ISSN 1070-4280, Russian Journal of Organic Chemistry, 2009, Vol. 45, No. 12, pp. 1834–1842. © Pleiades Publishing, Ltd., 2009. Original Russian Text © V.N. Britsun, A.N. Esipenko, A.V. Gutov, A.N. Chernega, M.O. Lozinskii, 2009, published in Zhurnal Organicheskoi Khimii, 2009, Vol. 45, No. 12, pp. 1837–1844.

Recyclization of Ethyl 1-Alkyl-5-benzoyl-6-methylsulfanyl-2-oxo-1,2-dihydropyridine-3-carboxylates into Bicyclic *N*-Alkyl-5-benzoyl-2-oxo-1,2-dihydropyridine-3-carboxamide Derivatives by the Action of Nitrogen-Containing 1,4- and 1,5-Binucleophiles

V. N. Britsun, A. N. Esipenko, A. V. Gutov, A. N. Chernega, and M. O. Lozinskii

Institute of Organic Chemistry, National Academy of Sciences of Ukraine, ul. Murmanskaya 5, Kiev, 02660 Ukraine e-mail: bvn1967@rambler.ru

Received December 11, 2008

Abstract—Reactions of ethyl 1-alkyl-5-benzoyl-6-methylsulfanyl-2-oxo-1,2-dihydropyridine-3-carboxylates with nitrogen-containing 1,4- and 1,5-binucleophiles (*o*-phenylenediamine, *o*-aminobenzenethiol, ethane-1,2-diamine, and propane-1,3-diamine) involved recyclization, leading to the formation of fused *N*-alkyl-5-benzoyl-2-oxo-1,2-dihydropyridine-3-carboxamides, diethyl 6,6'-oxybis(1-alkyl-5-benzoyl-2-oxo-1,2-dihydropyridine-3-carboxylates), and diethyl 6,6'-[ethane-1,2-diyl(or propane-1,3-diyl)diimino]bis(1-alkyl-5-benzoyl-2-oxo-1,2-dihydropyridine-3-carboxylates), depending on the reactant ratio. The sequence of formation of intermediate recyclization products was determined.

DOI: 10.1134/S1070428009120148

We recently developed a procedure for the synthesis of ethyl 1-alkyl-5-benzoyl-6-methylsulfanyl-2-oxo-1,2-dihydropyridine-3-carboxylates **Ia** and **Ib** [1]. Unlike methods reported previously [2–4], the developed procedure ensures high selectivity and utilizes accessible initial compounds. 2-Oxo-1,2-dihydropyridines **I** were used as substrates in cyclocondensations with nitrogen-containing 1,2-, 1,3-, and 1,5-binucleophiles [1, 2, 5]. The reactions of dihydropyridines **Ia** and **Ib** with propane-1,3-diamine involved recyclization [5].

The goal of the present work was to estimate the scope of application of the above recyclization and examine how the ratio of initial 1,2-dihydropyridin-2one **Ia** or **Ib** and difunctional nucleophile [*o*-phenylenediamine (IIa), o-aminobenzenethiol (IIb), ethane-1,2-diamine (Va), and propane-1,3-diamine (Vb)] affects the reaction direction. We were also interested in elucidating the reaction mechanism (i.e., the transformation sequence and structure of intermediate products) and unambiguously determining the structure of recyclization products. Recyclizations with participation of o-phenylenediamine (IIa) and o-aminobenzenethiol (IIb), leading to the formation of benzimidazole, quinoxaline, and 1,4-benzothiazine derivatives, were the subjects of recent publications [6-8], which demonstrated increased interest in such reactions.

Compounds Ia and Ib were found to react with nucleophiles IIa, IIb, Va, and Vb along two pathways. When the reactant ratio was 1:1 or 1:2, the products were not substituted 2H-pyran-2-ones (as we presumed previuously [5]) but mixtures of fused N-alkyl-5-benzoyl-2-oxo-1,2-dihydropyridine-3-carboxamide derivatives IIIa-IIId or VIa-VId and diethyl 6,6'-oxybis(1alkyl-5-benzoyl-2-oxo-1,2-dihydropyridine-3-carboxylates) IVa and IVb. The yields of compounds IIIa-IIId, VIa-VId, and IVa, IVb were 57-70, 39-69, and 24–49%. respectively. The reactions of compounds Ia and Ib with diamines Va and Vb at a ratio of 2:1 led to the formation of the corresponding diethyl 6,6'-[ethane-1,2-diyl(or propane-1,3-diyl)diimino]bis(1-alkyl-5-benzoyl-2-oxo-1,2-dihydropyridine-3-carboxylates) VIIa-VIId (Scheme 1). Dihydropyridine Ia reacted with butane-1,4-diamine (Vc) to give 6,6'-(butane-1,4divldiimino)bis(1-alkyl-5-benzoyl-2-oxo-1,2-dihydropyridine-3-carboxylate) (VIIe) as the only product even when the amount of diamine Vc was 3 equiv. Presumably, recyclization of N,N'-disubstituted 1,4-diaminobutane VIIe into 1,3-diazepine derivative does not occur because of difficult closure of seven-membered ring.

