New Approaches for the Synthesis of Thiazoles and Their Fused Derivatives with Antimicrobial Activities

Wagnat W. Wardkhan,^{a,*} Mohamed A. Youssef,^b Faten I. Hamed^a and Salama A. Ouf^c
^aNational Organization for Drug Control & Research, P. O. 29, Cairo, A. R. Egypt
^bDepartment of Chemistry, Faculty of Science, Helwan University, Cairo, A. R. Egypt
^cDepartment of Botany, Faculty of Science, Cairo University, Giza, A. R. Egypt

The 2-ethoxy carbonyl methylene thiazol-4-one (3) reacts with acetophenone (4) to give the ethyl 2-(4-oxo-4,5-dihydro-thiazol-2-yl)-3-phenyl-2-butenoate (5). The reactivity of the latter product towards aromatic aldehydes **6a-d**, cyanomethylene reagents **9a,b**, aromatic aldehydes **13a-d**, phenylisothiocyanate (**16**), elemental sulfur and aromatic amines (**20a-c**) was studied to give arylidene, pyridine, thiophene and anilide derivatives. Some of the newly synthesized derivatives were used to synthesize fused derivatives. The antimicrobial activities of the newly synthesized products were tested in vitro for antimicrobial activity against two bacterial isolates, one saprophytic (Escherichia coli) and the other parasitic (Xanthomonas citri) and for antifungal activity against one saprophytic (Aspergillus fumigatus) and two phytopathogenics (Rhizoctonia solani and Fusarium oxysporum).

Keywords: Thiazole; Pyrazole; Pyridazine; Antimicrobial.

INTRODUCTION

Thiazoles play a prominent role in nature. For example, the thiazolium ring present in vitamin B1 serves as an electron sink and its coenzyme form is important for the decarboxylation of α -keto acids.¹ Various pesticides possessing a thiazole nucleus are well known in agriculture. Large numbers of thiazole derivatives have emerged as active pharmaceutical ingredients in several drugs for their potential anti-inflammatory,² anti-tumour,³ anti-hyperlipidemic,⁴ anti-hypertensive⁵ and several other biological properties.⁶ Besides, thiazoles are also synthetic intermediates and common substructures in numerous biologically active compounds.⁷⁻¹⁴ Thus, the thiazole nucleus has been much studied in the field of organic and medicinal chemistry.

RESULTS AND DISCUSSION

In this work we describe the uses of 2-ethoxy carbonyl methylene thiazol-4-one (3), which was obtained earlier, ^{15,16} through the reaction of ethyl cyanacetate (1) with thioglycollic acid (2) in the presence of ethanol and triethylamine in many heterocyclic transformations. Compound 3 reacts with acetophenone (4) in the presence of ammonium acetate at 140 °C to give the Knoevenagel con-

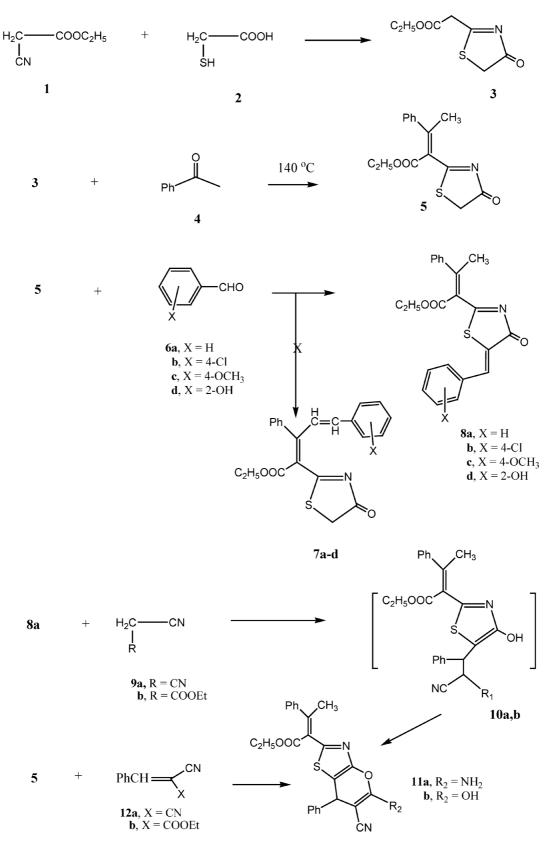
* Corresponding author. E-mail: wagnatward@hotmail.com

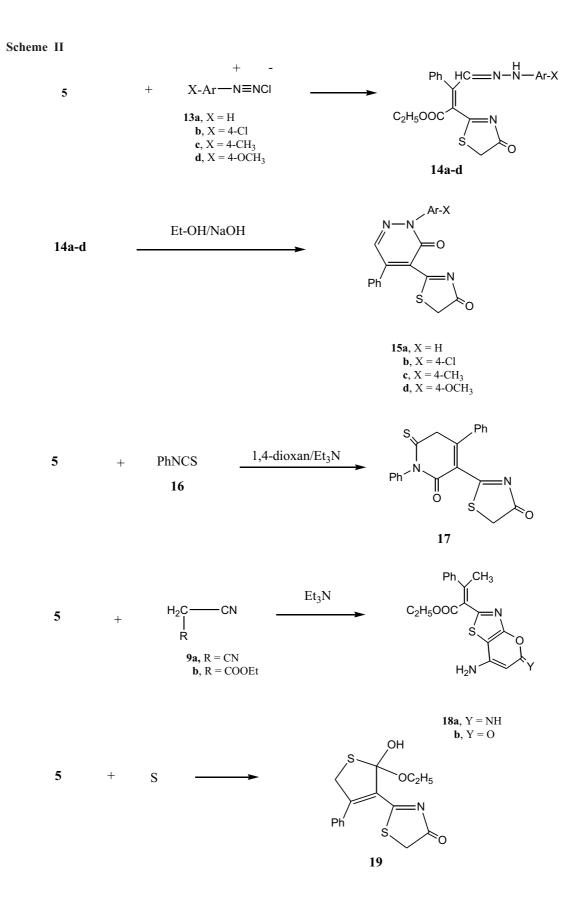
densation product **5**. The structure of compound **5** was based on analytical and spectral data. Thus, the ¹H NMR spectrum showed a triplet at δ 1.12 corresponding to ester CH₃, a singlet at δ 2.50 for CH₃ group, a quartet at δ 4.22 for the ester CH₂, a singlet at δ 5.41 for CH₂ group and a multiplet at δ 7.33-7.40 for phenyl protons. Moreover, the ¹³C NMR spectrum showed δ at 14.28, 19.99 (2 CH₃); 32.37, 59.25 (2 CH₂); 87.39, 88.38 (2 CH); 121.58 (C-Phenyl); 126.74, 128.95 (2 CH); 142.45, 146.39 (2 C=C); 166.26 (C=N); 167.01 (C=O); 174.21 (C=O). ¹³C NMR δ (DMSO) (DEPT), *up lines*: 14.28 (CH₃); 19.99 (CH₃); 87.39 (CH); 88.38 (CH), 126.74 (CH); 128.95 (CH), *down lines*: 32.37 (CH₂); 59.25 (CH₂).

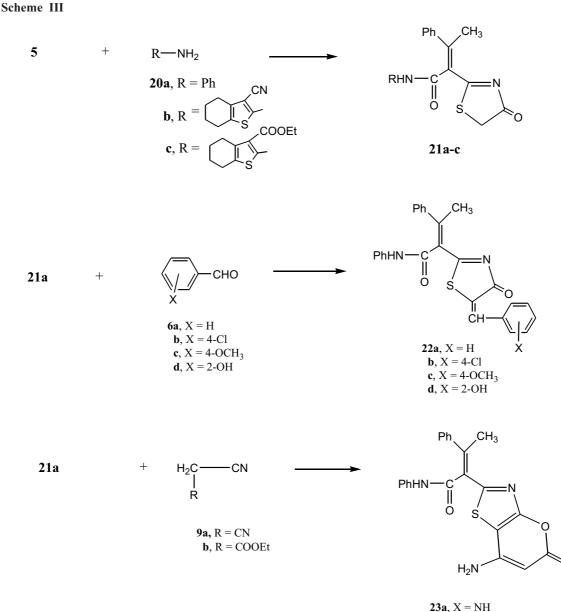
The reaction of compound **5** with aromatic aldehydes was studied to give arylidine derivatives with potential biological activities. Thus, compound **5** reacts with either benzaldehyde (**6a**), 4-chlorobenzaldehyde (**6b**), 4-methoxybenzaldehyde (**6c**) or salicylaldehyde (**6d**), in each case a single product with molecular formula $C_{22}H_{19}NO_3S$, $C_{22}H_{18}NO_3SC1$, $C_{23}H_{21}NO_4S$ and $C_{22}H_{19}NO_4S$, respectively. Two possible isomeric structures were considered for the reaction products, either **7a-d** or **8a-d**. The possibility of compounds **7a-d** was ruled out on the basis of ¹³C NMR which showed in the case of **8c** (as an example) δ at

