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The reaction of 1-hydroxy-2-alkynylallylphosphonates, synthesized by the addition of the corresponding
phosphites to 2-alkynylcinnamaldehydes, under AgOTf or PhsPAuCl-AgSbFg catalyzed cycloisomerization
afforded 2-furylphosphonates in good to excellent yields. These cyclization reactions were compared
with those of 2-alkynylallyl alcohols that led to multisubstituted furans.

© 2012 Published by Elsevier Ltd.

Furan ring system is an important structural unit that appears
in many natural products' and pharmaceuticals.? Functionalized
furans are also useful intermediates in organic synthesis.> Many
heteroarylphosphonates,*> in particular furylphosphonates and
their analogues, have found applications in drug discovery.® Two
drugs involving furylphosphonic acid moiety which are useful as
therapeutic agents in treating type 2 diabetes mellitus’ are shown
in Figure 1. Organophosphonates themselves have a diverse range
of bio-related functions (e.g., glyphosate, fosfomycin).® Thus, there
is a twofold interest in furylphosphonates. Despite the synthesis of
the similar structural units reported previously by introducing a
phosphonate group directly on furan,’*® many of these methods
are not amenable to synthesize poly-substituted furylphospho-
nates. Although there are reports on gold,'° silver,'’ and palla-
dium'? catalyzed cyclization of 2-alkynylallylic alcohols leading
to multisubstituted furans in addition to a t-BuOK'® activated
route, there is no precedence for the cycloisomerization of 1-hy-
droxy-2-alkynylallylphosphonates leading to polysubstituted fur-
ylphosphonates. Cyclization of phosphonoalkynols leading to
phosphonylated isochromenes!4/isobenzofurans!®> has been re-
ported but the synthetic routes involve an entirely different reac-
tion sequence. Because of the pivotal role of gold catalysts'®'® in
cycloisomerization of alkynyl compounds, our interest in cyclizing
the phosphonoalkynols has been oriented toward gold catalysis
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which is reported in this Letter; we have discovered that simple
AgOTf also catalyzes such reactions. 2-Alkynyl cinnamaldehydes
2 and their derivatives are functionalized molecules which have
been proved as elegant precursors in synthesizing polysubstituted
furans,!” bicyclic furoazepines,'® furooxazine,'® allenes,?° pyrans,?!
and isoxazoles.?? Hence as an extension to our methodology, we
have included these reactions.

Initially, various new 1-hydroxy-2-alkynylallylphosphonates 3-
13 were synthesized from the corresponding H-phosphonates 1a-c
and 2-alkynylcinnamaldehydes 2a-i via the Pudovik reaction
(Scheme 1).23 Yields in these reactions were in the range of 88-
94%.

To accomplish the cyclization, we started with the alcohols de-
picted in Scheme 1. Initially, we performed AgOTf catalyzed cycli-
zation of 3 (Scheme 2) in 1,2-dichloroethane and obtained 58% of
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Figure 1. Drugs containing furylphosphonic acid moiety.
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Scheme 1. Synthesis of 1-hydroxyphosphonates 3-13.
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Scheme 2. Reaction of 1-hydroxyphosphonate 3 leading to furylphosphonate 14.

the product 14 when 5 mol % catalyst was used (Table 1, entry 1;
Fig. 2); increasing the amount of catalyst increased the yield of
the isolated product to 88% (entry 2). The >'P NMR monitoring of
the reaction mixture showed a single product with the entire phos-
phorus precursor being consumed. We were able to utilize this
condition to isolate cyclized products 14-24 in 85-94% yield. Un-
der the conditions employed, Cu(OTf), (entry 3), Zn(OTf),, and
Sc(OTf); were ineffective. At the same time, we were allured by
the prospect of using gold(I) complexes, since it is known that they
can effect activation of C=C bonds at low catalyst loading. Thus by
using 3% Ph3PAuCl/AgOTf, the furan 14 was obtained in 81% iso-