Fused pyridobenzimidazoles IIIa and IIIb, pyridobenzothiazoles IIIc and IIId, imidazopyridines VIa Scheme 1.

NHR

 NH_2

I, IV, R = Me (a), Et (b); II, X = NH (a), S (b); III, VI, VII, R = Me (a, c), Et (b, d); III, X = NH (a, b), S (c, d); V, n = 2 (a), 3 (b), 4 (c); VI, VII, n = 2 (a, b), 3 (c, d), 4 (e)..

and **VIb**, and pyridopyrimidines **VIc** and **VId** are yellowish high-melting substances that are poorly soluble in polar organic solvents. Their structure was confirmed by IR and ¹H and ¹³C NMR spectra, as well as by the transformation of compound **IIIa** into *N*-acetyl-4-benzoyl-1-oxo-1,5-dihydropyrido[1,2-*a*]benzimidazole-2-carboxamide (**VIII**) by the action of acetic anhydride in pyridine (Scheme 1).

Compounds IIIa–IIId and VIa–VId characteristically showed in the ¹H NMR spectra a doublet signal from methyl protons in the CH₃NH groups (IIIa, IIIc, VIa, VIc; δ 2.75–2.85 ppm, J = 2.7–4.5 Hz), a broadened singlet from the amide AlkNH proton (δ 8.90– 9.15 ppm), a multiplet from 6-H (IIIa–IIId, δ 8.70– 9.24 ppm), and a singlet from the endocyclic NH group (the position of the latter signal depended on the heteroring nature). The presence of benzoyl groups in molecules **IIIa–IIId**, **IVa**, **IVb**, **VIa–VId**, and **VIIa–VIe** clearly followed from the ¹³C NMR spectra of **IIIa**, **IVa**, **VIb**, and **VIIa–VIIc**, which, as well as the spectra of initial compounds **Ia** and **Ib** [1], contained a signal at $\delta_{\rm C}$ 191.0–193.2 ppm typical of carbonyl carbon atom in benzoyl group.

The molecular and crystalline structures of diethyl 6,6'-(ethane-1,2-diyldiimino)bis(5-benzoyl-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxylate) (**VIIa**) and 6,6'-(propane-1,3-diyldiimino)bis(5-benzoyl-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxylate) (**VIIc**) were

Fig. 1. Structure of the molecule of diethyl 6,6'-(ethane-1,2-diyldiimino)bis(5-benzoyl-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxylate) (**VIIa**) according to the X-ray diffraction data. Intramolecular hydrogen bonds are shown with dotted lines. Atoms related to the initial ones through the *2* axis are denoted with primed numbers. Principal bond lengths (Å) and bond angles (deg): $C^{1}-O^{1}$ 1.214(2), $C^{1}-N^{1}$ 1.426(2), $C^{1}-C^{2}$ 1.439(3), $C^{2}-C^{3}$ 1.366(3), $C^{3}-C^{4}$ 1.396(3), $C^{4}-C^{5}$ 1.421(2), $C^{4}-C^{10}$ 1.462(3), $C^{5}-N^{1}$ 1.359(2), $C^{5}-N^{2}$ 1.333(2), $N^{2}-C^{17}$ 1.463(3), $C^{17}-C^{17}$ 1.516(4); $C^{1}N^{1}C^{5}$ 124.3(2), $C^{5}N^{2}C^{17}$ 125.9(3).

determined by X-ray analysis. The structure of molecule **VIIa** and its principal geometric parameters are given in Fig. 1. Molecule **VIIa** is symmetric; it is extended along the crystallographic 2 axis. It is unusual

Fig. 2. A projection demonstrating synclinal conformation of the central ethylene fragment in molecule **VIIa**.

and interesting that the central ethanediamine fragment adopts clearly unfavorable synclinal conformation (Fig. 2): the torsion angle $N^2C^{17}C^{17'}N^{2'}$ is 63.8°, and the interatomic distance $N^2 \cdots N^{2'}$ is 2.910(2) Å (cf. the double van der Waals radius of the nitrogen atom 3.0 Å). The $N^1C^1C^2C^3C^4C^5$ ring is slightly nonplanar: deviations of atoms from the corresponding meansquare plane reach 0.078 Å). The N¹ atom is characterized by planar-trigonal bond configuration, whereas the configuration of the N^2 atom is an appreciably flattened *pyramid* (the sums of the bond angles at N^1 and N² are 359.6 and 349.5°, respectively). Effective conjugation between the lone electron pairs on N^1 and N² with π -electron system of the C⁴=C⁵ bond induces considerable shortening of formally single N¹-C⁵ and N^2-C^5 bonds [1.359(2) and 1.333(2) Å, respectively] against the distance 1.43–1.45 Å typical of purely single N_{sp2} - C_{sp2} bond [9, 10]. The dihedral angle be-tween the N¹C¹-C⁵ and C¹¹-C¹⁶ ring planes is 53.5°. One more specificity of the molecular structure of compound VIIa is formation of a quite strong [11] intramolecular hydrogen bond $N^2 H^2 \cdots O^4$ [O····N 2.631(2), O…H 1.87(3) Å; ∠OHN 143(2)°] closing six-membered $N^2C^5C^4C^{10}O^4H^2$ ring. Molecules VIIa in crystal are arranged to form infinite stacks (Fig. 3), and neither inside the stacks nor between them shortened intermolecular contacts are observed.