14.3 (CH₃), 43.5 (ester CH₂), 55.3 (CH₃), 55.46 (OCH₃), 59.5 (CH₂), 89.48, 114.8 (2 CH); 120.4 (C=C), 126.1, 129.3, 131.8 (3CH), 152.1 (C=C); 160.4 (C=N); 166.8, 167.1 (2 C=O). ¹³C NMR δ (DMSO) (DEPT): Up lines; 14.3 (CH₃); 55.3 (CH₃); 55.4 (OCH₃); 89.4 (CH); 114.8 (CH); 126.1 (CH); 129.3 (CH); 131.8 (CH). Down lines; 43.5 (CH₂); 59.5 (CH₂). The reaction of compound 8a with either malononitrile (9a) or ethyl cyanoacetate (9b) gave the polyfunctionally substituted pyrano[2,3-d]thiazole derivatives 11a,b. The reaction took place via the intermediate formation of 10a,b (see Scheme I). Structures of compounds 11a and 11b were established on the basis of analytical and spectral data. Thus, the ¹H NMR spectrum of **11a** showed a triplet at δ 1.21 corresponding to the CH₃ ester group, a singlet at δ 2.66 for the CH₃ group, quartet at δ 4.24 for the ester CH_2 group, a singlet at δ 5.43 for the NH_2 group, and a multiplet at δ 7.37-7.58 for the phenyl and pyran protons. Further confirmation for structures 11a,b was obtained through the synthesis of these compounds using other reaction routes. Thus, the reaction of compound 5 with either α -cyano cinmamonitrile (12a) or ethyl α -cyanocinmamate (12b) (Scheme I) in the presence of 1,4-dioxan and a catalytic amount of triethylamine gave the same polyfunctionally substituted pyrano[2,3-d]thiazole derivatives 11a and 11b, respectively (finger print IR spectrum, m.p. and mixed m.p.).

The reaction of compound 5 with either benzenediazonium chloride (13a), 4-chlorobenzenediazonium chloride (13b), 4-methybenzenediazonium chloride (13c) or 4-methoxybenzenediazonium chloride (13d) gave arylhydrazone derivatives 14a-d, respectively. The analytical and spectral data of the latter products are consistent with the proposed structures (see experimental section). Compounds 14a-d underwent ready cyclization when heated under reflux in ethanolic/NaOH solution to give the 4-thiazol-2-yl-pyridazine derivatives 15a-d, respectively. The reaction of compound 5 with phenylisothiocyanate (16) in 1,4-dioxan containing triethylamine gave the 3-thiazol-2yl-pyridine derivative 17, the structure of which was based on analytical and spectral data. Thus, the ¹H NMR spectrum showed a singlet at δ 3.89 corresponding to pyridine CH_2 , a singlet at δ 5.77 for the thiazole CH_2 and a multiplet at δ 7.29-7.38 corresponding to the phenyl protons. The reaction of compound 5 with either malononitrile (9a) or ethyl cyanoacetate (9b) gave the polyfunctionally substituted pyrano[2,3-d]thiazole derivatives 18a and 18b, respectively. The analytical and spectral data of the latter products are in agreement with the proposed structures. Thus, the ¹H NMR spectrum of **18a** showed a triplet at δ 1.16 corresponding to the ester CH_3 group, a singlet at δ 2.59 for the CH₃ group, a quartet at δ 4.22 for the ester CH₂ group, a singlet (D₂O exchangeable) at δ 4.88 for the NH₂ group, a singlet at δ 5.99 for the pyran H-3 and a multiplet at δ 7.35-7.47 for the phenyl and pyran protons and a singlet (D₂O exchangeable) at δ 8.92 for the NH group. The reaction of compound 5 with elemental sulfur in 1,4-dioxan containing triethylamine gave thiophene derivative 19 (see Scheme III). On the other hand, the reaction of compound 5 with either aniline (20a), 2-amino-3-cyano-4,5,6,7-tetrahydro-benzo[b]thiophene (20b) or ethyl-2-amino-4,5,6,7tetrahydrobenzo[b]thiophene-3-carboxylate (20c) in an oil bath at 140 °C gave the anilide derivatives 21a-c, respectively. The structures of the latter products were established on the basis of analytical and spectral data (see Scheme III).


Compound **21a** reacts with either benzaldehyde (**6a**), p-chlorobenzaldehyde (**6b**), p-methoxybenzaldehyde (**6c**) or salicyaldehyde (**6d**) to give the arylidene derivatives **22a-d**, respectively. On the other hand, the reaction of compound **21a** with either malononitrile (**9a**), or ethylcyanoacetate (**9b**) gave the substituted pyrano[2,3-d]thiazole derivatives **23a,b**.


It is convenient to notice that compounds, 5, 8a-d, 11a,b, 14a-d, 18a-d, 21a-c, 22a-d and 23a,b can exist in either Z or E structures. However, according to the concept of push-pull alkenes that was reviewed by Sandstrom,¹⁷ where the physicochemical properties and chemical reactivity of numerous functionalized compounds of that type have been extensively studied,¹⁸⁻²³ and the recent studies which showed that the 4-oxothiazolidines with one and two exocyclic double bonds attached to a thiazolidine ring, respectively, exemplify typical push-pull compounds which can exist in Z/E equilibrium depending on temperature and the nature of the solvent.²⁴ One can say that compounds 5, 8a-d, 11a,b, 14a-d, 18a,b, 21a-c, 22a-d and 23a,b are examples of push-pull conjugated alkenes which are existing in a Z/E equilibrium mixture. Moreover, the resonance effect existing in these compounds due to the presence of the phenyl-diene moiety enhances such equilibrium.


Biological Activity

The diverse biological activities of thiazoles and their fused derivatives encouraged us to test and study the biological activities of some newly synthesized products. The antibacterial and antifungal activities were tested. Synthesis of Thiazoles and Their Fused Derivatives

Scheme I

23a, X = NEb, X = O

Biological Screening

All described compounds were tested in vitro for antimicrobial activity against two bacterial isolates, one saprophytic (*Escherichia coli*) and the other parasitic (*Xanthomonas citri*) and for antifungal activity against one saprophytic (*Aspergillus fumigatus*) and two phytopathogenics (*Rhizoctonia solani* and *Fusarium oxysporum*).

The culture medium was the nutrient agar for bacteria and Czapek's Dox agar medium for fungi. The sterile medium was inoculated with the test organism so that each 100 mL of the medium received 1 mL of a 24-hour culture of the bacterium or 7-day-old culture of spore suspension of the fungus. The solutions of the tested compounds at 25 ug/mL in dimethylformamide (DMF) were placed separately in the cup (8 mm diameter). The plates were incubated at 28 °C and the resulting inhibition zones were measured.

DMF as a blank exhibited no antimicrobial activity against any of the tested organisms used.

As can be seen from the results, most of the synthesized compounds showed antibacterial and/or antifungal activities. Compounds **5**, **8a**, **8d**, **11a**, **16**, **21b**, **22c**, **22d**, 23a and 23b were highly active against *Escherichia coli* and *Xanthomonas citri*, whereas 8b, 8c, 11b and 17 showed moderate activity against this microorganism. And 14a and 22b showed the lowest activities. Compounds 8a, 8d, 14c and 14d were highly active against *A-fumigatus*, compounds 5, 14b, 17, 21b, 22a, 22d, 23a and 23b showed moderate activity against *A. fumigatus*, *R. solani* and *F. oxysparum* and compounds 8b, 8c and 19 were not active against either *R. solani* or *F. oxysparum*. The bacterial isolates were more susceptible to the synthesized compounds than isolated fungals. The recorded inhibition zones are summarized in Table 1.

Compounds **14c** and **14d** which have 4-methyl or 4methoxy instead of 4-chloro on the benzene ring, showed higher activity than the corresponding compounds **14a** and **14b**. Compound **14c** showed the highest activity against the two bacteria, *E. coli*, *X. citri* and also towards the three fungi *A. fumigatums*, *R. solani*, and *F. oxysporum*.

