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1. Introduction

Biaryls are one of the most important classesrgamic compounds, and are found in dyes

[1-3], natural products [4], pharmaceutical compisifb], advanced materials [6] and the backbones

of some ligands [7,8] for metal catalysts. Over plast several decades, much effort has been devoted

to the synthesis of biarylsia the coupling of aromatic compounds. The Pd-catlyblimann

coupling reaction [9-11] is a versatile techniqoe the synthesis of biaryls, and many studies have

focused on the Ullimann coupling reaction in waterconjunction with heterogeneous Pd catalysts

[12,13]. Aryl iodides were initially used in suctudies because the C-I bond is readily activatezltdu

low dissociation energy of this bond compared whibse of the C-Br and C-Cl bonds [14-18].

Metal nanoparticles immobilized by solid suppahgrally exhibit improved catalytic activity

compared to their bulk metal counterparts becdusg have high surface-to-volume ratios along with

greater concentrations of available active catalgties per unit area. In many cases, however, the

leaching of Pd species into the reaction mediunuiodaring the reaction [19-21], and consequently

metal nanopatrticles tend to lose their catalytitvelg during use because of decreasing the amofint

catalyst or Ostwald ripening [22,23]. Our own groupuccessfully developed linear

polystyrene-stabilized metal nanoparticles withlimptions to several reactions in water [24-26] and

release-and-catch system for soluble Pd speciesater using linear polystyrene as an efficient

reservoir [27,28]. On the other hand, it has béeught that the metal nanoparticles catalyzed i@act



proceed either in solution by leached species othensurface of nanoparticles [19-21,29,30]. In the
course of our research on the Hiyama coupling i@actatalyzed by linear polystyrene-stabilized PdO
nanoparticles (PS-PdONPs), we determined that bedlctions in solution and on the surface of
nanoparticles were involved in the catalytic cyatel that the reaction sequence was different flam t

conventional mechanism [31]. Our continuing interes the reaction mechanism of the catalytic
reaction in water with linear polystyrene-stabitizametal nanoparticles as a catalyst led us to exami

the Ullmann coupling reaction using PS-PdNPs in ghesent work. This study demonstrated that

PS-PdNPs exhibit unique reactivity for Ullmann clng reaction in aqueous solutions.

2. Experimental

2.1 Preparation of PS-PdNPs by reduction with 4-methyl phenylboronic acid (1a)

To a screw-capped vial with a stirring bar wereeztlti3 mg of polystyrene (0.13 mmol of styrene uynit)
Pd(OAc) 8.4 mg (37umol), 4-methylphenylboronic acid 0.012 g (880l), and 1.5 mol-t: aqueous
KOH solution (3 mL). After stirring at 90 °C forlg the aqueous solution was decanted. Subsequently,
the polystyrene stabilized Pd nanoparticles werehed with water (5 x 3.0 mL), MeOH (1 x 3.0 mL),

and E£O (5 x 3.0 mL).

2.2 Preparation of PS-PANPs by reduction with NaBH, (1b)



To a screw-capped vial with a stirring bar wereeztliti3 mg of polystyrene (0.13 mmol of styrene unit)
Pd(OAc) 8.4 mg (37umol), and water (2 mL). After adding methanol simntof NaBH; (0.37 mol- L%,

1 mL) dropwise, the mixture was stirring at 25 W 1 h, and then the aqueous solution was decanted.
Subsequently, the polystyrene stabilized Pd nanicfes were washed with water (5 x 3.0 mL), MeOH

(1 x 3.0 mL), and EO (5 x 3.0 mL).

2.3 Preparation of PS-PdNPs by reduction with benzyl alcohol (1c)

To a screw-capped vial with a stirring bar wereeztlti3 mg of polystyrene (0.13 mmol of styrene unit)
Pd(OAc) 8.4 mg (37umol), benzylalcohol 12 mg (0.11 mmol), and 1.5 mdlaqueous KOH solution

(8 mL). After stirring at 90 °C for 24 h, the agueosolution was decanted. Subsequently, the
polystyrene stabilized Pd nanoparticles were washtddwater (5 x 3.0 mL), MeOH (1 x 3.0 mL), and

Et,O (5 x 3.0 mL).

