Tetrahedron Letters 54 (2013) 1747-1750

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

One-pot synthesis of indene derivatives by CF₃SO₃H-promoted reactions of benzylic alcohols and 1,3-dicarbonyl compounds

Wenxue Zhang, Yisi Dai, Haizhen Zhu, Wei Zhang*

State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China

ARTICLE INFO

Article history: Received 31 October 2012 Revised 13 January 2013 Accepted 21 January 2013 Available online 30 January 2013

Keywords: Indene Benzylic alcohols 1,3-Dicarbonyls One-pot coupling/cyclization reaction

ABSTRACT

An efficient and convenient one-pot synthesis of indene derivatives was achieved in moderate to high yields by the CF_3SO_3H promoted coupling/cyclization reaction of benzylic alcohols and 1,3-dicarbonyls for the first time. For the reactions of methoxy- or methyl- substituted diarylmethanols with 1,3-dicarbonyls, 2 equiv of CF_3SO_3H was needed to reach the best results; but for the reactions of methoxy-substituted arylethanols with 1,3-dicarbonyls, 0.6 equiv of CF_3SO_3H at lower temperatures was capable of promoting the reaction finished.

© 2013 Elsevier Ltd. All rights reserved.

Indene frameworks are frequently observed in many molecules with important biological activities such as natural products¹⁻⁸ and pharmaceuticals,⁹⁻¹⁵ and are also extensively used as ligands in metallocenes in the catalysis of olefin polymerization.¹⁶⁻¹⁸ In addition, indene derivatives are also of important applications in functional materials.^{19–21} As a result, various methods to construct indene ring systems have been reported, such as iron-catalyzed annulation of N-benzylic sulfonamides with disubstituted alkynes,²² palladium-catalyzed carboannulation 2-(2-(1-alkynyl)phenyl)malonate with arylhalides,²³ BF₃·Et₂O-mediated cycloaddition of methylenecyclopropanes with aldehydes,²⁴ copper-catalyzed [3+2] cycloaddition of α -aryldiazoesters with terminal alkynes,²⁵ Cu(OTf)₂-catalyzed rearrangement of vinylcyclopropenes,²⁶ FeCl₃-catalyzed Friedel–Crafts reaction of arylated allylic alcohols,²⁷ gold (I)-catalyzed intramolecular carboalkoxylation,²⁸ ruthenium-mediated ring-closing metathesis,²⁹ iodonium-promoted 5-endo-dig carbocyclization of 2-(2-ethynylphenyl)malonates,³⁰ and photochemical cyclization of tetrafluoropyridinyl (TFP)-substituted enediynes.³¹ Moreover, PPA (polyphosphoric acid)-mediated cyclocondensation reaction of 4-arylbutan-2-ones is also a traditional but efficient method for the synthesis of indene derivatives.^{32,33} Although so many methods have been established to construct the indene structure, the synthesis of indene derivatives by Brønsted acid catalyzed cyclocondensation of the coupling products from benzylic alcohols and 1,3-dicarbonyls is rare. It is well known that the Lewis and $Br\phi nsted$ acid catalyzed coupling of benzylic alcohols with 1,3-dicarbonyls is

a simple and efficient method for the synthesis of 2-benzyl-1,3dicarbonyls,^{34–36} and the cyclocondensation of methyl 3-benzylacetoacetates for the synthesis of methyl indene-2-carboxylates was also reported recently.³⁷ As continuation of the construction of cyclic compounds by cyclocondensation,³⁸ we report in this paper a one-pot synthesis of 2-acylindenes by the combination of the coupling of benzylic alcohols and 1,3-dicarbonyls and cyclocondensation (Scheme 1). To the best of our knowledge, the present work provides the first example of Brφnsted acid-catalyzed one-pot synthesis of indene derivatives from benzylic alcohols and 1,3-dicarbonyls.

Initial attempts at the coupling/cyclization reaction were made with benzylic alcohols **1a** and ethyl acetoacetate **2a** as substrates because the efficient coupling or intramolecular cyclization reactions in the previous studies^{32,33,37} were limited to arylmethanols in which aromatic rings bear an electron-donating group, such as an alkyl or an alkyloxy group.