The structure of molecule VIIc and its principal geometric parameters are presented in Fig. 4. Extension of the $(CH_2)_n$ central bridging fragment from n = 2in molecule VIIa to n = 3 in VIIc (i.e., increase of the distance between the dihydropyridine fragments) considerably changes the molecular conformation: the torsion angles $N^2C^{17}C^{18}C^{19}$ and $N^4C^{19}C^{18}C^{17}$ are -158.7 and 178.6°, respectively. The dihydropyridine rings $N^{2}C^{1}-C^{5}$ and $N^{3}C^{20}-C^{24}$ are almost planar (deviations of atoms from the corresponding mean-square planes do not exceed 0.010 and 0.028 Å, respectively. The bond configurations at the N^1 , N^2 , N^3 , and N^4 approach planar-trigonal (the sums of the bond angles at these nitrogen atoms range from 355.5 to 359.9°). Effective conjugation between lone electron pairs on the N^1 , N^2 , N³, and N⁴ atoms, on the one hand, and π -electron systems of the C⁴=C⁵ and C²⁰=C²⁴ bonds is observed: the N¹-C⁵ [1.380(5) Å], N²-C⁵ [1.336(5) Å], N³-C²⁰ [1.363(5) Å], and N⁴-C²⁰ bonds [1.352(5) Å] are appreciably shorter than standard purely single N_{sp2} - C_{sp3} bond (1.43–1.45 Å) [9, 10]. Like compound VIIa, molecules VIIc in crystal are characterized by strong intramolecular hydrogen bond $N^4 - H^4 \cdots O^8$ with the following parameters: $O \cdots N 2.651(5), O \cdots H$

1.99(5) Å; $\angle OHN \ 141(5)^{\circ}$; as a result, six-membered H-chelate ring N⁴C²⁰C²⁴C²⁹O⁸H⁴ is formed. Molecules **VIIc** in crystal are linked through medium-strength intermolecular hydrogen bonds N²-H²···O¹ [O···N 2.905(5), O···H 2.02(3) Å; $\angle OHN \ 142(5)^{\circ}$] to form zigzag chains as shown in Fig. 5. Thus compounds **VIIa** and **VIIc** are characterized by considerably different molecular structures and crystal packings.

Some model reactions were performed to elucidate the transformation sequence leading to compounds IIIa-IIId, IVa, IVb, VIa-VId, and VIIa-VIIe (Scheme 2). Hydrolysis of 1,2-dihydropyridin-2-one Ia by the action of an aqueous-alcoholic solution of triethylamine was accompanied by elimination of the methylsulfanyl group, and the product was dipyridyl ether IVa. The latter readily reacted with ethane-1,2diamine (Va) to give compound VIIa in 83% yield, and the reaction of VIIa with excess diamine Va afforded 81% of N-methyl-8-benzoyl-5-oxo-1,2,3,5tetrahydroimidazo[1,2-a]pyridine-6-carboxamide (VIa). Compound VIa was also synthesized by reaction of ethyl 5-benzoyl-1-methyl-2-oxo-6-phenylamino-1,2-dihydropyridine-3-carboxylate (IX) with diamine Va, but the yield did not exceed 47%. We can conclude that high thermodynamic stability of fused heterocycles VIa-VId also favors the observed recyclization.

The above experimental data led us to propose the following recyclization mechanism (Scheme 3). Presumably, the first step is hydrolysis or aminolysis of dihydropyridines Ia and Ib with formation of compounds IVa and IVb or intermediates XIa–XId, respectively. Hydrolysis products IVa and IVb are also capable of undergoing aminolysis by the action of diamines Va and Vb to give the same intermediates XIa–XId. Itramolecular transamination of XIa–XId with opening of the pyridine ring leads to dihydroimidazole (tetrahydropyrimidine) derivatives XIIa–XId which undergo isomerization at the double C=C bond to adopt conformation XIIIa–XIId which is the

Fig. 3. Packing of molecules VIIa in crystal.

most favorable for subsequent intramolecular cyclization to fused 3-alkylcarbamoyl-5-benzoylpyridin-2-one derivatives **VIa–VId**.

Unlike reactions of ethyl 5-cyano-4-methyl-2methylsulfanyl-6-oxo-1-phenyl-1,6-dihydropyridine-3carboxylate with ethane-1,2-diamine and propane-1,3-

Fig. 4. Structure of the molecule of diethyl 6,6'-(propane-1,3-diyldiimino)bis(5-benzoyl-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxylate) (**VIIc**) according to the X-ray diffraction data. Intramolecular hydrogen bonds are shown with dotted lines. Principal bond lengths (Å) and bond angles (deg): O^1-C^1 1.242(5), N^1-C^1 1.411(5), N^1-C^5 1.380(5), N^2-C^5 1.336(5), N^2-C^{17} 1.433(5), O^5-C^{21} 1.228(5), N^3-C^{20} 1.363(5), N^3-C^{21} 1.424(5), N^4-C^{19} 1.481(5), N^4-C^{20} 1.352(5); $C^1N^1C^5$ 124.5(3), $C^5N^2C^{17}$ 128.0(4), $C^{20}N^3C^{21}$ 123.8(3), $C^{19}N^3C^{20}$ 132.0(4).

