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Abstract  

The utilization of a dehydrated fungal biocatalyst of Aspergillus oryzae cells was 

successfully performed to achieve efficient aylation modification of a polar 

nucleoside cytarabine (ara-C). Organic solvents showed evident influence on the 

reaction catalyzed by the A. oryzae whole-cells. Except for hexane-pyridine, the 

catalytic activity and regioslectivity of the whole-cells clearly increased with 

increasing the polarity of the hydrophobic organic solvents used. The effects of some 

crucial factors on the reaction were further examined. The best reaction medium, 

hydrophobic solvent concentration, vinyl propionate/ara-C ratio, reaction temperature 

and shaking speed were confirmed as isopropyl ether (IPE)-pyridine, 30% (v/v), 90, 

30°C and 140-180 rpm, respectively. The cell biocatalyst also showed good thermal 

stabilities in both IPE-pyridine and hexane-pyridine systems. In addition, the desired 

3′-O-propional derivative of ara-C was synthesized with the yields of 88.3% and 

regioselectivity (>70%). The resulting biocatalytic system appears to be an effective 

alternative, and can thus be employed for application in highly regioselective 

modification of nucleoside analogues. 

Keywords: Fungal whole-cell; nucleoside; acylation; solvent engineering; 

regioselectivity  
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Regioselective acylation of only one out of several hydroxyl groups of 

polyhydroxyl compounds is a useful reaction for modification of the drug candidates 

bearing sugar residues to improve their clinical efficiency, which is also valuable for 

new drug/prodrug discovery and development.
1, 2

 For an example, some nucleoside 

analogues with high hydrophilicity, such as aracytosine (ara-C), have major clinical 

shortfalls in the treatment of solid tumors, since they can not easily transfer across the 

cell membrane by passive diffusion and might undergo a rapid enzymatic deactivation 

in plasma. Regioselective acylation of the nucleoside analogues could significantly 

improve their antitumor, antiviral and immunosuppressive effects. And even just a 

single acylation of those compounds many led to promising candidate compounds, 

such as the 3’-0-acyl-ara-cytidinesor the antibiotic puromycin.3, 4 In addition, 

regioselective acylation of nucleosides represents a way of introducing protecting 

groups commonly used in drug discrovery.3 However, it still remains as a significant 

challenge in classic organic chemistry.
1, 2, 5

  

During the past decade enormous efforts have been made in the development of 

synthetic methodologies for selective preparation of lipophilic derivatives of 

nucleoside analogues.
6-8

 Among these synthetic tools available to chemists, the use of 

enzymes has become one of the most attractive alternatives to the conventional 

chemical methods for its high regioselectivity, and environmental friendliness.
9
 

However, in terms of efficiency and cost-effectiveness, the need for isolated enzymes 

is disadvantageous.  

Biocatalytic reactions can also be performed by use of whole-cell biocatalysts. 

Compared to the isolated enzymes, whole-cell biocatalysts offer several benefits to 

organic synthesis.
9, 10

 This type of biocatalysts provide a natural environment for 

enzyme location, which protects the cell-bound enzymes from a rapid deactivation in 
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non-aqueous solvents.
11

 In addition, the use of microbial biocatalysts can eliminate 

the need for enzyme purification and immobilization which account for a large part in 

the enzyme cost. Until recently the majority of whole-cell mediated bio-processes 

were carried out in aqueous media for hydrophobic compounds.
12

 Only a few 

researches have been involved in non-aqueous biocatalysis with whole-cells, 

including asymmetric reduction of ketones in neat substrates,
13

 transesterification of 

oils for biodiesel production, etc.7  

The finding of microbial strains that are not only tolerant to organic solvents but 

possesses good catalytic performance plays an important role in whole-cell 

biocatalysis. A wide range of microbial cells have been explored for their capability in 

catalysis, including both bacterial and fungal strains. Among them, filamentous fungi 

have been attracted much attention. They have been used for fermentative food 

processing since ancient times, and thus are considered to be quite safe for use in 

pharmaceutical industry. Recently, several strains of filamentous fungi have been 

exploited as whole-cell biocatalysts in asymmetric reduction,
8
 kinetic hydrolysis of 

(R,S)-benzyl glycidyl ether,
14

 etc, in which the cells exhibited moderate to good 

catalytic activity and high selectivities. In continuation of our research on the “green” 

synthesis of nucleoside derivatives with potential antitumor and antiviral activities,3, 4, 

15
 we reported here the application of a whole-cell biocatalyst from Aspergillus oryzae 

in acylation of the hydrophilic nucleoside ara-C, a traditional clinical agent for 

therapy of acute leukemias. The influence of some influential factors, such as the 

types of organic solvents, substrate ratio and shaking speed, were also investigated in 
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details. In addition, the catalytic properties and stability of the fungi whole-cell 

biocatalyst in organic solvents were investigated (Scheme 1). 16, 17 

(Insert Scheme 1 here) 

Table 1 showed the effects of a series of solvents both pure and binary on the 

catalytic behaviors of A.oryzae cells in acylation of ara-C.
18

 No product was detected 

when reactions were carried out in DMSO and DMF which have high polarities [in 

terms of ET(30)]. In pyridine, the microbial cells exhibited certain catalytic activity, 

which may be due to its lower polarity than DMSO or DMF. Thus a “co-solvent” 

strategy was proposed by using the mixture of the polar solvent pyridine and another 

hydrophobic solvent as reaction medium. Table 1, entries 3-8 showed that the organic 

solvent mixtures had an evident effect on the whole-cell catalytic performances. 