2.4 Determination of loading of the palladium

PS-PdNPsl@a-1c; 2.9 mg) was placed in a screw-capped vial ana &aeled 13 M nitric acid (5
mL). The mixture was heated at 80 °C to dissolvegetely. After cooled to room temperature, the
solution was adjusted to 50 mL by water and theasueed the amount of Pd metal by ICP-AES analysis

(1a: 15.3 ppmab: 15.0 ppmlc: 15.1 ppm).



2.5 Typical procedures for Ullmann coupling reaction

To a screw-capped vial with a stirring bar werdexti4-bromotoluene (86.4 mg, 0.5 mmol),
PS-PdNPs (2.9 mg, 1.5 mol% of Pd), and 1.5 mibhgueous NaOH solution (1 mL). After stirring at
80 °C for 3 h, the reaction mixture was cooleddaonn temperature by immediately immersing the vial
in water (~20 °C) for about 10 min. After separgtithe catalyst and the aqueous phase by
centrifugation, the aqueous phase was decantechvBexx catalyst was washed withGH(5 x 3.0
mL) and diethyl ether (5 x 3.0 mL), which were thaded to the aqueous phase. The aqueous phase
was extracted eight times with diethyl ether. Thenbined organic extracts were dried over MgSO

and concentrated under reduced pressure. The preds@nalyzed biH NMR.

3. Results and discussion

Linear polystyrene-stabilized Pd nanoparticles HeiBHPs,1a-1c) [32] were prepared using
4-methylphenylboronic acid, NaBHand benzyl alcohol as reductants. An X-ray pHeteon
spectroscopy (XPS) analysis showed binding enar@3%.0 and 340.2 eV, which assigned to Pgh3d
and Pd3gl, for palladium, respectively (Figure 1). Transnmussklectron microscopy (TEM) images
showed Pd nanoparticles were dispersed on lindgstgcene with average particle size of 2.7 + 0.3

nm for 1la and 4.1 = 0.7 nm fotb, respectively. In the case b€, aggregates with 5 nm or more were



observed (Figure 2).

Pd(0)

Pd(0)

Intensity /cps

Pd3ds, Pd3ds,,

344 342 340 338 336 334 332 330
Binding Energy /eV

Figure 1 XPS spectrum of PS-PdNPs.
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Figure 2 TEM micrographs and size distributionslaf1c (scale bar = 20 nm).

The effect of the Pd nanopatrticle size was firstreied by performing the Ullmann coupling
reaction of 4-bromotoluene in a 1.5 mét-aqueous NaOH solution at 80 °C for 3 h, using arathas
the external reductant. The desired coupling prodas obtained efficiently only in the case lai
indicating that the size of nanopatrticles has aiBgant effect on the catalytic activity (Table dntries
1-3). In addition, the leaching of Pd into the teat medium appears to be a challenge in this nagtho
because the amount of leaching increased with asarg particle size [33,34]. Running the reaction
with ethanol or 2-propanol as the external redudtamered the yield of the desired product (entdes
and 5), even though Zhamegal. has reported that 2-propanol is an excellent solaad reductant [10].
To better understand the different performancethefreductants, the reduction of PgBly various
alcohols in a 1.5 mol-t aqueous NaOH solution at 80 °C was monitored byvid\spectroscopy.
After heating a mixture of PdBand methanol (10 equiv), the disappearance op#ak at 368 nm

corresponding to Pl was observed within 2 h (Figure 3a), indicating teduction of P4 to Pd®. In
7



contrast, no reduction was observed when usingnether 2-propanol under the same conditions

(Figures 3b and 3c).

Table 1. Effect of size of Pd nanoparticles and externalicéaht.

PS-PdNPs
‘ B (1a: 1.5 mol% of Pd) - O
= NaOH (3 equiv), additive, O
H,0, 80 °C, 3 h
0.5 mmol
entry additive yield (%)?
1 MeOH (3 equiv) 85
2° MeOH (3 equiv) <1
3¢ MeOH (3 equiv) <1
4 EtOH (3 equiv) trace
5 i-PrOH (3 equiv) trace

2 NMR yield. ® PS-PdNPs (1b) prepared by NaBH,
was used as a catalyst. © PS-PdNPs (1c) prepared
by BnOH was used as a catalyst.
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Figure 3. UV-vis spectra of PdBrin a 1.5 mol/L agueous NaOH solution at 80 °C:ifjahe presence

of MeOH, (b) in the presence of EtOH, (c) in thegance of isopropanol.