Of the catalysts and solvents screened (Table 1), only trifluoromethanesulfonic acid (TfOH) gave the desired cyclization product **3a** as the main product, and the best result (65% yield) was obtained from the combination of 2.0 equiv of TfOH and dichloromethane (entry 5), while reactions under other conditions gave lower yields of **3a** or no **3a** (entries 1–4 and 6–10). Apparently, these conditions were different from conditions reported by Ohwada for the cyclization of ethyl 3-arylmethylacetoacetate in which the large quantity of TfOH (10–50 equiv) was needed.³⁷ Comparatively, treating substrate **1a** and **2a** with TiCl₄ in dichloromethane leads to only the coupling product **5a** (entry 1), and **3a** was not detected even after a prolonged reaction time or elevating the reaction temperature. Similarly, treating substrate **1a** and **2a** with PPA also gave only

^{*} Corresponding author. Tel.: +86 931 891 2582. E-mail address: zhangwei6275@lzu.edu.cn (W. Zhang).

^{0040-4039/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2013.01.088

Scheme 1. Synthesis of 2-acylindene derivatives by the one-pot reaction of benzylic alcohols and 1,3-dicarbonyls.

~

Table 1

Screening catalysts and optimization of reaction conditions

	MeO OH	+ $\underbrace{O O}_{OEt} \xrightarrow{acid} MeO$	Ph O OEt +	MeO Ph O + OH +	MeO OEt	
	1a	2a	3a	4a	5a	
Entry	Solvent	Acid	<i>t</i> (h)	<i>T</i> (°C)	Product	Yield (%)
1	$CH_2Cl_2^a$	2 Equiv TiCl ₄	12	0-rt	5a	32
2	$CH_2Cl_2^a$	2 Equiv SnCl ₄	12	0-rt	3a + 5a	40 + 10
3	$CH_2Cl_2^a$	0.5 Equiv TfOH	12	0-rt	5a	55
4	CH ₂ Cl ₂ ^a	1.0 Equiv TfOH	12	0-rt	3a + 5a	50 + 20
5	$CH_2Cl_2^a$	2.0 Equiv TfOH	2	0-rt	3a	65
6	$CH_2Cl_2^a$	10 Equiv TfOH	2	0-rt	3a + 4a	13 + 20
7	CH ₃ CN ^a	2.0 Equiv TfOH	12	0-rt	5a	40
8	DCE ^a	2.0 Equiv TfOH	12	0-rt	Complex	_
9	None ^b	5 Equiv PPA	24	rt	5a	84
10	None ^c	5 Equiv PPA	12	60	5a	85

^a The reaction was carried out with **1a** (1.0 mmol), **2a** (1.2 mmol), and 0.5–10 equiv of catalyst which was slowly added in solvent (20 mL) at 0 °C, and the reactions mixture was allowed to reach to room temperature.

^b The reaction was carried out with **1a** (1.0 mmol), **2a** (1.2 mmol), and 5 equiv of PPA (polyphosphoric acid) with no solvent at room temperature.

^c The reaction was carried out with **1a** (1.0 mmol), **2a** (1.2 mmol), and 5 equiv of PPA with no solvent at room temperature and the reactions mixture was allowed to reach to 60 °C.

Table 2

One-pot coupling/cyclization reaction of benzylic alcohols and 1,3-dicarbonyls promoted by trifluoromethanesulfonic acid^a

