This article was downloaded by: [University of California, San Diego] On: 16 September 2014, At: 12:54 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Organic Preparations and Procedures International: The New Journal for Organic Synthesis

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/uopp20

One-pot Synthesis of Some New Indene Derivatives by Thermal Isomerization of Iminolactones

A. Zonouzi^a, H. Rahmani^b, A. Kamali^a & M. Biniaz^a

 $^{\rm a}$ School of Chemistry , University College of Science, University of Tehran , Tehran, Iran

^b Institute of Chemical Technologies , Iranian Research Organization for Science and Technology (IROST) , P.O. Box 15815-3538, Tehran, Iran

Published online: 09 Jun 2011.

To cite this article: A. Zonouzi , H. Rahmani , A. Kamali & M. Biniaz (2011) One-pot Synthesis of Some New Indene Derivatives by Thermal Isomerization of Iminolactones, Organic Preparations and Procedures International: The New Journal for Organic Synthesis, 43:3, 276-284

To link to this article: <u>http://dx.doi.org/10.1080/00304948.2011.581998</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

One-pot Synthesis of Some New Indene Derivatives by Thermal Isomerization of Iminolactones

A. Zonouzi,¹ H. Rahmani,² A. Kamali,¹ and M. Biniaz¹

¹School of Chemistry, University College of Science, University of Tehran, Tehran, Iran

²Institute of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST) P.O. Box 15815-3538, Tehran, Iran

The indene moiety found in many natural products,¹ has attracted interest due to its possible practical applications.^{2,3} For example, some substituted indene derivatives exhibit biological activities such as fungicidal,⁴ selective estrogen receptor modulation,^{5,6} anti-proliferative⁷ and D₂-like dopamine receptor agonists.⁸ Various methods for the synthesis of indene derivatives have been reported.^{9–14} We now describe a one-pot reaction of acetylenic esters and cyclohexyl isocyanide with aryl ketones to produce highly functionalized indenes **2a-f** in high yields (83–88%).

It had been previously established that one-pot and multi-component reactions of alkyl isocyanides, carbonyl compounds and acetylenic esters produce heterocyclic compounds.^{15–22} However, in the present work the indene derivatives **2** are produced and it is postulated that the heterocyclic intermediates **1** that were formed initially in the reaction are converted to indenes **2**. Accordingly, to assess the validity of this postulate we decided to isolate the intermediates **1**. Thus, after cooling the reaction mixtures, the iminolactones **1** (the synthesis of **1a** had been reported previously²²) were purified and their structure deduced by spectroscopic data. When these compounds **1** were refluxed in *p*-xylene for 35–48 h, indenes **2** were produced nearly quantitatively. The intramolecular N–H---O hydrogen bonding stabilized the products.²³ (*Scheme 1*)

Solvents have been shown to have an important effect on this reaction. Thus, in refluxing benzene (bp 80°C) only iminolactones **1** were obtained in less than 30% yields and no indenes **2** were obtained, Nair and coworkers had already reported the exclusive formation of iminolactone **1a** using benzene at 80°C in 41% yield.^{21,22} In this study, we have found that in refluxing toluene (bp 110°C), iminolactones **1** were obtained in less than 50% yield and indenes **2** in less than 10% yield. In refluxing *p*-xylene (bp 138°C), only indenes **2** were obtained in 83–88% yield without any iminolactones **1**. This reaction did

Received July 17, 2009; in final form November 26, 2010.

Address correspondence to A. Zonouzi, School of Chemistry, University College of Science, University of Tehran, Tehran, Iran. E-mail: zonouzi@khayam.ut.ac.ir

a) $R = 4-NO_2$, R' = Me; b) $R = 4-NO_2$, R' = Et; c) $R = 3-NO_2$, R' = Me; d) $R = 3-NO_2$, R' = Et;

e) R = 4-Cl, R' = Me; f) R = 4-Cl, R' = Et

Scheme 1

not proceed in acidic solvents and indeed Schmiar and coworkers had previously reported that iminolactones are hydrolyzed to other products in acidic solvents.²⁴

We suggest the following mechanism for the overall tranformation involving the conversion of intermediates 1 to indenes 2 *via* a ring opening-ring closure mechanism. Such a ring opening-ring closure mechanism has been reported previously for other heterocyclic frameworks^{25–28} including a furan to indole process.²⁵ Several attempts to intercept the putative zwitterions 3 as carbocations (*Scheme 2*) with amines, thiols and phenols and the anion of acetylacetone, were unsuccessful; thus, if this mechanism is operative, the conversion of 1 to 2 must be rapid and quantitative.