XIIIa–XIIId

R = Me, Et.

diamine, reported previously [12], the described recyclization of ethyl 1-alkyl-5-benzoyl-6-methylsulfanyl-2-oxo-1,2-dihydropyridine-3-carboxylates involves the ethoxycarbonyl group in the substrate, while no

Fig. 5. A fragment of crystal packing of compound **VIIc** (phenyl and ethyl substituents are not shown).

elimination of the alkylamino group occurs, so that the process is possible only via cleavage of the $N-C^6$ bond in the pyridine ring. As a result, bicyclic 5-benzoyl-pyridin-2-one derivatives having a carboxamide functionality can be obtained.

Thus the examined recyclization of ethyl 1-alkyl-5benzoyl-6-methylsulfanyl-2-oxo-1,2-dihydropyridine-3-carboxylates is general, and it provides a new synthetic route to previously unknown fused 3-alkylcarbamoyl-5-benzoylpyridin-2(1H)-one derivatives.

EXPERIMENTAL

The ¹H and ¹³C NMR spectra were recorded on a Varian Unity 300 spectrometer at 300 and 75 MHz, respectively, using DMSO- d_6 as solvent and tetramethylsilane as internal reference. The IR spectra were measured in KBr on a UR-20 instrument. Ethyl 5-benzoyl-1-methyl-2-oxo-6-phenylamino-1,2-dihydropyridine-3-carboxylate (**IX**) was synthesized according to the procedure described in [1].

The principal crystallographic parameters of compounds **VIIa** and **VIIc** and details of the X-ray diffraction data acquisition and structure solution and refinement are collected in table. The structures of both compounds were solved by the direct method and were refined by the least-squares procedure in full-matrix anisotropic approximation using CRYSTALS software package [13]. All hydrogen atoms were visualized by difference syntheses of electron density and were involved in the refinement procedure with fixed positional and thermal parameters. The positions of the H² atom in molecule **VIIa** and of H² and H⁴ in **VIIc** (these hydrogen atoms participate in H bonding) were refined in isotropic approximation. Chebyshev's weight scheme was applied [14]. The complete sets of crystallographic data for compounds **VIIa** and **VIIc** were deposited to the Cambridge Crystallographic Data Centre (entry nos. CCDC 671856 and CCDC 710260).

Recyclization of ethyl 1-alkyl-5-benzoyl-6-methylsulfanyl-2-oxo-1,2-dihydropyridine-3-carboxylates Ia and Ib (general procedure). A solution of 1 mmol of 1,2-dihydropyridin-2-one Ia or Ib and 1.0 mmol of amine IIa or IIb (or 1.5 mmol of diamine Va or Vb) in 4 ml of propan-2-ol was heated for 2–6 h under reflux. The mixture was cooled, and the precipitate of compound IIIa–IIId or VIa–VId was filtered off. Dipyridyl ether IVa or IVb was isolated by evaporation of the filtrate.

4-Benzoyl-*N***-methyl-1-oxo-1,5-dihydropyrido**-[**1,2-***a*]**benzimidazole-2-carboxamide (IIIa).** Yield 70%, mp 283–285°C (from DMSO). IR spectrum, ν, cm⁻¹: 3330, 3000, 1675, 1620, 1600, 1560, 1540, 1470, 1450, 1390, 1370. ¹H NMR spectrum, δ, ppm: 2.85 d (3H, NHCH₃, *J* = 3.6 Hz), 7.48 m (1H, H_{arom}), 7.63–7.69 m (6H, H_{arom}), 7.84 m (1H, 6-H), 8.68 s (1H, 3-H), 8.70 m (1H, 9-H), 9.00 br.s (1H, NHMe), 13.71 s (1H, 5-H). ¹³C NMR spectrum, δ_C, ppm: 25.7 (NMe), 99.4, 105.6, 113.0, 116.4, 123.5, 126.8, 126.9, 128.4, 128.5, 131.2, 131.5, 138.5, 144.1, 144.9, 159.4 (C=O), 163.8 (C=O), 191.2 (PhC=O). Found, %: C 69.74; H 4.31; N 12.13. C₂₀H₁₅N₃O₃. Calculated, %: C 69.56; H 4.38; N 12.17.