Except for hexane-pyridine, the catalytic activity and regioselectivity of the cells 

clearly increased with increasing the polarity of the hydrophobic organic solvents 

used, suggesting that the polarity of the solvents was a crucial factor affecting the 

whole-cell catalyzed reaction and might be used to approximately predict the solvent 

effects. Furthermore, two kind organic solvents with a quite similar polarity 

(hexane-pyridine and IPE-pyridine) gave significant differences in product yield and 

regioselectivity, indicating that the catalytic behaviors of the A.oryzae cells in organic 

solvents were not only polarity-dependent. Hence, IPE-pyridine mixture was chosen 

as the most suitable reaction solvent due to the best reaction results achieved. 

(Insert Table 1 here) 

To get a better insight into the fungus whole-cell mediated acylation of ara-C in 
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IPE-pyridine system, the effects of several key variables were further optimized. 

Considering that varying the volume ratio of IPE to pyridine enabled the reaction 

media to controllable ET(30) values, the influence of IPE content on the reaction was 

investigated. As Fig.1a showed, when changing the IPE content from 10% (v/v) up to 

30% (v/v), the initial rate, yield and 3′-regioselectivity of the reaction went up 

markedly. Further increased in the content of hydrophobic IPE, however, caused 

visible insolubility of ara-C in the reaction media. Thus, when the IPE content was 

increased from 30% (v/v) to 40% (v/v), both the yield and 3′-regioselectivity of the 

reaction decreased.  

Fig.1b confirmed that the initial rate and yield of the whole-cell catalyzed reaction 

can be greatly boosted by increasing the VP/ara-C ratio from 10 to a high level of 50 

(mol/mol), beyond which the initial rate and yield were improved slowly, and then 

hardly changed when the ratio was above 90 (mol/mol). Excessive supply of vinyl 

acyl donor in the acylation reactions was considered to be necessary for vinyl 

ester-involved biotransformation due to the rapid enzymatic hydrolysis of vinyl esters, 

a side reaction along with the enzymatic acylation of the nucleoside. As illustrated in 

Fig.1c, the cells exhibited catalytic activity in a wide range of temperature (from 20°C 

to 50°C). The highest initial rate and yield of the reaction were achieved at 30℃. 

Temperature may be not only closely related to the thermodynamic equilibrium of the 

reactions but also involved in the deactivation of biocatalyst. It can be found that the 

increase of the temperature above 30℃  resulted in significant decrease of the 

3'-regioselectivity from 71.3% to 16.1%. This phenomenon suggested that higher 
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temperature influenced the confirmation of the enzymes active center, and thus the 

recognition site of the A.oryzae whole-cells on sugar moity of ara-C changed from 

3'-OH to 5'-OH.  

In biocatalysis, substrates have to diffuse to the active center of enzymes from 

reaction media by solutions of the salvation, and the products also need diffuse to the 

reaction media from the active center of enzymes. These processes were related to the 

mass transfer resistance, viscosity of the media and the solution of substrates and 

products in the reaction media and so on. Previous researches showed that the 

catalytic efficiency of whole-cell biocatalysts was 1-2 classes lower than free 

enzymes
19

 due to the low permeability of the whole-cell catalysts. Hence, the shaking 

speed of the reaction system was particularly important to facilitate the mass transfer 

in the reaction. Fig.1d showed that the initial rate of the reaction increased as raising 

the shaking speed at the shaking speed of <180 rpm, confirming the existence of mass 

transfer resistance in the reaction system. However, the reaction rate decreased when 

the shaking speed was above 180 rpm, which was mainly due to that the drastic 

shaking made the whole-cell catalysts adhere to the wall of reaction flasks and thus 

reduced the efficient cell concentration. Changes in shaking speeds showed little 

influence on 3'-regioselectivity of the reaction. For analysis of the statistically 

significant difference between the effect of these key variables and biocatalytic 

reaction, the Duncan’s post-test at 0.05 level was done. Results showed that the 

change of IPE concentration had no significant effect on the reaction, while changes 

of VP/ara-C and shaking speed resulted in significant differences of both initial 
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reaction rate and yield of the reaction. Variation of temperature, however, only led to 

significant difference in the initial reaction rate of the reaction. 