EXPERIMENTAL

All melting points are uncorrected. IR spectra were recorded for (KBr) discs on a Pye Unicam SP-1000 Spectrophotometer. ¹H NMR Spectra were measured on a Varian EM-390-200 MHz and Bruker AVANCE DRX-500-300 MHz in CD₃SOCD₃ as solvent, using TMS as internal standard, and chemical shifts are expressed as δ . ¹³C NMR spectra were measured on a Bruker AVANCE DRX-500. Analytical data were obtained from the Micro Analytical Data Unit at Cairo University, Giza, Egypt.

Ethyl 2-(4,5-dihydro-4-oxothiazol-2-yl)-3-phenyl-2butenoate (5)

Procedure for the Synthesis of (5)

To a dry mixture of compound **3** (0.01 mol, 1.87 g), acetophenone (1.20 g, 0.01 mol) was added in the presence of ammonium acetate (2.0 g). The reaction mixture was heated in an oil bath (at 140 °C) for 1 h, then left to cool. The solid product formed after boiling in ethanol was collected by filtration.

Compound 5

Yellow crystals from ethanol, yield 76% (2.19 g) and m.p. 130 °C. IR (υ /cm⁻¹) = 2994-2899 (CH₃, CH₂), 1715 (2 C=O), 1677 (C=N), 1630 (C=C). MS: *m/z* (%) = 289 (20.8%), 243 (44.6%), 148 (100%), 103 (11.2%). ¹H NMR δ = 1.12 (t, 3H, *J* = 7.61 Hz, CH₃), 2.50-2.61 (s, 3H, CH₃), 4.22 (q, 2H, *J* = 7.61 Hz, CH₂), 5.41 (s, 2H, CH₂), 7.33-7.40 (m, 5H, C₆H₅). ¹³C NMR δ = 14.2, 19.9 (2 CH₃), 32.37, 59.2 (2 CH₂), 87.3, 88.3 (2 CH), 121.58 (C-phenyl), 126.74,

 Table 1. Inhibition zones in mm for some of the synthesized compounds at a concentration level of 25 ug/mL

Compound	E.coli	X.citri	A.fumigatus	R.solani	F.oxysporum
5	26	26	12	10	12
8a	28	26	19	17	13
8b	18	10	6	5	0
8c	16	12	8	0	4
8d	28	29	30	15	18
11a	26	26	16	18	19
11b	21	16	5	3	0
14a	13	12	6	5	4
14b	18	20	16	4	4
14c	32	34	32	20	17
14d	28	30	28	18	18
16	34	30	18	14	18
17	22	15	14	14	18
19	34	14	12	6	0
21a	28	26	16	15	16
21b	32	30	17	16	18
21c	11	11	4	5	4
22a	26	18	14	13	18
22b	12	10	8	8	8
22c	38	28	18	16	16
22d	26	28	15	18	16
23a	26	20	14	16	17
23b	26	20	16	13	17

128.95 (2 CH), 142.45, 146.39 (2 C=C), 166.26 (C=N), 167.01 (C=O), 174.21 (C=O). ¹³C NMR δ (DMSO) (DEPT): *Up lines*: 14.28 (CH₃), 19.99 (CH₃), 87.39 (CH), 88.38 (CH), 126.74 (CH), 128.95 (CH). *Down lines*: 32.37 (CH₂), 59.25 (CH₂). *Calculated for* C₁₅H₁₅NO₃S (289.35): C, 62.26; H, 5.23; N, 4.84; S, 11.08. Found: C, 62.10; H, 5.26; N, 5.02; S, 10.88.

Ethyl 2-(5-benzylidene-4,5-dihydro-4-oxothiazol-2-yl)-3-phenyl-2-butenoate (8a), ethyl 2-[5-(4-chlorobenzylidene)-4,5-dihydro-4-oxothiazol-2-yl]-3-phenyl-2-butenoate (8b), ethyl 2-[5-(4-methoxybenzylidene)-4,5dihydro-4-oxothiazol-2-yl]-3-phenyl-2-butenoate (8c), ethyl 2-[5-(2-hydroxy-benzylidene)-4,5-dihydro-4-oxothiazol-2-yl]-3-phenyl-2-butenoate (8d), 5-benzylidene-4,5-dihydro-4-oxothiazol-2-yl)-N,3-diphenylbut-2-enamide (22a), 5-(4-chlorobenzylidene)-4,5-dihydro-4oxothiazol-2-yl)-N,3-diphenylbut-2-enamide (22b), 5-(4-methoxybenzylidene-4,5-dihydro-4-oxothiazol-2yl)-N,3-diphenylbut-2-enamide (22c), 5-(2-hydroxybenzylidene-4,5-dihydro-4-oxothiazol-2-yl)-N,3-diphenylbut-2-enamide (22d)

General procedure

An equimolar amount of either compound 5 (0.01

mol, 2.89 g) or **21a** (3.36 g, 0.01 mol), in ethanol (30 mL) containing pipridine (0.5 mL) either benzaldehyde (0.01 mol, 1.06 mL), p-chlorobenzaldehyde (1.40 g, 0.01 mol), p-methoxy-benzaldhyde (1.36 g, 0.01 mol), or salicylaldehyde (1.22 g, 0.01 mol) was added. The reaction mixture was heated under reflux for 3 h. then poured into an ice/water mixture containing a few drops of hydrochloric acid. The solid product formed, in each case, was collected by filtration.

Compound 8a

Yellow crystals from ethanol, yield 61% (2.3 g), m.p. 106-108 °C. IR (υ /cm⁻¹) = 3056 (CH aromatic), 2976-2869 (CH₃, CH₂), 1690, 1685 (2 C=O), 1668 (C=N), 1633 (C=C). ¹H NMR δ = 1.36 (t, 3H, *J* = 7.02), 2.66 (s, 3H, CH₃), 4.21 (q, 2H, *J* = 7.02 Hz, CH₂), 7.28-7.39 (m, 11H, C₆H₄, C₆H₅, CH). ¹³C NMR δ = 13.6, 14.6 (2 CH₃), 60.8 (CH₂), 120.6, 122.8, 124.7, 126.4, 126.8, 128.0, 135.8, (2 C₆H₅), 155.8, 156.8, 158.2 (C=C), 166.1 (C=N), 169.7, 188.9 (2 C=O). *Calculated for* C₂₂H₁₉NO₃S (377.11): C, 70.00; H, 5.07; N, 3.71; S, 8.50. Found: C, 69.76; H, 4.95; N, 4.02; S, 8.73.

Compound 8b

Yellow crystals from ethanol, yield 67% (3.0 g), m.p. 180 °C. IR (υ /cm⁻¹) = 3060 (CH aromatic), 2939-2862 (CH₃, CH₂), 1685 (C=O), 1660 (C=N), 1593 (C=C). ¹H NMR δ = 1.36 (t, 3H, *J* = 6.59 Hz, CH₃), 2.49 (s, 3H, CH₃), 4.22 (q, 2H, *J* = 6.59 Hz, CH₂), 7.25-7.46 (m, 10H, C₆H₄, Ph, CH). ¹³C NMR δ = 13.8, 14.9 (2 CH₃), 61.3 (CH₂), 122.6, 123.3, 123.9, 126.0, 127.1, 127.5, 134.6, 144.9 (2 C₆H₅), 156.5, 157.2, 159.9 (C=C), 166.8 (C=N), 170.6, 187.4 (2 C=O). *Calculated for* C₂₂H₁₈ClNO₃S (411.90). C, 64.15; H, 4.40; N, 3.40; S, 7.78. Found: C, 64.15; H, 4.54; N, 3.73; S, 8.02.

Compound 8c

Yellow crystals from ethanol; yield 86% (3.5 g) and m.p. 180 °C. IR (υ /cm⁻¹) = 3056 (CH aromatic), 2932-2835 (CH₃, CH₂), 1685 (C=O), 1660 (C=N), 1592 (C=C). ¹H NMR δ = 1.40 (t, 3H, *J* = 7.01 Hz, CH₃), 2.51, 3.04 (2s, 6H, 2CH₃), 4.22 (q, 2H, *J* = 7.01 Hz, CH₂), 7.32-7.44 (m, 10H, C₆H₄, Ph, CH). ¹³C NMR δ = 14.3, 18.6 (2 CH₃), 43.5 (ester CH₂), 55.3 (CH₃), 55.4 (OCH₃), 59.5 (CH₂), 89.4, 114.8 (2 CH), 120.4 (C=C), 122.5, 124.9, 126.1, 129.3, 131.8 (C₆H₅, C₆H₄), 152.1 (C=C), 160.4 (C=N), 166.8, 167.1 (2 C=O). ¹³C NMR δ (DEPT): *Up lines*: 14.3 (CH₃), 55.3 (CH₃), 55.4 (OCH₃), 89.4, 114.8, 124.9, 126.1, 129.3 (CH aromatic); 131.8 (CH). *Down lines*: 59.5 (CH₂). *Calculated for* C₂₃H₂₁NO₄S (407.48): C, 67.79; H, 5.19; N, 3.44; S, 7.87. Found: C, 67.91; H, 5.43; N, 3.71; S, 8.22.