Figure 2. ORTEP diagram for compound 14. Selected bond lengths [A] with esd’s in
parentheses: 04-C9 1.358(3), C6-C7 1.357(3), C7-C10 1.497(3), C8-C9 1.349(3),
and C8-H8 0.9300.

lated yield (Table 1, entry 4). Gratifyingly, the use of 3%
Ph3PAuCl/AgSbFg led to 90% isolated yield (Table 2, entry 5). At a
lower loading of the catalyst (1%), the yield decreased to 62% (Ta-
ble 1, entry 6); AgSbFg alone could not effect the cyclization (Ta-
ble 1, entry 7). Different solvents like THF, toluene, acetonitrile,
and CH,Cl, were examined in the presence of 3% Ph3PAuCl/AgSbFg,
but these gave a poor yield of the furan (entries 8-11); there was
no reaction in nitromethane (entry 12). Thus our studies indicated
that either 10% AgOTf or 3% PhsPAuCl/AgSbFs was the most suit-
able catalytic system for this conversion.?* The efficacy of the
above catalytic conditions was verified with various phospho-
noalkynols which were efficiently cycloisomerized to 2-fur-
ylphosphonates in excellent yields as summarized in Table 2.

The role of gold(I) catalyst in the above cyclization was further
explored by applying the catalyst in the cycloisomerization of 2-
alkynylallyl alcohols (Scheme 3 see Supplementary data for the
synthesis of precursors) also. Interestingly, alcohol 25 upon treat-
ment with even 1% Ph3PAuCl/AgSbFs in dichloromethane at room
temperature, led to 31 in 91% yield. By varying the catalyst to 1%
Ph3PAuCl/AgOTf, the yield decreased to 72%. AuCl; in DCE'® at
70 °C afforded furan in only 10% yield. The compounds Ph3;PAuCl,
AgOTf, and AgSbFg individually were not effective in the cyclization
process. These alkynols when treated with DBU did not form the
furan whereas t-BuOK led to furan in 85% yield; however, 1 mol e-
quiv of the base was required. These data are presented in Table 3.
Hence it was concluded that PhsPAuCl/AgSbFs was the most effi-
cient catalyst for this cycloisomerization (cf. Table 4).

Table 1
Effect of catalyst/solvent in cycloisomerization of 3 (cf. Scheme 2)
Entry Catalyst (mol %) Temp. (°C)/Time (h) Solvent Yield® (%)
1 5% AgOTf 70/12 DCE 58°
2 10% AgOTf 70/3 DCE 88°¢
3 5% Cu(OTf), 70/12 DCE No reaction
4 3% Ph3PAuCl/AgOTf 70/3 DCE 81
5 3% Ph3;PAuCl/AgSbFs 70/3 DCE 90
6 1% Ph3PAuCl/AgSbFg 70/12 DCE 62°
7 5% AgSbFg 70/12 DCE Trace
8 3% Ph3PAuCl/AgSbFg 70/12 THF 20
9 3% Ph3PAuCl/AgSbFg 70/12 Toluene 42
10 3% Ph3PAuCl/AgSbFs 70/12 CH3CN 32
11 3% Ph3PAuCl/AgSbFg rt/12 DCM 15
12 3% Ph3;PAuCl/AgSbFs 70/12 Nitro-methane No reaction

2 Isolated yield.
b Starting material remained.

¢ This condition could also be used to obtain furans 14-24 in excellent yields of 85-94%.
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Table 2
Synthesis of 2-furylphosphonates® (cf. Scheme 2)

Entry Alcohol Product Yield® (%)
1 3 90
2 4 90
3 5 93
4 6 86
5 7 /' N\ o 88

n-butyl o Pl :><

0" 0~ 48

6 8 I\ o 92

n-pentyl” ~0” JPC :><

o” O 19

7 9 7'\ o 85

n-hexyl” > >p_ :><

o” O 20

8 10 91
9 11 88
10 12 92
11 13 I\ . 93

Ph ~OPr 24

O// SOPr

2 Conditions: Phosphonoalkynol (0.4 mmol), PhsPAuCl/AgSbFs (3 mol %), DCE
(2mL), 70°C, 3 h.
" Yield of the isolated product.