4-Benzoyl-*N***-ethyl-1-oxo-1,5-dihydropyrido**-[**1,2-***a*]**benzimidazole-2-carboxamide (IIIb).** Yield 63%, mp 272–275°C (from DMSO). IR spectrum, v, cm⁻¹: 3330, 3000, 1685, 1610, 1560, 1470, 1440, 1390, 1370, 1340, 1320, 1260. ¹H NMR spectrum, δ , ppm: 1.16 t (3H, CH₂CH₃, *J* = 6.3 Hz), 3.36 m (2H, NHCH₂), 7.49 m (1H, H_{arom}), 7.62–7.76 m (6H, H_{arom}), 7.88 m (1H, 6-H), 8.69 s (1H, 3-H), 8.71 m (1H, 9-H), 9.11 br.s (1H, NHEt), 13.73 s (1H, 5-H). Found, %: C 69.89; H 4.56; N 11.85. C₂₁H₁₇N₃O₃. Calculated, %: C 70.18; H 4.77; N 11.69. Principal crystallographic parameters of compounds VIIa and VIIc

Parameter	VIIa	VIIc
Diffractometer	Bruker Smart ApexII	
Irradiation	MoK_{a}	
Scan range	$-30 \ge h \ge 33$	$-14 \ge h \ge 14$
	$-11 \ge k \ge 11$	$-11 \ge k \ge 14$
	$-2334 \ge l \ge 8$	$-15 \ge l \ge 12$
θ_{max} , deg	28.7	26.4
Crystal habit, mm	$0.25 \times 0.30 \times 0.51$	$0.19 \times 0.40 \times 0.47$
Crystal system	Monoclinic	Monoclinic
Space group	C2/c	Pc
<i>a</i> , Å	26.396(3)	12.2098(9)
<i>b</i> , Å	8.8113(7)	11.4144(8)
<i>c</i> , Å	17.614(2)	12.0720(8)
β, deg	131.58(2)	108.732(2)
V, Å ³	3064.5(7)	1593.3(2)
Ζ	8	2
$d_{\text{calc}}, \text{g/cm}^3$	1.36	1.33
μ , cm ⁻¹	0.98	0.96
<i>F</i> (000)	1320	624
Total number of reflections	6984	9303
Number of independent reflections	3689	4484
Number of reflections with $I \ge 3\sigma(I)$	2048	3261
R _{merge}	0.02	0.01
$R_1(F)$	0.044	0.044
$R_{w}(F)$	0.047	0.046
Goodness of fit	1.077	1.209
Weight coefficients	0.23, -0.12, -0.11, -0.16	1.28, -0.70, 1.14, -0.30, 0.28
Residual electron den- sity, max/min, <i>e</i> /cm ³	0.23/-0.20	0.60/-0.41

4-Benzoyl-N-methyl-1-oxo-1H-pyrido[**2**,1-*b*][**1**,3]**benzothiazole-2-carboxamide (IIIc).** Yield 61%, mp 250–252°C (from DMSO). IR spectrum, v, cm⁻¹: 3350, 3000, 1670, 1615, 1560, 1490, 1460, 1420, 1380, 1330. ¹H NMR spectrum, δ, ppm: 2.87 d (3H, NHC**H**₃, J = 2.7 Hz), 7.66 m (7H, H_{arom}), 8.23 m (1H, 6-H), 8.74 s (1H, 3-H), 9.02 br.s (1H, NHCH₃), 9.20 m (1H, 9-H). Found, %: C 66.02; H 4.15; N 7.48; S 8.64. C₂₀H₁₄N₂O₃S. Calculated, %: C 66.29; H 3.89; N 7.73; S 8.85. **4-Benzoyl-***N***-ethyl-1-oxo-1***H***-pyrido**[**2**,**1**-*b*][**1**,**3**]**benzothiazole-2-carboxamide (IIId).** Yield 57%, mp 241–243°C (from DMSO). IR spectrum, v, cm⁻¹: 3300, 3000, 1690, 1620, 1570, 1500, 1470, 1385, 1310. ¹H NMR spectrum, δ , ppm: 1.18 t (3H, CH₂CH₃, *J* = 6.6 Hz), 3.34 m (2H, NHCH₂), 7.68–7.83 m (7H, H_{arom}), 8.26 m (1H, 6-H), 8.78 s (1H, 3-H), 9.15 br.s (1H, NHEt), 9.24 m (1H, 9-H). Found, %: C 66.73; H 4.42; N 7.29; S 8.40. C₂₁H₁₆N₂O₃S. Calculated, %: C 67.01; H 4.28; N 7.44; S 8.52.

8-Benzoyl-*N***-methyl-5-oxo-1,2,3,5-tetrahydroimidazo**[1,2-*a*]**pyridine-6-carboxamide (VIa).** Yield 69%, mp 335–337°C (from DMSO). IR spectrum, v, cm⁻¹: 3380, 3300, 3050, 2970, 1680, 1640, 1600, 1580, 1500. ¹H NMR spectrum, δ , ppm: 2.75 d (3H, NHCH₃, J = 4.2 Hz), 3.91 m (2H, 2-H), 4.14 t (2H, 3-H, J = 9.3 Hz), 7.52 m (5H, Ph), 8.31 s (1H, 7-H), 8.90 br.s (1H, NHCH₃), 9.39 br.s (1H, 1-H). Found, %: C 64.37; H 4.98; N 14.30. C₁₆H₁₅N₃O₃. Calculated, %: C 64.64; H 5.09; N 14.13.