Compound 8d

Yellow crystals from ethanol, yield 53.6% (2.3 g) and m.p. 175 °C. IR (ν /cm⁻¹) = 3056 (CH aromatic), 2932, 2835 (CH₃, CH₂), 1685 (C=O), 1660 (C=N), 1592 (C=C). ¹H NMR δ = 1.38 (t, 3H, *J* = 5.99 Hz, CH₃), 2.54 (s, 3H, CH₃), 4.24 (q, 2H, *J* = 5.99 Hz, CH₂), 7.28-7.38 (m, 10H, C₆H₅, C₆H₄, CH), 10.01 (s, 1H, OH). ¹³C NMR (DMSO) δ (ppm) = 14.3, 18.9 (2 CH₃), 55.3 (CH₃), 55.46 (OCH₃), 59.56 (CH₂), 89.48, 114.86 (2 CH), 120.49 (C=C), 126.18, 129.38, 131.82 (3CH), 152.19 (C=C), 160.46 (C=N), 166.83, 167.14 (2 C=O).¹³C NMR δ (DMSO) (DEPT): *Up lines*: 14.32 (CH₃), 55.3 (CH₃), 55.46 (OCH₃), 89.48 (CH), 114.86 (CH), 126.18 (CH), 129.38 (CH), 131.82 (CH). *Down lines*: 59.56 (CH₂). *Calculated for* C₂₂H₁₉NO₄S (393.46): C, 67.16; H, 4.87; N, 3.56; S, 8.15. Found: C, 67.63; H, 4.80; N, 3.87; S, 7.99.

Compound 22a

Pale yellow crystals from 1,4-dioxan, yield 70% (2.96 g), m.p. 201-204 °C. IR (ν /cm⁻¹) = 3465-3321 (NH), 3053 (CH aromatic), 2860 (CH₃), 1688, 1687 (2 C=O), 1655 (C=N), 1638 (C=C). ¹H NMR δ = 2.66 (s, 3H, CH₃), 7.26-7.38 (m, 16H, 3C₆H₅, CH), 8.26 (s, 1H, NH). ¹³C NMR δ = 16.3 (CH₃), 120.8, 121.8, 122.7, 122.8, 124.4, 126.6, 126.9, 127.8, 129.0, 129.3, 136.7, 146.1 (3C₆H₅), 157.3, 158.1, 159.6 (C=C), 166.4 (C=N), 171.4, 186.9 (2 C=O). *Calculated for* C₂₆H₂₀N₂O₂S (424.51): C, 73.56; H, 4.75; N, 6.60; S, 7.55. Found: C, 73.85; H, 4.88; N, 6.31; S, 7.73.

Compound 22b

Yellow crystals from 1,4-dioxan, yield 64% (2.93 g), m.p. 222-225 °C. IR (ν/cm^{-1}) = 3473-3327 (NH), 3060 (CH aromatic), 2880 (CH₃), 1689, 2685 (2 C=O), 1657 (C=N), 1622 (C=C). ¹H NMR δ = 2.67 (s, 3H, CH₃), 7.29-7.43 (m, 15H, 2C₆H₅, C₆H₄, CH), 8.29 (s, 1H, NH). ¹³C NMR δ = 16.7 (CH₃), 120.4, 120.9, 121.6, 122.6, 123.8, 125.3, 126.6, 127.3, 129.1, 129.7, 138.9, 147.9 (3C₆H₅), 157.0, 158.8, 159.8 (C=C), 166.7 (C=N), 170.9, 186.4 (2 C=O). *Calculated for* C₂₆H₁₉ClN₂O₂S (458.96). C, 68.04; H, 4.17; N, 6.10; S, 6.99. Found: C, 68.33; H, 4.24; N, 5.83; S, 7.32. *Compound 22c*

Orange crystals from acetic acid; yield 72% (3.27 g) and m.p. 170-174 °C. IR (ν /cm⁻¹) = 3469-3331 (NH), 3059 (CH aromatic), 2896 (CH₃), 1689, 1687 (2 C=O), 1658 (C=N), 1633 (C=C). ¹H NMR δ = 2.58, 3.16 (2s, 6H, 2CH₃), 7.29-7.40 (m, 15H, 2C₆H₅, C₆H₄, CH), 8.33 (s, 1H, NH). ¹³C NMR δ = 16.4, 22.9 (2 CH₃), 121.3, 121.9, 122.0, 122.3, 123.2, 124.9, 126.5, 127.1, 128.5, 129.3, 139.2,

146.4 (3C₆H₅), 156.8, 158.4, 159.5 (C=C), 166.9 (C=N), 169.5, 187.2 (2 C=O). *Calculated for* C₂₇H₂₂N₂O₃S (454.54): C, 71.34; H, 4.88; N, 6.16; S, 7.05. Found: C, 71.65; H, 5.21; N, 6.37; S, 6.7.

Compound 22d

Yellow crystals from ethanol/1,4-dioxan mixture, yield 52% (2.28 g) and m.p. 150 °C. IR (υ /cm⁻¹) = 3473-3329 (NH), 3050 (CH aromatic), 2946 (CH₃) 1688, 1686 (2 C=O), 1654 (C=N), 1623 (C=C). ¹H NMR δ = 2.66 (s, 3H, CH₃), 7.32-7.42 (m, 15H, 2C₆H₅, C₆H₄, CH), 8.23 (s, 1H, NH), 10.26 (s, 1H, OH). ¹³C NMR δ = 16.4 (CH₃), 120.0, 122.3, 122.9, 122.1, 123.8, 123.9, 125.8, 127.1, 127.3, 127.2, 138.2, 148.4 (3 C₆H₅), 156.8, 158.4, 159.5 (C=C), 166.9 (C=N), 169.5, 187.2 (2 C=O). *Calculated for* C₂₆H₂₀N₂O₃S (440.51): C, 70.89; H, 4.58; N, 6.36; S, 7.28. Found: C, 71.16; H, 4.83; N, 6.87; S, 7.07.

Ethyl 2-(5-amino-6-cyano-7-phenyl-7H-pyrano[2,3-d]thiazol-2-yl)-3-phenyl-2-butenoate (11a) and Ethyl 2-(6-cyano-5-hydroxy-7-phenyl-7H-pyrano[2,3-d]thiazol-2-yl)-3-phenyl-2-butenoate (11b) *General procedure: Method A*

To a solution of compound **8a** (0.01 mol, 3.77 g) in ethanol (30 mL) containing triethylamine (0.5 mL), either malononitrile (0.66 g, 0.01 mol) or ethyl cyanoacetate (1.13 g, 0.01 mol) was added; the reaction mixture was heated under reflux for 4 h. The solid product formed upon pouring onto ice/water mixture was collected by filtration. *Method B*

To a solution of compound **5** (0.01 mol, 2.89 g) in ethanol (30 mL) containing triethylamine (0.5 mL), either α cyanocinnamonitrile (1.70 g, 0.01 mol) or ethyl α -cyanocinnamate (1.97 g, 0.01 mol) was added. The reaction mixture was heated under reflux for 5 h and then the reaction mixture was poured onto an ice/water mixture containing a few drops of hydrochloric acid and the formed solid product was collected by filtration.

Compound 11a

Orange crystals from ethanol, yield 56% (2.5 g) and m.p. 164-166 °C. IR (υ /cm⁻¹) = 3455-3379 (NH₂); 3059 (CH aromatic), 2931-2897 (CH₃, CH₂), 2197 (CN), 1694 (C=O); 1641 (C=N), 1595 (C=C). ¹H NMR δ = 1.21 (t, 3H, J = 6.32 Hz, CH₃), 2.66 (s, 3H, CH₃), 4.24 (q, 2H, J = 6.32 Hz, CH₂), 5.43 (s, 2H, NH₂), 7.37-7.58 (m, 11H, 2C₆H₅, pyran H-4). ¹³C NMR δ = 16.3, 18.9 (2 CH₃), 60.8 (CH₂), 59.2, 80.3 (pyran C-3, C-4), 116.9 (CN), 119.3, 120.8, 122.6, 122.8, 123.2, 123.6, 124.6, 125.5, 127.8, 128.3, 129.0, 129.9, 133.5, 138.9, 141.2, 146.4 (2 C₆H₅, thiazole C), 154.9, 167.9 (C=C), 166.4 (C=N), 169.9 (C=O). *Calculated for* C₂₅H₂₁N₃O₃S (443.52): C, 67.70; H, 4.77; N, 9.47; S, 7.23. Found: C, 67.52; H, 4.50; N, 9.31; S, 7.07.

