-168.
[6] M. Obayashi, E. Ito, K. Matsui, K. Kondo, Tetrahedron Lett. 23 (1982) 2323-2326.
[7] L. Zhu, Y. Li, Y. Zhao, J. Hu, Tetrahedron Lett. 51 (2010) 6150-6152.
[8] X.-P. Wang, J.-H. Lin, J.-C. Xiao, X. Zheng, Eur. J. Org. Chem. (2014) 928-932.
[9] G.A. Wheaton, D.J. Burton, J. Org. Chem. 48 (1983) 917-927.
[10] (a) J. Zheng, J.-H. Lin, J. Cai, J.-C. Xiao, Chem. Eur. J. 19 (2013) 15261-15266;
(b) X.-Y. Deng, J.-H. Lin, J. Zheng, J.-C. Xiao, Chin. J. Chem. 32 (2014) 689-693;
(c) J. Zheng, J.-H. Lin, X.-Y. Deng, J.-C. Xiao, Org. Lett. 17 (2015) 532-535.

[^0]: * Corresponding author. Tel.: +86 215492 5340; fax: +86 2164166128.

 E-mail address: jchxiao@sioc.ac.cn (J.-C. Xiao).

[^1]: ${ }^{\text {a }}$ Determined by ${ }^{19} \mathrm{~F}$ NMR with trifluoromethylbenzene as an internal standard.
 ${ }^{\text {b }}$ The quaternization of triphenylphosphine with 2a was carried out at $120^{\circ} \mathrm{C}$.
 ${ }^{\text {c }}$ Isolated yield.