Scheme 2

Structures **1** and **2** were assigned on the basis of their elemental analysis, IR, ¹H and ¹³C NMR and mass spectral data. The mass spectra of these compounds displayed molecular ion peaks at appropriate m/z values. For iminolactones **1**, initial fragmentation involving the loss of $C_6H_{11}N$, CH_3OH for **1c**, **1e** and $C_6H_{11}N$, C_2H_5OH for **1b**, **1d** and **1f**. For indenes **2**, fragments involves M⁺- $C_6H_{11}NCO$ and M⁺- $C_6H_{11}NCO$, R'OH were the most intense signals. The ¹H NMR spectra of the products **2b**, **2d** and **2f** clearly indicated the diasterotopic CH₂ protons of the ester groups on the C₁ of indenes (Table 3). The IR spectra of compounds **2a-f** showed N–H absorptions 3327–3353 cm⁻¹, which did not change upon dilution with CCl₄, evidence of intramolecular hydrogen bonding. The intramolecular N–H…O hydrogen bond for indene **2b** was detected and its details have been published.²³

All compounds showed C=O absorptions (1715–1732, 1670–1679 cm⁻¹) and there were also two absorptions for the NO₂ groups in compounds **2a-d** (1339–1344, 1449–1525 cm⁻¹). The IR spectra of compounds **1b-f** showed C=O absorptions (1740–1755 cm⁻¹, 1719–1731 cm⁻¹), C=N absorption (1674–1682 cm⁻¹) and C=O absorptions (1253–1284, 1087–1129, 1020–1028 cm⁻¹). Additionally there were two absorptions for the NO₂ groups in compounds **1b-d** (1524–1533, 1339–1353 cm⁻¹).

Overall we have developed a one-pot synthesis of some new indene derivatives *via* an interesting isomerization reaction. The reaction described here represents a simple and efficient entry into the synthesis of highly functionalized indenes. High yields and simple conditions make it a useful addition to the modern synthetic methodologies. In this procedure, intermediates **1** can be isolated in high yields through modifications in the reaction conditions. These compounds **1** belong to the iminolactone family and some of their derivatives act as antibacterial agents, aldosterone inhibitors and as precursors for the preparation of a wide spectrum of natural compounds.^{29,30} Further investigations of this method are currently in progress to establish its scope and utility.

Experimental Section

Chemicals and solvents were obtained from Merck (Germany) and Fluka (Switzerland) and were used without further purification. Column chromatography was performed on silica gel (0.015–0.04 mm, mesh-size) and TLC on precoated plastic sheets (25 DC_{UV-254}). Melting points were measured on a Barnstead Electrothermal melting point apparatus and are not corrected. Elemental analyses for C, H and N were performed using a Thermo Finnigan Flash EA1112 instrument. IR spectra were measured on a Shimadzu FT-IR-4300 spectrophotometer as KBr discs. ¹H NMR and ¹³C NMR spectra were determined in CDCl₃ on a Brucker 500 spectrophotometer and chemical shifts were expressed in ppm downfield from tetramethylsilane. Mass spectra were recorded on a Finnigan-MAT 8430 spectrometer at an ionization potential of 70 ev.

Dimethyl 1-(Cyclohexylcarbamoyl)-3-methyl-6-nitro-1H-indene-1,2-dicarboxylate (2a). General Procedure

To a stirred solution of 4-nitroacetophenone (0.33 g., 2 mmol) and dimethyl acetylenedicarboxylate (0.28 g., 2 mmol) in *p*-xylene (15 mL) was added a mixture of cyclohexyl isocyanide (0.22 g., 2 mmol) in *p*-xylene (10 mL) dropwise at -10°C over 2 h. The reaction mixture was stirred for 2 h at room temperature and then refluxed for 36 h. The reaction was monitored by TLC, when the intermediate spots ($R_f \approx 0.2$ on silica gel, *n*-hexane:ethyl acetate 4:1) disappeared, the reaction was complete (indene spot: $R_f = 0.6$ on silica gel, *n*-hexane: ethyl acetate 4:1). The solvent was removed under reduced pressure and the residue was washed with *n*-hexane and recrystallized from acetone-ethyl acetate. The product (0.724 g., 87%) was obtained as colorless crystals, mp. 134–135°C. The same procedure was used to prepare **2b-f** as colorless crystals in of 83–88% yields.