Compound 11b

Yellow crystals from ethanol, yield 56% (2.53 g) and m.p. 90 °C. IR $(\nu/cm^{-1}) = 3575-3163$ (OH), 3065 (CH, aromatic), 2989, 2899 (CH₃, CH₂), 2195 (CN), 1677 (C=O), 1650 (C=N), 1633(C=C). ¹H NMR δ = 1.02-1.14 (t, 3H, J= $5.44 \text{ Hz}, \text{CH}_3$, $3.30 (s, 3H, \text{CH}_3)$, 4.23 (q, 2H, J = 5.44 Hz,CH₂), 7.12-7.51 (m, 11H, 2C₆H₅, pyrane H-4), 8.56 (s, 1H, OH). ¹³C NMR δ = 16.0, 18.6 (2 CH₃), 60.4 (CH₂), 59.0, 80.6 (pyran C-3, C-4), 116.6 (CN), 119.0, 121.8, 122.4, 122.9, 123.0, 123.4, 124.3, 124.7, 125.5, 127.6, 128.0, 129.3, 129.9, 133.5, 138.7, 140.9, 156.6 (2 C₆H₅, thiazole C), 154.7, 167.3 (C=C), 166.0 (C=N), 169.5 (C=O). Calcu*lated for* C₂₅H₂₀N₂O₄S (444.11): C, 67.55; H, 4.54; N, 6.30; N, 7.21. Found: C, 67.34; H, 4.28; N, 6.57; N, 7.48. Ethyl 2-(4-oxo-4,5-dihydro-thiazol-2-yl)-3-phenyl-4-(phenyl-hydrazono)-2-butenoate (14a). Ethyl 4-[(4chloro-phenyl)-hydrazono]-2-(4-oxo-4,5-dihydro-thiazol-2-yl)-3-phenyl-2-butenoate (14b). Ethyl 2-(4-oxo-4,5-dihydro-thiazol-2-yl)-3-phenyl-4-(p-tolyl-hydrazono)-2-butenoate (14c). Ethyl 4-[(4-methoxy-phenyl)hydrazono]-2-(4-oxo-4,5-dihydro-thiazol-2-yl)-3-phenyl-2-butenoate (14d)

General Procedure

To a cold solution (0-5 °C) of compound **5** (2.89 g, 0.01 mol g) in acetic acid/ethanol (1:4) (50 mL) containing sodium hydroxide (5 mL, 10%) either benzenediazonium chloride (0.01 mol), 4-chlorobenzene-diazonium chloride (0.01 mol), 4-methylbenzenediazonium chloride (0.01 mol) or 4-methoxy-benzenediazonium chloride (0.01 mol) [prepared by adding sodium nitrite (0.02 mol, 1.38 g) solution to a cold solution (0-5 °C) of aniline (0.93 g, 0.01 mol), 4-chloroaniline (1.27 g, 0.01 mol), 4-methylaniline (1.07 g, 0.01 mol) or 4-methoxyaniline (1.23 g, 0.01 mol) containing the appropriate amount of hydrochloric acid with continuous stirring] was added with stirring. The reaction mixture was left at 0-5 °C for 4 h and the formed solid product, in each case, was collected by filtration.

Compound 14a

Red crystals from ethanol, yield 84% (3.30 g) and m.p. 92 °C. IR (ν /cm⁻¹) = 3450-3325 (NH), 3066 (CH aromatic), 2993, 2900 (CH₃, CH₂), 1684, 1674 (2 C=O), 1660 (C=N), 1633 (C=C). ¹H NMR δ = 1.36 (t, 3H, *J* = 6.41 Hz, CH₃), 4.23 (q, 2H, *J* = 6.41 Hz, CH₂), 5.33 (s, 2H, thiazole CH₂), 6.34 (s, 1H, CH=N), 7.32-7.41 (m, 10H, 2C₆H₅), 8.21 (s, 1H, NH). ¹³C NMR δ = 19.0 (CH₃), 39.8 (thiazole CH₂), 60.8 (CH₂), 119.8, 120.3, 122.9, 123.9, 124.0, 124.2, 125.3, 126.6, 128.0, 129.0, 134.9, 138.9, 140.0, 143.2 (2 C₆H₅, thiazole C-2), 153.7, 166.4 (C=C), 159.3, 163.1 (2 C=N), 169.3, 198.5 (2 C=O). *Calculated for* C₂₁H₁₉N₃O₃S (393.46): C, 64.10; H, 4.87; N, 10.68; S, 8.15. Found: C, 63.87; H, 4.76; S, 8.44.

Compound 14b

Dark brown powder from ethanol, yield 70% (2.89 g), m.p. 155 °C. IR (ν /cm⁻¹) = 3460-3326 (NH), 3066 (CH aromatic), 2970, 2900 (CH₃, CH₂), 1687, 1679 (2 C=O), 1650 (C=N), 1632 (C=C). ¹H NMR δ = 1.34 (t, 3H, *J* = 7.05 Hz, CH₃), 4.21 (q, 2H, *J* = 7.05 Hz, CH₂), 5.31 (s, 2H, thiazole CH₂), 6.22 (s, 1H, CH=N), 7.24-7.38 (m, 9H, C₆H₅, C₆H₄), 8.29 (s, 1H, NH). ¹³C NMR δ = 18.8 (CH₃), 39.1 (thiazole CH₂), 60.5 (CH₂), 119.6, 120.8, 121.3, 123.3, 124.6, 124.9, 126.2, 128.1, 129.6, , 137.3, 142.4, 148.7 (2 C₆H₅, thiazole C-2), 153.5, 166.8 (C=C), 159.1, 163.3 (2 C=N), 169.7, 198.0 (2 C=O). *Calculated for* C₂₁H₁₈ClN₃O₃S (427.90): C, 58.94; H, 4.24; N, 9.82; S, 7.49. Found: C, 58.89; H, 4.69; N, 9.67; S, 7.82.

Compound 14c

Brown crystals from ethanol, yield 76% (3.10 g), m.p. 162 °C. IR (ν /cm⁻¹) = 3448-3321 (NH), 3066 (CH aromatic), 2969, 2908 (CH₃, CH₂), 1688, 1680 (2 C=O), 1661 (C=N), 1638 (C=C). ¹H NMR δ = 1.33 (t, 3H, *J* = 7.33 Hz, CH₃), 3.01 (s, 3H, CH₃), 4.25 (q, 2H, *J* = 7.33 Hz, CH₂), 5.42 (s, 2H, thiazole CH₂), 6.28 (s, 1H, CH=N), 7.26-7.35 (m, 9H, C₆H₅, C₆H₄), 8.32 (s, 1H, NH). ¹³C NMR δ = 18.6, 24.8 (2 CH₃), 39.0 (thiazole CH₂), 60.7 (CH₂), 119.4, 120.4, 123.6, 125.8, 126.1, 128.3, 128.9, 130.2.6, 137.6, 144.4, 148.9 (C₆H₅, C₆H₄, thiazole C-2), 153.2, 166.3 (C=C), 159.0, 163.8 (2 C=N), 168.2, 198.6 (2 C=O). *Calculated for* C₂₂H₂₁N₃O₃S (407.49): C, 64.85; H, 5.19; N, 10.31; S, 7.87. Found: C, 64.60; H, 5.10; N, 10.55; S, 8.16. *Compound 14d*

Brown crystals from ethanol, yield 89% (3.76 g) and m.p. 148 °C. IR (ν /cm⁻¹) = 3466-3321 (NH), 3067 (CH aromatic), 2970, 2900 (CH₃, CH₂), 1677 (C=O), 1650 (C=N), 1588 (C=C). ¹H NMR δ = 1.19 (t, 3H, *J* = 6.52 Hz, CH₃), 3.22 (s, 3H, CH₃), 4.28 (q, 2H, *J* = 6.49 Hz, CH₂), 5.46 (s, 2H, CH₂), 6.26 (s, 1H, CH=N), 7.32-7.41 (m, 9H, C₆H₄, C₆H₅), 8.67 (s, 1H, NH). ¹³C NMR δ = 18.6, 29.3 (2 CH₃), 39.2 (thiazole CH₂), 60.8 (CH₂), 119.1, 120.6, 123.8, 125.9, 126.2, 128.6, 128.9, 130.2, 137.8, 144.0, 149.4 (C₆H₅, C₆H₄, thiazole C-2), 153.1, 166.2 (C=C), 159.2, 163.6 (2 C=N), 168.1, 198.3 (2 C=O). *Calculated for* C₂₂H₂₁N₃O₄S (423.48): C, 62.40; H, 5.00; N, 9.92; S, 7.57. Found: C, 62.14; H, 5.35; N, 10.27; S, 7.79.