The scope of the reaction was subsequently studragloying various aryl halides (Table 2).
Both electron-rich and electron-deficient aryl bides were found to be applicable, affording the
desired coupling products in good vyields (entrie$).1When the reaction was performed at 50 °C,
similar yields were obtained with either 4-bromabamnifluoride or bromobenzene. In contrast, the
yield was decreased dramatically when using 4-btolmene or 4-bromoanisole, suggesting that the

oxidative addition of the aryl halide is the ratt@mining step. The Ullmann coupling reaction of

9



4-bromonitrobenzene proceeded with formation of desired product in good yield only in the
presence of TBAC (entry 5), likely due to the higklting point of 4-bromonitrobenzene (ca. 125 °C).
In addition, steric hindrance associated with thbsgate clearly retarded the Ullmann coupling
reaction, such that 2-bromotoluene gave a low yieltlile no product was obtained with either
1-bromom-xylene or 1-bromonaphthalene (entries 6-8). Whechldrotoluene was used as the
substrate, the yield of the coupling product wag, las predicted, due to the difficulty of cleavaije
C-Cl bond (entry 9). However, the yield obtaineahirthe reaction of 4-iodotoluene was unexpectedly
lower than that from 4-bromotoluene (entry 10) [Bbfontrast to previous works by other researchers
[9-13]. Given the ease of the cleavage of C-X boin@ difference in the yields obtained from
4-iodotoluene and 4-bromotoluene is attributed ddations in the rate of reduction to re-form®d
species. Indeed, a quantitative yield was achiewden the Ullmann coupling reaction of
4-iodotoluene was performed in the absence of methssing a large amount of PS-PdNPs (50 mol%
of Pd). No coupling product was obtained from tleaction of 4-bromoanisole using Pds the
catalyst, although the coupling proceeded, givifg-dimethoxybiphenyl in 20% yield, in the presence
of PdBE (entries 11 and 12). In addition, the reductioPdBr by methanol in a 1.5 mol“Laqueous
NaOH solution at 80 °C was confirmed by UV-vis dpescopy, whereas little reduction occurred in

the case of PdFigure 3a and Figure 4).
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Table 2. Ullmann coupling reaction of aryl halide in water.

PS-PdNPs
(1a: 1.5 mol% of Pd)
Ar—X > Ar—Ar
0.5 mmol NaOH (3 equiv),
MeOH (3 equiv),
H,0, 80 °C, 3 h
entry Ar X yield (%)?
1 phenyl Br 71 (66)°
2 4-methylpheny! Br 85 (8)°
3 4-methoxyphenyl Br 63 (7)b
4 4-trifluoromethylphenyl Br 75 (76)b
5 4-nitrophenyl Br 44 (73)°
6 2-methylphenyl Br 14
7 2,6-dimethylphenyl Br 0
8 1-naphtyl Br 0
9 4-methylphenyl Cl 30
10 4-methylphenyl I 9 (99)d
11° 4-methoxyphenyl Br 20
12 4-methoxyphenyl Br 0

2 NMR yield. ° 50 °C, 3 h. ¢ In the presence of TBAC. ¢ 50 mol% of Pd
was used. © PdBr, was used as the catalyst. f Pdl, was used as the

catalyst.
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Figure 4. UV-vis spectra of Pdlin a 1.5 mol/L aqueous NaOH solution at 80 °Che presence of

MeOH.

When the reusability of the catalyst was examimkstreasing in yield was observed (Figure

5). Catalytic deactivation would be caused by desirey of the catalyst amount because leaching of Pd

[34] and slightly smaller Pd nanoparticle were aonéd by ICP-AES and TEM, respectively (Figure

6). Decrease in catalytic activity was also obsgmen the reaction time for the recycling trialasw

extended to 5 h. Although no palladium specieh@reaction medium after the reaction was observed

by ICP-AES analysis, TEM observation suggested @stwpening occurred (Figure 7).
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Figure 5. A recyclability test for PS-PdNPs in Ullmann caagl reaction of 4-bromotoluene in a 1.5

mol- L™* aqueous NaOH solution at 80 °C in the presendéefdH.
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Figure 6 TEM micrographs and size distributions of the remed catalyst after™run (reaction time
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Figure 7 TEM micrographs and size distributions of the remed catalyst after"5run (reaction time

=5 h).