	R^1 R^2	$\overset{OH}{\vdash}_{R^3}$ $\overset{O}{+}_{R^4}$	$R^5 = \frac{0.6-2}{CH}$	cl ₂ 0-r.t °C	R^1	R^3 O R^5 R^4	+ R^1	R^3 O + R^4 OH R^1	R^3 R^2 R^4 R^5	$+ \underset{R^2}{\overset{R^3}{\underset{R^2}{\overset{R^3}{\underset{R^4}{\overset{R^3}{\underset{R^4}{\overset{R^3}{\underset{R^4}{\overset{R^3}{\underset{R^4}{\overset{R^3}{\underset{R^4}{\overset{R^3}{\underset{R^4}{\underset{R^4}{\overset{R^3}{\underset{R^4}{\underset{R^4}{\overset{R^3}{\underset{R^4}{\underset{R^4}{\overset{R^3}{\underset{R^4}{R^4}{\underset{R^4}{R^4}{\underset{R^4}{\atopR^4}{\atopR^4}{\underset{R^4}{R^4}{\underset{R^4}{R^4}{R^4}{\atopR^4}{R^4}{R^4}{R^4}{R^4}{R^4}{R^4}{R^4}{$) DH
	1	a-j	2a-d			3a-u	4d, 4h-i,	4k, 4q, 4t	3'q-u	4'q,t	
Entry		Substrate				Time (h)	Product		Yield (%)		
		\mathbb{R}^1	R ²	R ³		\mathbb{R}^4	R ⁵			3:4	
1	1a	OMe	Н	Ph	2a	Me	OEt	2	3a		65
2	1a	OMe	Н	Ph	2b	Me	Me	12	3b		70
3	1a	OMe	Н	Ph	2c	Me	Ph	12	3c		55
4	1a	OMe	Н	Ph	2d	Ph	OEt	12	3d + 4d	4:1	53
5	1b	OMe	OMe	Ph	2a	Me	OEt	1	3e		84
6	1b	OMe	OMe	Ph	2b	Me	Me	1	3f		90
7	1b	OMe	OMe	Ph	2c	Me	Ph	8	3g		50
8	1b	OMe	OMe	Ph	2d	Ph	OEt	12	3h + 4h	7:1	55
9	1c	Cl	Н	Ph	2a	Me	OEt	24	3i + 4i	1:1	38
10	1c	Cl	Н	Ph	2b	Me	Me	24	3j		40
11	1d	Н	Н	Ph	2a	Me	OEt	24	3k + 4k	4:1	60
12	1e	OMe	Н	Me	2a	Me	OEt	12	31		40^{b}
13	1f	OMe	OMe	Me	2a	Me	OEt	2	3m		60 ^b
14	1f	OMe	OMe	Me	2b	Me	Me	12	3n		80 ^b
15	1f	OMe	OMe	Me	2c	Me	Ph	12	30		84 ^b
16	1f	OMe	OMe	Me	2d	Ph	OEt	12	3р		60 ^b
17	1g	Me	Н	Ph	2a	Me	OEt	12	3q + 4q	3q:3q′ = 2:1	51
									3q′ + 4q'	4q:4q' = 2:1	
18	1g	Me	Н	Ph	2b	Me	Me	12	3r + 3r'	3r:3r' = 2:1	72
19	1g	Me	Н	Ph	2c	Me	Ph	12	3s + 3s'	3s:3s' = 2:1	64
20	1ĥ	Me	Me	Ph	2a	Me	OEt	24	3t + 4t	3t:3t' = 2:1	72
									3ť		
21	1h	Me	Me	Ph	2b	Me	Me	24	3u + 3u ′	3u:3u' = 2:1	87
22	1i	Н	OMe	Ph	2a	Me	OEt	24	5i	_	с
23	1j	Н	Me	Ph	2b	Me	Me	24	5j	-	с

^a The reaction was carried out with 1 (1.0 mmol), 2 (1.2 mmol), and 2 equiv of TfOH which was slowly added in CH_2Cl_2 (20 mL) at 0 °C, and the reactions mixture was allowed to reach to room temperature.

^b The reaction was carried out with **1** (1.0 mmol), **2** (1.2 mmol), and 0.6 equiv of TfOH which was slowly added in CH₂Cl₂ (20 mL) at -10 °C, then the reactions mixture was allowed to reach to room temperature.

^c Yield of the coupling product **5** and no cyclization products **3** and **4** were formed.

Figure 1. X-ray crystal structure of product 3c.

the coupling product **5a** (entries 9 and 10), even at an elevated temperature. Thus, using 2.0 equiv of TfOH as the promoter in dichloromethane at 0 $^{\circ}$ C was selected as the optimized condition for the synthesis of **3a**.

Under the optimized condition described above, the reactions of a group of benzylic alcohols **1a–h** and 1,3-diarbonyls **2a–d** were examined.³⁹ In most cases, the substrates underwent the one-pot reaction smoothly to afford the corresponding products **3** in moderate to good yields (Table 2, entries 1–11). Moreover, the better results could be obtained for the reactions of 1-arylethanol **1e–f** with **2a–d** under the catalysis of only 0.6 equiv of trifluoromethanesulfonic acid (TfOH) at -10 °C in CH₂Cl₂ (Table 2, entries 12–16).