4-(4,5-Dihydro-4-oxothiazol-2-yl)-2,5-diphenylpyridazin-3(2H)-one (15a), 4-(4,5-dihydro-4-oxothiazol-2-yl)-2-(4-chlorophenyl)-5-phenylpyridazin-3(2H)-one (15b), 4-(4,5-dihydro-4-oxothiazol-2-yl)-2-(4-methylphenyl)-5phenylpyridazin-3(2H)-one (15c) and 4-(4,5-dihydro-4-oxothiazol-2-yl)-2-(4-methoxyphenyl)-5-phenylpyridazin-3(2H)-one (15d)

General procedure

A solution of either **14a** (3.93 g, 0.01 mol), **14b** (4.27 g, 0.01 mol), **14c** (4.07 g, 0.01 mol) or **14d** (4.23 g, 0.01 mol) in ethanol (50 mL) containing sodium hydroxide (0.50 g) was heated under reflux for 4 h. The formed solid product, upon pouring onto ice/water mixture containing hydrochloric acid (till pH 6), was collected by filtration.

Compound 15a

Pale yellow crystals from 1,4-dioxane, yield 66% (2.29 g) and m.p. 177 °C. IR (ν /cm⁻¹) = 3054 (CH aromatic), 2876 (CH₂), 1685, 1682 (2 C=O), 1659 (C=N), 1630 (C=C). ¹H NMR δ = 5.36 (s, 2H, thiazole CH₂), 6.29 (s, 1H, pyridine H-6), 7.35-7.40 (m, 10H, 2 C₆H₅). ¹³C NMR δ = 39.5 (thiazole CH₂), 120.2, 120.6, 121.8, 122.6, 124.0, 124.7, 126.0, 127.6, 137.3, 142.5, 148.1 (2 C₆H₅, pyridazine C, thiazole C-2), 154.5, 164.9 (2 C=N), 165.3, 198.6 (2 C=O). *Calculated for* C₁₉H₁₃N₃O₂S (347.39): C, 65.69; H, 3.77; N, 12.10; S, 9.23. Found: C, 65.44; H, 4.01; S, 9.01.

Compound 15b

Yellowish brown crystals from ethanol, yield 66% (2.51 g), m.p. 186-189 °C. IR (υ/cm^{-1}) = 3052 (CH aromatic), 2877 (CH₂), 1689, 1681 (2 C=O), 1656 (C=N), 1638 (C=C). ¹H NMR δ = 5.35 (s, 2H, thiazole CH₂), 6.27 (s, 1H, pyridine H-6), 7.28-7.35 (m, 9H, C₆H₅, C₆H₄). ¹³C NMR δ = 39.8 (thiazole CH₂), 120.8, 121.6, 121.9, 122.2, 123.8, 124.5, 126.7, 132.3, 134.0, 140.6, 147.8 (2 C₆H₅, pyridazine C, thiazole C-2), 153.6, 163.7 (2 C=N), 163.7, 198.9 (2 C=O). *Calculated for* C₁₉H₁₂ClN₃O₂S (381.84): C, 59.76; H, 3.17; N, 11.00; S, 8.40. Found: C, 60.03; H, 2.89; N, 10.83; S, 8.27.

Compound 15c

Brown crystals from 1,4-dioxane, yield 79% (2.85 g), m.p. 162 °C. IR (ν /cm⁻¹) = 3053 (CH aromatic), 2908 (CH₂), 1689, 1683 (2 C=O), 1655 (C=N), 1636 (C=C). ¹H NMR δ = 5.39 (s, 2H, thiazole CH₂), 6.29 (s, 1H, pyridazine H-6), 7.26-7.39 (m, 9H, C₆H₅, C₆H₄). ¹³C NMR δ = 20.8 (CH₃), 39.6 (thiazole CH₂), 119.6, 121.0, 122.6, Found: C, 66.78; H, 3.89; N, 11.57; S, 8.69.

Compound 15d

Yellow crystals from dimethylformamide, yield 69% (2.55 g) and m.p. 220-224 °C. IR (ν /cm⁻¹) = 3061 (CH aromatic), 2893 (CH₂), 1689, 1681 (2 C=O), 1658 (C=N), 1633 (C=C). ¹H NMR δ = 3.01 (s, 3H, CH₃), 5.53 (s, 2H, CH₂), 6.28 (s, 1H, pyridazine H-6), 7.27-7.38 (m, 9H, C₆H₄, C₆H₅). ¹³C NMR δ = 24.6 (CH₃), 39.8 (thiazole CH₂), 119.8, 120.2, 120.8, 121.9, 123.8, 124.0, 125.7, 126.7, 139.6, 143.5, 149.3 (2 C₆H₅, pyridazine C, thiazole C-2), 155.8, 165.2 (2 C=N), 166.6, 198.1 (2 C=O). *Calculated for* C₂₀H₁₅N₃O₃S (377.42): Calcd: C, 63.65; H, 4.01; N, 11.13; S, 8.50. Found: C, 63.83; H, 4.35; N, 11.27; S, 8.42. **5,6-dihydro-3-(4,5-dihydro-4-oxothiazol-2-yl)-1,4-di-**

phenyl-6-thioxopyridin-2(1H)-one (17)

Equimolar amounts of compound **5** (2.89 g, 0.01 mol), and phenylisothiocyanate (1.35 g, 0.01 mol), in 1,4-dioxan (30 mL) containing triethylamine (0.50 mL), were heated under reflux for 3 hr. The reaction mixture was poured onto an ice/water mixture containing a few drops of hydrochloric acid. And the formed solid product was collected by filtration.

Compound 17

Orange crystals from ethanol, yield 78% (2.94 g) and m.p. 180-184 °C. IR (ν /cm⁻¹) = 2894 (CH₂), 1689, 1682 (2 C=O); 1659 (C=N), 1636 (C=C). ¹H NMR δ = 3.89 (s, 2H, pyridine CH₂), 5.77 (s, 2H, thiazole CH₂), 7.29-7.38 (m, 10H, 2 C₆H₅). ¹³C NMR δ = 39.6 (thiazole CH₂), 120.5, 121.6, 122.8, 123.1, 123.8, 125.0, 126.1, 134.3, 136.2, 141.1, 143.6 (2 C₆H₅, pyridazine C, thiazole C-2), 166.4 (C=N), 163.5, 197.9 (2 C=O). *Calculated for* C₂₀H₁₄N₂O₂S₂ (378.47): C, 63.47; H, 3.73; N, 7.40; S, 16.94. Found: C, 63.36; H, 3.89; N, 7.65; S, 17.25.

Ethyl 2-(7-amino-5-imino-5H-pyrano[2,3-d]thiazol-2yl)-3-phenyl-2-butenoate (18a) and ethyl 2-(7-amino-5-oxo-5H-pyrano[2,3-d]thiazol-2-yl)-3-phenyl-2-butenoate (18b)

General Procedure

An equimolar amount of compound 5 (2.89 g, 0.01 mol) in ethanol (20 mL) containing triethylamine (0.5 mL) and either malononitrile (0.66 g, 0.01 mol) or ethylcyanoacetate (1.13 g, 0.01 mol) was added. The reaction mixture was heated under reflux for 6 h, and then the mixture was poured onto ice/water mixture containing a few drops of hydrochloric acid. The solid product formed, in each case, was collected by filtration.