(Insert Fig.1 here) 

From both a practical and a theoretical viewpoint, it was of considerable 

importance to understand the stability of the whole-cell biocatalyst in the reaction 

media.
20

 As showed in Fig.2, the A. oryzae whole-cells only had a little loss of 

catalytic activity after incubated in 30% (v/v) IPE-pyridine solvent under 30 ℃-35 ℃. 

Further improving of the incubation temperature led to the decrease of their relative 

activities. When the incubation temperature was as high as 60 ℃, the relative activity 

was decreased to 37.8%. Fig.2 also illustrated the deactivation profile of the 

whole-cells of A.oryzae by incubating the cells in different co-solvent media with 

similar ET(30) values at various temperatures. The relative activity after incubation in 

30% (v/v) hexane-pyridine was almost the same like in 30% (v/v) IPE-pyridine. 

Furthermore, the Duncan’s post-test showed that there was no statistically significant 

differences between them at P<0.05. It demonstrated that the whole-cell biocatalyst 

had similar thermal stability in IPE-pyridine to that in hexane-pyridine.  

(Insert Fig.2 here) 

In conclusions, a fungus whole-cell biocatalytic system was developed for 

3′-regioselective synthesis of ara-C propionate. The catalytic behaviors of the 

whole-cell biocatalyst from A.oryzae showed a clear solvent dependence within the 

range of organic solvents tested. Binary mixture was shown to be more suitable for 

the fungus whole-cell catalyzed acylation of hydrophilic substrate than the pure polar 
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solvents. The 3'-regioselectivity and thermal stabilities observed in organic solvents 

renders the whole-cell biocatalyst a promising candidate for non-aqueous production 

of bioactive nucleoside esters. In addition, the fungus cell biocatalysts can be 

produced in abundance via cultivation and avoid tedious purification of free enzymes, 

thus enabling the whole-cell catalyst being superior to the free enzymes in cost and 

handling. It is hoped that this new whole-cell biotechnological strategy may benefit 

some related pharmaceutical processes, making them greener and more cost-effective. 

Extension of the whole-cell biocatalytic technology to modification of other bioactive 

drugs is currently under development and will be reported in due course. 
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Figure Caption 

Scheme 1 Acylation of ara-C with VP catalyzed by whole-cell（1：Ara-C；2：VP；

3：Vinyl alcohol (byproduct of the reaction); 4: Aldehyde; 5: 3’-O-propionyl ara-C; 6: 

5’-O-propionyl ara-C） 

Fig.1 (a) Effect of the IPE content on acylation of ara-C catalyzed by A.oryzae cells 

(reaction conditions: 50 mg/mL biomass, 20 mM ara-C, 600 mM VP, 4% water, 1 mL 

solvent medium, 30 ℃,140 rpm and 24 h). (b) Effects of VP/ara-C ratio (reaction 

conditions: 50 mg/mL biomass, 20 mmol/L ara-C, 4% water, 1 mL solvent medium, 

30 ℃,140 rpm and 24 h). (c) Effect of reaction temperature (reaction conditions: 50 

mg/mL biomass, 20 mmol/L ara-C, 1800 mmol/L VP, 4% water, 1 mL 

30%IPE-pyridine, 140 rpm and 24 h). (d) Effects of shaking speed (reaction 

conditions: 50 mg/mL biomass, 20 mmol/L ara-C, 1800 mmol/L VP, 4% water, 1 mL 

30% IPE-pyridine, 30 ℃and 24 h).  

Fig.2 The thermal stabilities of A.oryzae whole-cells in 30% IPE-pyridine and 30% 

hexane-pyridine (The reaction conditions: 50 mg/mL biomass, 20 mmol/L ara-C, 

1800 mmol/L VP, 4% water, 2 mL 30%IPE-pyridine, 30 ℃, 140 rpm and 24 h) 
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Tables 

 

Table 1 Acylation of ara-C with VP in various pure and binary organic solvents catalyzed by 

whole-cells of A.oryzae 
a
 

Entry Solvent
 b

 ET(30)

（kcal/mol） 

V0  

(mmol/L·h) 

Y 

(%) 

3’-Regiosel

ectivity (%) 

1 DMSO 45.10 0 0 0 

2 DMF 43.50 0 0 0 

3 Pyridine 40.20 0.52 A 16.05 A 64.16 A 

4 t-Butanol-pyridine  42.01 0.56 A 21.36 B 63.97 A 

5 t-Pentyl alcohol-pyridine 41.88 0.88 B 26.82 C 64.98 A 

6 THF-pyridine  40.17 1.27 C 40.60 D 68.83 B 

7 IPE-pyridine  40.06 3.06 D 57.37 F 69.08 B 

8 Hexane-pyridine  40.05 3.30 E 44.92 E 63.53 A 

a
 The reaction conditions: 50 mg/mL biomass, 20 mM ara-C, 600 mM VP, 4% water, 1 mL solvent 

medium, 30 ℃,140 rpm and 24 h; different capital letters denote significant differences at 

Duncan’s post-test between different solvent systems. 

b 
75% pyridine was added in the binary solvents 
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