Among these results, the reaction of substrate **1b** with **2b** gave the best result (Table 2, entry 6). Obviously, the electron-donating

group ($\mathbb{R}^1 = \mathbb{R}^2 = OMe$) favored both the coupling reaction and the cyclization reaction. In contrast, the substrate bearing the electron-attracting substituent on the aromatic ring ($\mathbb{R}^1 = CI$) gave a poor result (Table 2, entries 9 and 10). Comparatively, the reaction of ethyl acetoacetate (**2a**) generally gave the cyclization products **3** in lower yields than the reaction of acetoacetone (**2b**); and the reaction of diarylmethanols (**1a–d**) generally gave the cyclization products **3** in higher yields than the reaction of arylethanols (**1e–1f**). Unexpectedly, for the *para*-methyl-, *para*-methoxy-substituted diarylmethanol, the cyclization reactions were totally blocked (Table 2, entries 22 and 23), and only the coupling reactions could proceed normally. All these observations are in accordance with the previously reported results for the cyclization of 2-benzyl-1,3-dicarbonyls.^{32,33,37}

In addition, it was also observed from Table 2 that the TfOHpromoted coupling/cyclization reaction of ethyl 2-acylacetate (**2a** and **2d**) affords the products as a mixture of ester (**3d**, **3h**, **3i**, **3k**) and carboxylic acid (**4d**, **4h**, **4i**, **4k**) (entries 4, 8, 9, and 11). While the less reaction time (entries 1 and 5) or the smaller quantity of TfOH could stop the formation of acid (entries 12, 13, and 16).

Reactions of the unsymmetric methyl-substituted substrate **1g-h** with **2a-c** also afforded the products as mixtures (Table 2). The products were not only derived from the hydrolysis of ester, but also from a different regioselectivity which was different from that in the reactions of methoxy-substituted substrates **1a-f** with **2a-d**. All products were fully identified by ¹H NMR, ¹³C NMR, IR, and HRMS and the structure of **3c** was further confirmed by X-ray crystallography (Fig. 1).³⁹

A plausible mechanism was proposed for the formation of indene derivatives from the TfOH-promoted coupling/cyclization reactions of benzylic alcohols and 1,3-dicarbonyl compounds according to the results and Ohwada's study³⁸ (Scheme 2).

In summary, we have developed a mild and efficient method for the one-pot synthesis of indene derivates in moderate to high yields by trifluoromethanesulfonic acid (TfOH)-promoted

Scheme 2. A plausible reaction mechanism for the formation of 2-acylindenes in the presence of trifluoromethanesulfonic acid.

coupling/cyclization reaction of benzylic alcohols and 1,3-dicarbonyls. For the reactions of methoxy- or methyl-substituted diarylmethanols with 1,3-dicarbonyls, 2 equiv of TfOH was needed to give better results; but for the reactions of methoxy-substituted arylethanols with 1,3-dicarbonyls, 0.6 equiv of TfOH at lower temperatures was capable of promoting the reaction finished.

Acknowledgment

We are grateful to the National Nature Science Foundation of China (Grant No. 20872056) for financial support.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013.01. 088.