Compound 18a

Yellow crystals from methanol yield 65% (2.34 g), m.p. 148-150 °C. IR (υ /cm⁻¹) = 3480-3321 (NH₂, NH), 3054 (CH aromatic), 2987, 2880 (CH₃, CH₂), 1688 (C=O), 1666 (C=N); 1638 (C=C). ¹H NMR δ = 1.16 (t, 3H, *J* = 6.69 Hz, CH₃), 2.59 (s, 3H, CH₃), 4.22 (q, 2H, *J* = 6.69 Hz, CH₂), 4.88 (s, 2H, NH₂), 5.99 (s, 1H, pyran H-3), 7.35-7.47 (m, 5H, C₆H₅), 8.92 (s, 1H, NH). ¹³C NMR δ = 16.3, 24.1 (2 CH₃), 56.8 (CH₂), 119.2, 122.4, 123.0, 124.9, 130.1, 143.5 (C₆H₅, thiazole C), 162.8 (C=N), 168.8 (C=O). *Calculated for* C₁₈H₁₇N₃O₃S (355.41): Calcd: C, 60.83; H, 4.82; N, 11.82; S, 9.02. Found: C, 60.75; H, 5.04; N, 12.21; S, 8.84. *Compound 18b*

Yellow crystals (from ethanol), yield 53% (1.9 g) and m.p. 145-148 °C. IR (ν /cm⁻¹) = 3058 (CH aromatic), 2990, 2876 (CH₃, CH₂), 1685, 1679 (2 C=O), 1661 (C=N), 1633 (C=C). ¹H NMR δ = 1.14 (t, 3H, *J* = 5.77 Hz, CH₃), 2.33 (s, 3H, CH₃), 4.26 (q, 2H, *J* = 5.77 Hz, CH₂), 4.68 (s, 2H, NH₂), 5.87 (s, 1H, pyran H-2), 7.32-7.42 (m, 5H, C₆H₅). ¹³C NMR δ = 16.0, 24.5 (2 CH₃), 56.3 (CH₂), 120.5, 122.9, 123.7, 124.1, 132.6, 143.8 (C₆H₅, thiazole C), 166.3, 168.0 (C=O). *Calculated for* C₁₈H₁₆N₂O₄S (356.43): C, 60.66; H, 4.53; N, 7.86; S, 9.00. Found: C, 60.87; H, 4.44; N, 8.04; 8.79.

2-(2-ethoxy-2,5-dihydro-2-hydroxy-4-phenylthiophen-3-yl)thiazol-4-(5H)-one (19)

An equimolar amount of compound 5 (2.89 g, 0.01 mol) in 1,4-dioxan (30 mL) containing triethylamine (0.5 mL) and elemental sulfur (0.32 g, 0.01 mol) was added. The reaction mixture was heated under reflux for 3 h. The reaction mixture was poured onto ice/water mixture containing a few drops of hydrochloric acid. The solid product formed was collected by filtration.

Compound 19

Orange crystals (from ethanol), yield 56% (1.80 g) and m.p. 170 °C. IR (υ /cm⁻¹) = 3444 (OH), 3064 (CH aromatic), 2991-2899 (CH₃, CH₂), 1683 (C=O), 1640 (C=N), 1588 (C=C). ¹H NMR δ = 1.36 (t, 3H, *J* = 6.11 Hz, CH₃), 4.24 (q, 2H, *J* = 6.11 Hz, CH₂), 4.84, 5.31 (2s, 4H, thiazole CH₂, thiophene CH₂), 7.34-7.41 (m, 5H, C₆H₅), 10.13 (s, 1H, OH). ¹³C NMR: δ = 16.7 (CH₃), 27.4 (thiophene CH₂), 38.8 (thiazole CH₂), 112.0 (thiophene C-2), 117.8, 122.3, 123.9, 125.3, 127.1, 128.0, 128.8 130.9, 133.4 (C₆H₅, thiophene C-3, C-4), 165.2 (C=N). *Calculated for* $C_{15}H_{15}NO_3S_2$ (321.41): Calcd: C, 56.05; H, 4. 70; N, 14.93; S, 19.95. Found: C, 55.93; H, 4.83; N, 15.21; S, 20.26. Ethyl 2-(4-oxo-4,5-dihydro-thiazol-2-yl)-3-phenyl-but-2-enoic acid phenylamide (21a). 2-(4-Oxo-4,5-dihydrothiazol-2-yl)-3-phenyl-but-2-enoic acid-(3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophen-2-yl)-amide (21b). Ethyl 2-[2-(4-oxo-4,5-dihydro-thiazol-2-yl)-3-phenylbut-2-enoyl amino]-4,5,6,7-tetrahydrobenzo[b]thio-

phene-3-carboxylate (21c)

General Procedure

An equimolar amount of compound **5** (2.89 g, 0.01 mol), in dimethylformamide (30 mL), either aniline (0.93 g, 0.01 mol), 2-amino-3-cyano-4,5,6,7-tetrahydrobenzo-[b]thiophene (1.80 g, 0.01 mol) or ethyl-2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate (2.38 g, 0.01 mol) was added. The reaction mixture was heated under reflux for 2 h and then the reaction mixture was poured onto an ice/water mixture containing a few drops of hydrochloric acid. The solid product formed, in each case, was collected by filtration.

Compound 21a

Yellow crystals (from ethanol), yield 71% (2.34 g), m.p. 190 °C. IR (ν /cm⁻¹) = 3058 (CH aromatic), 2924, 2870 (CH₃, CH₂), 1688, 1682 (3C=O), 1658 (C=N), 1623 (C=C). ¹H NMR δ = 2.78 (s, 3H, CH₃), 5.31 (s, 2H, thiazole CH₂), 7.31-7.37 (m, 10H, C₆H₅), 8.28 (s, 1H, NH). MS: *m/z* = 336 (18%), 289 (33.9%), 243 (58.8%), 148 (100%), 93 (52.2%). ¹³C NMR δ = 13.8 (CH₃), 40.1 (thiazole CH₂), 119.6, 124.8, 125.7, 126.4, 126.8, 128.6, 128.8, 135.6, 139.0 (2 C₆H₅), 154.9, 156.5 (C=C), 166.5 (C=N), 164.7, 198.9 (2 C=O). *Calculated for* C₁₉H₁₆N₂O₂S (336.41): C, 67.84; H, 4.79; N, 8.33; S, 9.53. Found: C, 67.61; H, 4.86; N, 8.03; S, 9.72.

Compound 21b

Orange-red crystals from acetic acid yield 63% (2.75 g), m.p. 108 °C. IR (ν/cm^{-1}) = 3058 (CH aromatic), 2944, 2875 (CH₃, CH₂), 1686, 1680 (2 C=O), 1655 (C=N), 1624 (C=C). ¹H NMR δ = 2.02-2.22 (s, 4H, 2CH₂), 2.31-2.36 (m, 4H, CH₂), 2.73 (s, 3H, CH₃), 5.31 (s, 2H, thiazole CH₂), 7.30-7.39 (m, 5H, C₆H₅), 8.31 (s, 1H, NH). ¹³C NMR δ = 14.2 (CH₃), 19.1 (thiazole CH₂), 20.1, 23.0, 23.1, 24.0 (cyclohexene CH₂), 116.3 (CN), 120.5, 123.7, 124.0, 126.2, 128.0, 128.3 (C₆H₅), 154.2, 156.8 (C=C), 166.1 (C=N), 165.3, 199.0 (2 C=O). *Calculated for* C₂₂H₁₉N₃O₂S₂ (421.54): C, 62.68; H, 4.54; N, 9.97; S, 15.21. Found: C, 62.41; H, 4.56; N, 10.27; S, 14.85.

Compound 21c

Yellow crystals yield 68% (3.29 g), m.p. 178 °C. IR (ν /cm⁻¹) = 3053 (CH aromatic), 2941, 2885 (CH₃, CH₂), 1689, 1682 (2 C=O), 1665 (C=N), 1631 (C=C). ¹H NMR δ = 1.16 (t, 3H, *J* = 7.01 Hz, CH₃), 2.04-2.24 (s, 4H, 2 CH₂), 2.30-2.37 (m, 4H, CH₂), 2.73 (s, 3H, CH₃), 4.22 (q, 2H, *J* = 7.01 Hz, CH₂), 5.31 (s, 2H, thiazole CH₂), 7.30-7.39 (m, 5H, C₆H₅), 8.31 (s, 1H, NH). ¹³C NMR δ = 14.0, 22.6 (2 CH₃), 19.3 (thiazole CH₂), 20.1, 23.0, 23.1, 24.0 (cyclohexene CH₂), 60.9 (ester CH₂), 119.9, 123.7, 124.9, 126.2, 128.0, 129.6 (C₆H₅), 154.6, 155.9 (C=C), 166.3 (C=N), 165.8, 198.6 (2 C=O). *Calculated for* C₂₄H₂₄N₂O₄S₂ (468.59): Calcd: C, 61.52; H, 5.16; N, 5.98; S, 13.69. Found: C, 61.75; H, 5.44; N, 6.06; S, 13.99.