A possible pathway for the formation of phosphonofurans based
on the available literature'® is presented in Scheme 4. Since we
found that AgOTf also works well, it is likely that silver(I) also coor-
dinates in a manner analogous to gold(l) in these reactions.?’ In the
case of non-phosphorylated alkynols 25-30 leading to the cyclized
products 31-36, the pathway is analogous, but the reaction is more
facile using the gold(I) catalytic system. Why AgOTf alone did not
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Temperature/ time Ph o
Ph
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Scheme 3. Reaction of compound 25 leading to furan 31.

Table 3

Effect of catalyst/solvent in cycloisomerization of 25 (cf. Scheme 3)
Entry  Catalyst (mol %) Temp. (°C)/Time (h) Solvent Yield?® (%)
1 1% Ph3PAuCl/AgSbFs  rt/1 DCM 91
2 1% Ph3PAuCl/AgOTf  rt/1 DCM 72
3 1% AuCls 70/12 DCE 10
4 1% Ph3PAuCl 70/12 DCE No product
5 5% AgOTf 70/12 DCE No product
6 5% AgSbFg 70/12 DCE No product
7 DBUP 70/12 DMSO No reaction
8 t-BuOK® 70/3 DMSO 85

¢ Isolated yield.
5 1 Equiv of base was used.

Table 4
Gold(I) catalyzed synthesis of various furans® (cf. Scheme 3)

Entry Alcohol Product Yield® (%)

2 26 ]\ 52
SR
3 27 92
[\ 2
n-hexyl 0
/ \
4 28 Ph o O 84
34
5 29 f/ \E 88
Ph™ ~g Ph 35

2 Conditions: Alkynol (0.4 mmol), Ph3PAuCl/AgSbFs (1 mol %), DCM (2 mL), rt, 1 h.
b Yield of the isolated product.

work in this case is still to be answered. The likely role of phos-
phoryl P=0 in these reactions needs further investigation since
simple AgOTf worked well in the cyclization reactions leading to
phosphonofurans 14-24.

To summarize, a new route to phosphonofurans using AgOTf or
PhsPAuCl/AgSbFg as the catalytic system has been demonstrated.
The latter system can also efficiently catalyze the cyclization of
nonphosphorylated 2-alkynylallyl alcohols. Phosphonoalkynols re-
quired an elevated temperature for cyclization (hence the solvent
DCE was used) when compared to other alkynols.
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Scheme 4. A possible pathway for the formation of phosphonofurans 14-24.
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General procedure for the synthesis of 2-furylphosphonates: To a solution of
phosphonoalkynol 3 (153 mg, 0.4 mmol) in dry DCE (2 mL) were added a
solution of Ph3PAuCl (0.03 equiv) and AgSbFg (0.03 equiv) in dichloroethane
(DCE). The contents were stirred for 3 h at 70 °C. The solvent was removed
under vacuum and the crude product was purified by column chromatography
using silica gel with acetone/hexane (1:3) mixture as the eluent. X-ray data for
14 were collected on a Bruker AXS SMART diffractometer using Mo-Ky
(2=0.71073 A) radiation. The structures were solved and refined by standard
methods. Crystal data: C,,H,304P, M = 382.37, Monoclinic, Space group P2(1)/c,
a=10.342(1), b=11.184(1), c=19.725(1)A, p=121.16(1)°, V=1952.5(3) A®,
Z=4, n=0.165mm™!, data/restraints/parameters: 3431/0/246, R indices
(I>20(I)): R1=0.0596, wR2 (all data) = 0.1385. CCDC no. 867562.

Gold(I) is soft and readily coordinates with the C=C (triple) bonds. The
presence of AgSbFs or AgOTf with the PhsPAuCl perhaps enhances the softness
of the metal and allows for better activation of the triple bond. See: Lipshutz, B.
H.; Yamamoto, Y. Chem. Rev. 2008, 108, 2793.
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