References and notes

- 1. Majetich, G.; Shimkus, J. J. Nat. Prod. 2010, 73, 284-298.
- Liang, G. X.; Xu, Y.; Seiple, I. B.; Trauner, D. J. Am. Chem. Soc. 2006, 128, 11022– 11023.
- Wang, Y.; Mo, S. Y.; Wang, S. J.; Li, S.; Yang, Y. C.; Shi, J. G. Org. Lett. 2005, 7, 1675–1678.
- 4. Korte, A.; Legros, J.; Bolm, C. Synlett 2004, 13, 2397-2399.
- Zhang, H. J.; Tan, G. T.; Santarsiero, B. D.; Mesecar, A. D.; Hung, N. V.; Cuong, N. M.; Soejarto, D. D.; Pezzuto, J. M.; Fong, H. H. S. J. Nat. Prod. 2003, 66, 609–615.
- Beukes, D. R.; Davies-Coleman, M. T.; Kelly-Borges, M.; Harper, M. K.; Faulkner, D. J. J. Nat. Prod. 1998, 61, 699–701.
- Harrowven, D. C.; Newman, N. A.; Knight, C. A. Tetrahedron Lett. 1998, 39, 6757– 6760.
- Aknin, M.; Miralles, J.; Kornprobst, J. M.; Faure, R.; Gaydou, E. M.; Esnault, N.; Koto, B. Y.; Clardy, J. Tetrahedron Lett. 1990, 31, 2979–2982.
- Koike, T.; Hoashi, Y.; Takai, T.; Nakayama, M.; Yukuhiro, N.; Ishikawa, T.; Hirai, K.; Uchikawa, O. J. Med. Chem. 2011, 54, 3436–3444.
- Yang, L. H.; Butora, G.; Jiao, R. X.; Pasternak, A.; Zhou, C. Y.; Parsons, W. H.; Mills, S. G.; Vicario, P. P.; Ayala, J. M.; Cascieri, M. A.; MacCoss, M. J. Med. Chem. 2007, 50, 2609–2611.
- 11. Clegg, N. J.; Paruthiyil, S.; Leitman, D. C.; Scanlan, T. S. J. Med. Chem. 2005, 48, 5989–6003.
- Watanabe, N.; Ikeno, A.; Minato, H.; Nakagawa, H.; Kohayakawa, C.; Tsuji, Junichi J. Med. Chem. 2003, 46, 3961–3964.
- Park, C. H.; Siomboing, X.; Yous, S.; Gressier, B.; Luyckx, M.; Chavatte, P. Eur. J. Med. Chem. 2002, 37, 461–466.
- Reich, S. H.; ohnson, T.; Wallace, J. M. B.; Kephart, S. E.; Fuhrman, S. A.; Worland, S. T.; Matthews, D. A.; Hendrickson, T. F.; Chan, F.; Meador, J., III; Ferre, R. A.; Brown, E. L.; DeLisle, D. M.; Patick, A. K.; Binford, S. L.; Ford, C. E. J. Med. Chem. 2000, 43, 1670–1683.
- Ouimet, N.; Chan, C. C.; Charleson, S.; Claveau, D.; Gordon, R.; Guay, D.; Li, C. S.; Ouellet, M.; Percival, D. M.; Riendeau, D.; Wong, E.; Zamboni, R.; Prasit, P. Bioorg. Med. Chem. Lett. 1999, 9, 151–156.
- Cadierno, V.; Diez, J.; Pilar, G. M.; Gimeno, J.; Lastra, E. Coord. Chem. Rev. 1999, 147, 193–195.
- 17. Zargarian, D. Coord. Chem. Rev. 2002, 157, 233-234.
- 18. Leino, R.; Lehmus, P.; Lehtonen, A. Eur. J. Inorg. Chem. 2004, 16, 3201-3222.

- Barberá, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T. Angew. Chem., Int. Ed. 1998, 37, 296–299.
- 20. Yang, J.; Lakshmikantham, M. V.; Cava, M. P. J. Org. Chem. 2000, 65, 6739–6742.
- 21. Akbulut, U.; Khurshid, A.; Hacioğlu, B.; Toppare, L. Polymer **1990**, 31, 1343– 1351.
- Liu, C. R.; Yang, F. L.; Jin, Y. Z.; Ma, X. T.; Cheng, D. J.; Li, N.; Tian, S. K. Org. Lett. 2010, 12, 3832–3835.
- Guo, L. N.; Duan, X. H.; Bi, H. P.; Liu, X. Y.; Liang, Y. M. J. Org. Chem. 2006, 71, 3325–3327.
- 24. Shi, M.; Xu, B.; Huang, J. W. Org. Lett. 2004, 6, 1175-1178.
- 25. Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 17268-17269.
- 26. Shao, L. X.; Zhang, Y. P.; Qi, M. H.; Shi, M. Org. Lett. 2007, 9, 117-120.
- Wang, J. L.; Zhang, L. X.; Jing, Y. F.; Huang, W.; Zhou, X. G. Tetrahedron Lett. 2009, 50, 4978–4982.
- 28. Dubé, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 12062-12063.
- Coyanis, E. M.; Panayides, J. L.; Fernandes, M. A.; Koning, C. B.; Willem, A. L. J. Organomet. Chem. 2006, 691, 5222–5239.
- 30. Khan, Z. A.; Wirth, T. Org. Lett. 2009, 11, 229-231.
- 31. Alabugin, I. V.; Kovalenko, S. V. J. Am. Chem. Soc. 2002, 124, 9052-9053.
- Ahn, J. H.; Shin, M. S.; Jung, S. H.; Kang, S. K.; Kim, K. R.; Rhee, S. D.; Jung, W. H.; Yang, S. D.; Kim, S. J.; Woo, J. R.; Lee, J. H.; Cheon, H. G.; Kim, S. S. J. Med. Chem. 2006, 49, 4781–4784.
- Romines, K. R.; Lovasz, K. D.; Mizsak, S. A.; Morris, K.; Seest, E. P.; Han, F.; Tulinsky, J.; Judge, T. M.; Gammill, R. B. J. Org. Chem. **1999**, 64, 1733–1737.
- Thirupathi, P.; Kim, S. S. Tetrahedron 2010, 66, 2995–3003.
 Huang, W.; Wang, J. L.; Shen, Q. S.; Zhou, X. G. Tetrahedron Lett. 2007, 48, 3969–
- 3973.
- 36. Yasuda, M.; Somyo, T.; Baba, A. Angew. Chem., Int. Ed. 2006, 45, 793-796.
- 37. Kurouchi, H.; Sugimoto, H.; Otani, Y.; Ohwada, T. J. Am. Chem. Soc. 2010, 132, 807-815.
- 38. Zhou, Y. H.; Qian, L. F.; Zhang, W. Synlett 2009, 5, 843-847.
- 39. Synthesis of 3a: A 50 mL round-bottom flask was charged with 1a (1 mmol), 2a (1.2 mmol), anhydrous CH₂Cl₂ (20 mL) and a stirring bar. After the solution was cooled to 0 °C and stirred for 10 min, CF₃SO₃H (2 mmol) was added portion wise, and the reactions mixture was allowed to reach rt. The mixture was stirred for 2 h at room temperature till 1a disappeared completely, 2 mL water poured into the flask, and the mixture extracted with ethyl acetate (3 × 15 mL). The combined organic layers were dried with anhydrous Na₂SO₄, and concentrated in vacuo. The residue was isolated by flash column chromatography on silica gel to give the products 3a (65%).