8-Benzoyl-*N***-ethyl-5-oxo-1,2,3,5-tetrahydroimidazo**[**1,2-***a*]**pyridine-6-carboxamide (VIb).** Yield 63%, mp 300–303°C (from DMSO). IR spectrum, v, cm⁻¹: 3400, 3300, 3100, 3000, 1680, 1640, 1610, 1580, 1500, 1450, 1380, 1330. ¹H NMR spectrum, δ, ppm: 1.08 t (3H, CH₂CH₃, J = 7.2 Hz), 3.21 m (2H, NHCH₂), 3.92 m (2H, 2-H), 4.13 t (2H, 3-H, J =9.0 Hz), 7.53 m (5H, Ph), 8.32 s (1H, 7-H), 9.02 br.s (1H, NHEt), 9.37 br.s (1H, 1-H). ¹³C NMR spectrum, δ_C, ppm: 14.8 (CH₂CH₃), 33.2 (C²), 43.1 (CH₂CH₃), 43.4 (C³), 97.7, 106.5, 127.8, 128.3, 130.7, 138.8, 146.4, 156.3, 160.3 (C=O), 162.8 (C=O), 191.3 (PhC=O). Found, %: C 65.60; H 5.58; N 13.61. C₁₇H₁₇N₃O₃. Calculated, %: C 65.58; H 5.50; N 13.50.

9-Benzoyl-*N***-methyl-6-oxo-2,3,4,6-tetrahydro-***1H***-pyrido**[**1,2***-a*]**pyrimidine-7-carboxamide (VIc).** Yield 43%, mp 253–256°C (from nitromethane). IR spectrum, v, cm⁻¹: 3300, 3100, 2950, 1670, 1640, 1590, 1550, 1510, 1440, 1400, 1380. ¹H NMR spectrum, δ , ppm: 2.04 br.m (2H, 3-H), 2.75 d (3H, NHCH₃, *J* = 4.5 Hz), 3.52 br.m (2H, 2-H), 3.99 br.m (2H, 4-H), 7.39–7.65 m (5H, Ph), 8.31 s (1H, 8-H), 8.92 q (1H, NHCH₃, *J* = 4.5 Hz), 10.88 br.s (1H, 1-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 18.7 (C³), 26.1 (NCH₃), 38.7 (C²), 39.9 (C⁴), 98.8, 104.6, 128.5, 128.9, 131.1, 140.0, 146.8, 155.0, 161.4 (C=O), 164.4 (C=O), 194.1 (PhC=O). Found, %: C 65.73; H 5.32; N 13.74. C₁₇H₁₇N₃O₃. Calculated, %: C 65.58; H 5.50; N 13.50.

9-Benzoyl-*N*-ethyl-6-oxo-2,3,4,6-tetrahydro-1*H*-pyrido[1,2-*a*]pyrimidine-7-carboxamide (VId). Yield 39%, mp 257–259°C (from nitromethane). IR spectrum, v, cm⁻¹: 3300, 3100, 3000, 1670, 1640, 1580, 1540, 1510, 1470, 1380. ¹H NMR spectrum, δ , ppm: 1.07 t (3H, CH₂CH₃, *J* = 6.6 Hz), 2.06 br.m (2H, 3-H), 3.47 br.m (2H, CH₂CH₃), 3.53 br.m (2H, 2-H), 3.98 br.m (2H, 4-H), 7.40–7.61 m (5H, Ph), 8.32 s (1H, 8-H), 9.05 br.t (1H, NHCH₂), 10.87 br.s (1H, 1-H). Found, %: C 66.64; H 5.68; N 13.15. C₁₈H₁₉N₃O₃. Calculated, %: C 66.45; H 5.89; N 12.91.

Compounds IVa and IVb (general procedure). A solution of 1 mmol of 1,2-dihydropyridine Ia or Ib and 3 mmol of triethylamine in 3 ml of 75% aqueous ethanol was heated for 10 h under reflux. The solvent was evaporated, the oily residue was dissolved in 3 ml of water, 0.2 ml of acetic acid was added, the mixture was cooled to 5°C, and the precipitate was filtered off.

Diethyl 6,6'-oxybis(5-benzoyl-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxylate) (IVa). Yield 52%, mp 100–101°C (from propan-2-ol). IR spectrum, v, cm⁻¹: 3100, 3000, 1730, 1680, 1600, 1530, 1460, 1400, 1380, 1310. ¹H NMR spectrum, δ , ppm: 1.24 t (6H, CH₂CH₃, J = 6.9 Hz), 3.29 s (6H, NCH₃), 4.19 q (4H, OCH₂, J = 6.9 Hz), 7.56–7.67 m (10H, Ph), 8.18 s (2H, 4-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 14.0 (CH₂CH₃), 26.6 (NCH₃), 60.3 (OCH₂), 104.4 (C⁴), 105.5 (C³), 128.5, 128.8, 132.3, 135.2, 144.1 (C⁵), 160.3 (C⁶), 164.8 (C²), 166.5 (CO₂Et), 191.0 (PhC=O). Found, %: C 65.94; H 4.66; N 4.64. C₃₂H₂₈N₂O₉. Calculated, %: C 65.75; H 4.83; N 4.79.