Deuterium labeling experiments were also condudtedbtain further mechanistic details
(Scheme 1). The control reaction produced a 66%l €& coupling product, whereas reactions with

CH3OD or CD;OD furnished the biphenyl in 16% or 8% vyields, exgjvely. Because both the @BID
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and CROD gave lower yields, it appears that both cleavafjeC-H bond of methanol by-H
elimination and O-H bond such as oxidative addittonPd"” species [36] or deprotonation from

methanol on the metal surface [37] include in thialytic cycle.

PS-PdNPs =

Br (1a: 1.5 mol% of Pd) S

- =
NaOH (3 equiv), X |
e | CH3OH (4.5 equiv),
0,
.5 mmo H,0, 50 °C, 3 h o
PS-PdNPs

(1a: 1.5 mol% of Pd)

NaOH (3 equiv),

CH30D (4.5 equiv),
0,

D,0, 50 °C, 3 h 16%

PS-PdNPs
(1a: 1.5 mol% of Pd)
NaOH (3 equiv), O

CD30D (4.5 equiv),
0,
D,0, 50 °C, 3 h 8%

Y

Y

Scheme 1. Deuterium labelling experiments.

Based on the above results, we propose a mechdmighe Ullmann coupling reaction in the
presence of PS-PdNPs (Scheme 2). Following theesane® oxidative addition of two aryl halides on
the surface of the nanoparticles (as opposed tsdhdion phase), reductive elimination proceeds to
form the coupling product [38]. And then the redmctby methanol occurs to regeneraté®Pdhe

result obtained using 4-iodotoluene (Table 2, edfdy is consistent with the proposed process, in

14



which the successive oxidative addition of two drglides occurs prior to the reduction by methanol.
There is only minimal reduction of dissolved ‘Pcspecies by methanol at 50 °C (Figure 8), the
Ulimann coupling reaction of 4-bromobenzotriflu@itbok place smoothly at 50 °C (entry 4 in Table
2), and only 4% of the corresponding product wastaioed from the reaction of
4-bromobenzotrifluoride using a water-soluble mdillan species, which was prepared by dissolving
PdBp in 1.5 mol-* NaOH aqueous solution (eq 1). These results itelittzat the leaching of Pd

species into the reaction medium has a negatieetafh the Ullmann coupling reaction.

HX>/ @ %
H\X

Ar\X

Ar—X
HCHO

CH30

X X X
\ (Pd Ar—Ar

ot

HX CH30H

Scheme 2. A plausible reaction mechanism for Ullmann cougliraction.
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Figure 8. UV-vis spectra of PdBrin a 1.5 mol/L aqueous NaOH solution at 50 °Chia presence of

MeOH.

PdBr; in NaOH,,
(1.5 mol% of Pd) =
B (3 equiv of NaOH)

‘ > AN
F\C = MeOH (4.5 equiv), Q/
FsC

0.50 mmol 50°C,3h
’ 4%

CF3

@

4, Conclusion

In summary, the Ullmann coupling reaction as catadly by polystyrene-stabilized Pd
nanoparticles was investigated. This catalyst skioligh catalytic activity and the catalytic actyit
was also found to be dependent on the size of matidps. The reactivity order of aryl halides was
Ar-Br > Ar-Cl > Ar-1, as a result of variations time ease with which the C-X bond could be cleaved

and with which P& could be reduced to Biby methanol. The reaction evidently starts with th

16



successive oxidative addition of two aryl halidegth the reduction of P species by methanol
occurring after the formation of the coupling produt was further determined that the reactioresak
place on the surface of the Pd nanoparticles asidi¢hching of Pd into reaction medium impedes the

reaction.
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Catalytic Specificity of Linear Polystyrene-Sabilized Pd Nanoparticles
during Ullmann Coupling Reaction in Water and the Associated
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® Polystyrene-stabilized Pd nanoparticles showed baghlytic activity for Ullmann
coupling reaction of aryl bromides in water.

® The reactivity order of aryl halides was Ar-Br >&t > Ar-I.

® The size of nanoparticles has a significant effecthe catalytic activity.

® The reaction takes place on the surface of thedPdparticles and that leaching of

Pd into reaction medium impedes the reaction.