Compound **3a**: Yellow grease; ¹H NMR (400 MHz, CDCl₃) δ : 7.40 (d, *J* = 8.4 Hz, 1H), 7.24–7.16 (m, 3H), 7.06–7.04 (m, 2H), 6.87 (dd, *J* = 2.4, 8.4 Hz, 1H), 6.72 (d, *J* = 2.4 Hz, 1H), 4.76 (d, *J* = 2.0 Hz, 1H), 4.13 (dt, *J* = 3.6, 7.2 Hz, 1H), 4.02 (dt, *J* = 3.6, 7.2 Hz, 1H), 3.74 (s, 3H), 2.58 (d, *J* = 2.0 Hz, 3H), 1.09 (t, *J* = 7.2 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 165.3, 160.7, 151.9, 151.2, 139.9, 136.9, 132.7, 128.3, 127.9, 126.5, 121.9, 113.1, 109.9, 59.5, 55.7, 55.4, 14.1, 12.5 ppm. IR (KBr): 3023, 2925, 2854, 1671, 1427, 908, 737 cm⁻¹. ESI-HRMS: *m/z* Calcd for C₂₀H₂₀O₃+H⁺: 309.1485. Found 309.1487.

Compound **3c**: Yellow grease; ¹H NMR (400 MHz, CDCl₃) δ : 7.64 (d, *J* = 7.2 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 1H), 7.41–7.35 (m, 3H), 7.24–7.11 (m, 2H), 7.09–7.05 (m, 2H), 6.93 (dd, *J* = 2.4, 8.4 Hz, 1H), 6.78 (d, *J* = 1.6 Hz, 1H), 5.14 (d, *J* = 1.6 Hz, 1H), 3.76 (s, 3H),3.10 (d, *J* = 2.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ : 194.4, 160.6, 151.0, 147.2, 142.8, 140.3, 138.9, 137.4, 131.9, 128.7, 128.5, 128.2, 128.0, 126.7, 122.0, 113.6, 109.8, 56.8, 55.5, 13.6 ppm. IR (KBr): 3061, 3003, 2916, 1654, 1223, 910, 133 cm⁻¹. ESI-HRMS: *m*/*z* Calcd for C₂₄H₂₀O₂+H⁺: 341.1536. Found 341.1539.

Crystal data for compound **3c** (recrystallized from ethanol): C₂₄H₂₀O₂, *M*_r = 380.25, trigonal, *a* = 28.7569(13) Å, *b* = 28.7569(13) Å, *c* = 11.5446(10) Å, *β* = 90.00°, *V* = 8267.8(9) Å³, clear light yellow plate, *Dc* = 1.375 g cm⁻³, *T* = 296 (2) K, space group P2(1)/*c*, *Z* = 4, μ(MoKa) = 0.71073 mm⁻¹, 2θ_{max} = 52.64, 4107 reflection collected, 2382 unique (*R*_{init} = 0.0838) which was used in all calculations. Final w*R*(*F*²) = 0.1381 (all data). CCDC file No. 899272.