Diethyl 6,6'-oxybis(5-benzoyl-1-ethyl-2-oxo-1,2dihydropyridine-3-carboxylate) (IVb). Yield 45%, mp 75–77°C (from propan-2-ol). IR spectrum, v, cm⁻¹: 3100, 3000, 1720, 1680, 1610, 1530, 1450, 1400, 1370, 1320. ¹H NMR spectrum, δ , ppm: 1.28 m (12H, CH₂CH₃), 4.18 q (4H, OCH₂, J = 7.1 Hz), 4.37 q (4H, NCH₂, J = 6.4 Hz), 7.52–7.65 m (10H, Ph), 8.17 s (2H, 4-H). Found, %: C 66.43; H 4.99; N 4.86. C₃₄H₃₂N₂O₉. Calculated, %: C 66.66; H 5.26; N 4.57.

Compounds VIIa–VIIe (*general procedure*). A solution of 0.5 mmol of amine **Va–Vc** in 3 ml of propan-2-ol was added dropwise under stirring to a solution of 1 mmol of dihydropyridine **Ia** or **Ib** in 3 ml of propan-2-ol. The mixture was kept for 3 h at 20°C, and the precipitate was filtered off.

Diethyl 6,6'-(ethane-1,2-diyldiimino)bis(5-benzoyl-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxylate) (VIIa). Yield 73%, mp 220–222°C (from nitromethane). IR spectrum, v, cm⁻¹: 3400, 3200, 3050, 1720, 1680, 1580, 1540, 1500, 1660, 1440. ¹H NMR spectrum, δ, ppm: 1.15 t (6H, CH₂C**H**₃, J = 6.9 Hz), 3.40 s (6H, NCH₃), 3.65 br.s (4H, NCH₂), 4.07 q (4H, OCH₂, J = 6.9 Hz), 7.45–7.56 m (10H, Ph), 8.04 s (2H, 4-H), 9.34 s (2H, NH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 14.7 (CH₂CH₃), 33.4 (NCH₃), 48.0 (NCH₂), 60.1 (OCH₂), 101.5, 104.5, 128.8, 129.1, 132.0, 138.9, 148.2, 159.0, 160.2, 164.6 (C=O), 193.1 (PhC=O). Found, %: C 65.32; H 5.22; N 9.07. C₃₄H₃₄N₄O₈. Calculated, %: C 65.17; H 5.47; N 8.94.

Diethyl 6,6'-(ethane-1,2-diyldiimino)bis(5-benzoyl-1-ethyl-2-oxo-1,2-dihydropyridine-3-carboxylate) (VIIb). Yield 69%, mp 155–158°C (from ethanol). IR spectrum, v, cm⁻¹: 3300, 3100, 3000, 1720, 1660, 1620, 1590, 1520, 1460, 1420. ¹H NMR spectrum, δ , ppm: 1.14 m (12H, CH₂CH₃), 3.46 br.s (4H, NCH₂), 4.05 m (8H, CH₂CH3), 7.48–7.57 m (10H, Ph), 8.05 s (2H, 4-H), 8.76 s (2H, NH). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 12.8 (NCH₂CH₃), 14.2 (OCH₂CH₃), 37.9 (NCH₂CH₃), 47.3 (NCH₂), 59.5 (OCH₂), 101.1, 103.6, 128.4, 128.8, 131.9, 138.1, 147.8, 157.4, 157.8, 164.2 (C=O), 191.3 (PhC=O). Found, %: C 65.83; H 6.02; N 8.65. C₃₆H₃₈N₄O₈. Calculated, %: C 66.04; H 5.85; N 8.56.

Diethyl 6,6'-(propane-1,3-diyldiimino)bis(5-benzoyl-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxylate) (VIIc). Yield 67%, mp 215–218°C (from nitromethane). IR spectrum, v, cm⁻¹: 3400, 3200, 3000, 1720, 1660, 1580, 1520, 1450, 1370. ¹H NMR spectrum, δ, ppm: 1.15 t (6H, CH₂CH₃, J = 7.2 Hz), 2.03 t (2H, CH₂, J = 6.6 Hz), 3.21 m (4H, NCH₂), 3.43 s (6H, NCH₃), 4.08 q (4H, OCH₂, J = 7.2 Hz), 7.44–7.61 m (10H, Ph), 8.08 s (2H, 4-H), 9.43 s (2H, NH). ¹³C NMR spectrum, δ_C, ppm: 14.7 (CH₂CH₃), 26.0 (CH₂), 30.0 (NCH₃), 48.0 (NCH₂), 60.1 (OCH₂), 101.5, 104.5, 128.8, 129.1, 132.0, 138.9, 148.2, 159.0, 160.2, 164.6, 193.1 (PhC=O). Found, %: C 65.45; H 5.84; N 9.02. C₃₅H₃₆N₄O₈. Calculated, %: C 65.61; H 5.66; N 8.74.

Diethyl 6,6'-(propane-1,3-diyldiimino)bis(5-benzoyl-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxylate) (VIId). Yield 62%, mp 123–125°C (from propan-2-ol). IR spectrum, v, cm⁻¹: 3300, 3050, 3000, 1720, 1650, 1630, 1590, 1510, 1460, 1410. ¹H NMR spectrum, δ, ppm: 1.16 m (12H, CH₂CH₃), 1.99 t (2H, CH₂, J = 6.3 Hz), 3.17 m (4H, NCH₂), 4.08 m (8H, CH₂CH₃), 7.48–7.62 m (10H, Ph), 8.02 s (2H, 4-H), 8.89 s (2H, NH). Found, %: C 66.26; H 5.92; N 8.50. C₃₇H₄₀N₄O₈. Calculated, %: C 66.45; H 6.03; N 8.38.