2-(7-Amino-5-imino-5H-pyrano[2,3-d]thiazol-2-yl)-N,3diphenylbut-2-enamide (23a) and 2-(7-Amino-5-oxo-5H-pyrano[2,3-d]thiazol-2-yl)-N,3-diphenylbut-2-enamide (23b)

General Procedure

An equimolar amount of compound **21a** (3.36 g, 0.01 mol) in ethanol (20 mL) containing triethylamine (0.5 mL) and either malononitrile (0.66 g, 0.01 mol) or ethyl cyano-acetate (1.13 g, 0.01 mol) was added. The reaction mixture was heated under reflux for 6 h, and then the mixture was poured onto an ice/water mixture containing a few drops of hydrochloric acid. The solid product formed, in each case, was collected by filtration.

Compound 23a

Pale brown crystals from 1,4-dioxane, yield 59% (3.53 g), m.p. 166 °C. IR (ν /cm⁻¹) = 3480-3311 (NH₂, NH), 3058 (CH aromatic), 2971, 2880 (CH₃, CH₂), 1683 (C=O), 1668 (C=N), 1634 (C=C). ¹H NMR δ = 2.77 (s, 3H, CH₃), 4.61 (s, 2H, NH₂), 5.48 (s, 1H, pyrane H-3), 7.30-7.37 (m, 10H, 2 C₆H₅), 8.22, 8.36 (2s, 2H, 2NH). ¹³C NMR δ = 14.3 (CH₃), 122.8, 124.9, 125.0, 125.6, 125.7, 126.4, 126.7, 128.4, 128.7, 134.3, 139.6, 140.1 (2 C₆H₅), 153.9, 156.2 (C=C), 160.1, 164.6 (2 C=N), 171.9 (C=O). *Calculated for* C₂₂H₁₈N₄O₂S (402.47): Calcd: C, 65.65; H, 4.51; N, 13.92; S, 7.97. Found: C, 65.81; H, 4.81; N, 14.22; S, 8.27. *Compound 23b*

Pale brown crystals from 1,4-dioxan, yield 59% (3.53 g), m.p. 166 °C. IR (ν /cm⁻¹) = 3440-3321 (NH₂, NH), 3053 (CH aromatic), 2978, 2883 (CH₃, CH₂), 1686, 1683 (2 C=O), 1655 (C=N), 1636 (C=C). ¹H NMR δ = 2.77 (s, 3H, CH₃), 4.68 (s, 2H, NH₂), 5.48 (s, 1H, pyrane H-3), 7.30-7.37 (m, 10H, 2 C₆H₅), 8.36 (s, 1H, NH). ¹³C NMR δ = 14.0

 $\begin{array}{l} ({\rm CH}_3),\,120.3,\,122.6,\,124.8,\,125.0,\,125.2,\,125.9,\,126.2,\\ 127.9,\,128.7,\,134.0,\,139.3,\,141.8\,(2\ {\rm C}_6{\rm H}_5),\,153.9,\,156.2\\ ({\rm C=C}),\,160.6\,({\rm C=N}),\,166.4,\,169.8\,(2\ {\rm C=O}).\,Calculated\,for\\ {\rm C}_{22}{\rm H}_{17}{\rm N}_3{\rm O}_3{\rm S}\,(403.45){\rm :}\,{\rm Calcd}{\rm :}\,{\rm C},\,65.49{\rm ;}\,{\rm H},\,4.25{\rm ;}\,{\rm N},\,10.42{\rm ;}\\ {\rm S},\,7.95.\,{\rm Found}{\rm :}\,{\rm C},\,65.81{\rm ;}\,{\rm H},\,4.81{\rm ;}\,{\rm N},\,10.33{\rm ;}\,{\rm S},\,8.77. \end{array}$

Received May 15, 2008.

REFERENCES

- Sondhi, M. S.; Singh, N.; Johar, M.; Kumar, A. *Bioorg. Med. Chem.* 2005, *13*, 6158.
- Yang, Z.; Li, Q.; Qian, X. Bioorg. Med. Chem. 2005, 13, 4864.
- Turan-Zitouni, G. Z. A.; Kaplancikli, M. T.; Chevallet, Y. P.; Kaya, D. *Eur. J. Med. Chem.* 2005, 40, 607.
- 4. Li, Z.; Yang, Q.; Qian, X. Bioorg. Med. Chem. 2005, 13, 3149.
- Narayana, B.; Vijaya-Raj, K. K.; Ashalatha, B. V.; Kumari, N. S.; Sarojini, B. K. *Eur. J. Med. Chem.* 2004, 39, 867.
- Vicini, P. L.; Geronikaki, A.; Incerti, M.; Busonera, B.; Poni, G.; Cabras, C. A.; Colla, P. *Bioorg. Med. Chem.* 2003, 11, 4785.
- 7. Sun, C.; Ji, S. J.; Liu, Y. J. Chin. Chem. Soc. 2008, 55, 292.
- (a) Miwatashi, S.; Arikawa, Y.; Kotani, E.; Miyamoto, M.; Naruo, K.-I.; Kimura, H.; Tanaka, T.; Asahi, S.; Ohkawa, S. *J. Med. Chem.* 2005, 48, 5966. (b) Papadopoulou, C.; Geronikaki, A.; Hadjipavlou-Litina, D. *Il Farmaco* 2005, 60, 969.
- (a) Kumar, Y.; Green, R.; Borysko, K. Z.; Wise, D.-S.; Wotring, L. L.; Townsend, L.-B. J. Med. Chem. 1993, 36, 3843. (b) Ei-Subbagh, H. I.; Al-Obaid, A. M. Eur. J. Med.

Chem. 1996, 31, 1017.

- Pereira, R.; Gaudon, C.; Iglesias, B.; Germain, P.; Gronemeyer, H.; de Lera, A. R. *Bioorg. Med. Chem. Lett.* 2006, 16, 49.
- Tsuruni, Y.; Ueda, H.; Hayashi, K.; Takase, S.; Nishikawa, M.; Okuhara, S.; Kiyoto, M. J. Antibiot. 1995, 48, 1066.
- (a) Millan, D. S.; Prager, R. H.; Brand, C.; Hart, P. H. *Tetrahedron* 2000, *56*, 811. (b) Wang, W. L.; Yao, D. Y.; Gu, M.; Fan, M.-Z.; Li, J. Y.; Xing, Y. C.; Nan, F. J. *Bioorg. Med. Chem. Lett.* 2005, *15*, 5284.
- Clough, J.; Chen, S.; Gordon, E.-M.; Hackbarth, C.; Lam, S.; Trias, J.; White, R. J.; Candiani, Q.; Donadio, S.; Romano, G.; Ciabatti, R.; Jacobs, J. W. *Bioorg. Med. Lett.* 2003, 13, 3409.
- Lentzen, G.; Klinck, R.; Matassova, N.; Aboul-ela, F.; Murchle, A. I. *Chem. Bio.* **2003**, *10*, 769.
- Elnagdi, M. H.; Elmoghayer, M.-R.; Hammam, A. G; Khallaf, S. A. J. Heterocycl. Chem. 1979, 16, 1541.
- Elnagdi, M. H.; Khalifa, M. A.; Ibrahim, M. K.; Elmoghayer, M. R. J. Heterocycl. Chem. 1981, 8, 877.
- 17. Sandstrom, J. Top. Stereochem. 1983, 14, 83.
- Meyers, F.; Marder, S. R.; Pierce, B. M.; Bredas, J. L. J. Am. Chem. Soc. 1994, 116, 10703.
- Chiara, J. L.; Gomez-Sanchez, A.; Bellanato, J. J. Chem. Soc. Perkin Trans. 1998, 2, 1797.
- Kleinpeter, E.; Koch, A.; Heydenreich, M.; Chatterjee, S. K.; Rudorf, W. D. J. Mol. Struct. 1995, 356, 25.
- 21. Rajappa, S. Tetrahedron 1999, 55, 7065.
- 22. Xu, Z. H.; Jie, Y. F.; Wang, M. X.; Huang, Z. T. Synthesis 2002, 523.
- 23. Markovic, R.; Baranac, M.; Juranic, N.; Macura, S.; Cekic, I.; Minic, D. *J. Mol. Struct.* **2006**, *800*, 85.