Diethyl 6,6'-(butane-1,4-diyldiimino)bis(5-benzoyl-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxylate) (VIIe). Yield 60%, mp 233–236°C (from nitromethane). IR spectrum, v, cm⁻¹: 3100, 3000, 2900, 1720, 1680, 1570, 1600, 1500, 1470, 1450, 1410. ¹H NMR spectrum, δ , ppm: 1.15 t (6H, CH₂CH₃, J =7.2 Hz), 1.71 br.s (4H, CH₂), 3.48 br.s (10H, NMe, CH₂), 4.08 q (4H, OCH₂, J = 7.2 Hz), 7.42–7.65 m (10H, Ph), 8.12 s (2H, 4-H), 9.90 s (2H, NH). Found, %: C 65.76; H 6.03; N 8.69. C₃₆H₃₈N₄O₈. Calculated, %: C 66.04; H 5.85; N 8.56.

N-Acetyl-4-benzoyl-1-oxo-1,5-dihydropyrido-[1,2-*a*]benzimidazole-2-carboxamide (VIII). A solution of 1 mmol of compound IIIa and 2 mmol of pyridine in 10 mmol of acetic anhydride was heated for 8 h under reflux. The mixture was cooled, and the precipitate was filtered off. Yield 75%, mp 245–247°C (from DMSO). IR spectrum, v, cm⁻¹: 3250, 3000, 2950, 1690, 1670, 1620, 1560, 1540, 1490, 1460, 1390. ¹H NMR spectrum, δ , ppm: 2.28 s (3H, CH₃CO), 3.16 s (3H, NCH₃), 7.51 m (1H, H_{arom}), 7.55–7.72 m (6H, H_{arom}), 7.87 m (1H, 6-H), 8.18 (1H, 3-H), 8.70 (1H, 9-H), 13.78 (1H, 5-H). Found, %: C 68.06; H 4.33; N 11.09. C₂₂H₁₇N₃O₄. Calculated, %: C 68.21; H 4.42; N 10.85.

Recyclization of ethyl 5-benzoyl-1-methyl-2-oxo-6-phenylamino-1,2-dihydropyridine-3-carboxylate (IX) to 8-benzoyl-*N*-methyl-5-oxo-1,2,3,5-tetrahydroimidazo[1,2-*a*]pyridine-6-carboxamide (VIa). A solution of 1 mmol of dihydropyridine IX and 1 mmol of diamine Va in 3 ml of propan-2-ol was heated for 6 h under reflux. The mixture was cooled, and the precipitate was filtered off. Yield 47%.

REFERENCES

- Britsun, V.N., Esipenko, A.N., Chernega, A.N., Rusanov, E.B., and Lozinskii, M.O., *Khim. Geterotsikl. Soedin.*, 2007, p. 1660.
- Britsun, V.N., Borisevich, A.N., Samoilenko, L.S., and Lozinskii, M.O., *Russ. J. Org. Chem.*, 2005, vol. 41, p. 283.
- 3. Schirok, H., Alonso-Alija, C., and Michels, M., *Synthesis*, 2005, p. 3085.
- Chacrabarti, S., Panda, K., Misra, N.C., Illa, H., and Junjappa, H., *Synlett*, 2005, p. 1437.
- 5. Britsun, V.N., Maiboroda, E.I., and Lozinskii, M.O., *Khim. Geterotsikl. Soedin.*, 2008, p. 472.
- Kalinin, A.A., Isaikina, O.G., and Mamedov, V.A., *Khim. Geterotsikl. Soedin.*, 2007, p. 1539.
- 7. Tolmacheva, I.A., Mashevskaya, I.V., and Maslivets, A.N., Russ. J. Org. Chem., 2001, vol. 37, p. 596.
- Bozdyreva, K.S. and Maslivets, A.N., *Russ. J. Org. Chem.*, 2006, vol. 42, p. 463.

1842

- 9. Burke-Laing. M., and Laing, M., Acta Crystallogr., Sect. B, 1976, vol. 32, p. 3216.
- 10. Allen, F.H., Kennard, O., Watson, D.G., Brammer, L., Orpen, A.G., and Taylor, R., *J. Chem. Soc., Perkin Trans.* 2, 1987, no. 12, p. S1.
- 11. Kuleshova, L.N. and Zorkii, P.M., Acta Crystallogr., Sect. B, 1981, vol. 37, p. 1363.
- 12. Hehemann, D.G. and Winnik, W., *J. Heterocycl. Chem.*, 1994, vol. 31, p. 393.
- Watkin, D.J., Prout, C.K., Carruthers, J.R., and Betteridge, P.W., *CRYSTALS. Issue 10*, Chemical Crystallography Laboratory, Univ. of Oxford, 1996.
- 14. Carruthers, J.R. and Watkin, D.J., Acta Crystallogr., Sect. A, 1979, vol. 35, p. 698.