Dimethyl 1-(Cyclohexylcarbamoyl)-3-methyl-6-nitro-1H-indene-1, 2-dicarboxylate (2a) from 1. General Procedure

A magnetically stirred solution of the imino-lactone 1 (0.83 g., 2 mmol) in p-xylene (50 mL) was refluxed for 32–45 h. The reaction was monitored by TLC. When the

2	7	O
4	/	9

Cmpd	¹ H NMR (δ :ppm)	¹³ C NMR (δ :ppm)	$\frac{MS (m/z)}{444 (M^+, 13)} \\ \frac{415 (M^+-C_2H_5, 30)}{398 (m^+-C_2H_5OH, 75)} \\ \frac{315 (M^+-C_6H_{11}N, 100)}{315 (M^+-C_6H_{11}N, 100)} \\ \frac{416 (M^+, 7)}{304 (M^+-CH_3, 15)} \\ \frac{384 (M^+-CH_3OH, 73)}{287 (M^+-C_6H_{11}N, 100)} \\ \frac{416 (M^+, 7)}{384 (M^+-C_6H_{11}N, 100)} \\ \frac{416 (M^+, 7)}{310 (M^+-C_6H_{11}N, 10)} \\ \frac{416 (M^+, 7)}{310 (M^+-C_6H_{11}N, 10)} \\ \frac{416 (M^+, 7)}{31$	
1b	1.24–2.12 (10H, 3m, CH ₂ of cyclohexyl); 1.27, 1.41 (6H, 2t, 2CH ₃ of CO ₂ Et); 2.12 (3H, s, CH ₃); 3.68–3.69 (1H, m, CH of cyclohexyl); 4.18- 4.21, 4.40–4.45 (4H, 2q, J = 13.81, 6.91 Hz, 2 CH ₂ of CO ₂ Et); 7.63- 7.66, 8.25–8.27 (4H, 2m, Ar protons)	14.20, 14.45 (2 CH ₃ of CO ₂ Et); 24.17, 25.14, 26.14 (CH ₂ of cyclohexyl); 33.79 (CH ₃); 57.01 (CH of cyclohexyl); 62.44, 62.73 (CH ₂ of CO ₂ Et); 89.32 (C $-$ CH ₃); 124.06, 127.48 (CH of C ₆ H ₄); 136.38, 148.23 (C _{ipso (C=C)} of C ₆ H ₄); 145.74, 147.13 (2 C=CO ₂ Et); 154.70 (C=N-cyclohexyl); 160.85, 162.29 (2 C=O of CO ₂ Et)		
1c	1.24–1.82 (10H, 4m, CH ₂ of cyclohexyl); 2.13 (3H, s, CH ₃); 3.67–3.70 (1H, m, CH of cyclohexyl); 3.77, 3.96 (6H, 2s, CH ₃ of CO ₂ Me); 7.58–7.61 (1H, t, Ar proton); 7.76–7.78 (1H, d, $J =$ 8.01Hz, Ar proton); 8.23–8.24 (1H, d, $J =$ 8.01 Hz, Ar proton); 8.36 (1H, s, Ar proton)	24.77, 25.20, 26.11 (CH ₂ of cyclohexyl); 33.73 (CH ₃); 53.27, 53.54 (2CH ₃ of CO ₂ Me); 57.19 (CH of cyclohexyl); 89.24 (C-CH ₃); 121.56, 123.93, 130.03, 132.38 (CH of C ₆ H ₄); 127.85, 134.19 (C _{ipso(c=c)} of C ₆ H ₄); 146.00, 148.74 (2C=CO ₂ Me); 154.55(C=N-cyclohexyl); 161.23, 162.70 (2 C=O of CO ₂ Me)		
1d	1.23–1.81(10H, m, CH ₂ of cyclohexyl); 1.26, 1.38 (6H, 2t, 2 CH ₃ of CO ₂ Et); 2.12 (3H, s, CH ₃); 3.68 (1H, m, CH of cyclohexyl); 4.16-4.21,4.40–4.44 (4H,2q, $J = 14.02$, 6.99 Hz, 2CH ₂ of CO ₂ Et); 7.58–7.61, 7.61–7.73, 7.73–7.78, 8.23–8.36 (4H, 4m, Ar protons)	14.23, 14.71 (2 CH ₃ of CO ₂ Et);24.66,25.01,26.11 (CH ₂ of cyclohexyl); 33.79 (CH ₃); 56.98 (CH of cyclohexyl); 62.30, 62.79 (CH ₂ of CO ₂ Et); 89.24 (C $-$ CH ₃);121.49, 123.91, 127.85, 130.03, 132.38, 134.19(Ar carbons); 146.85, 148.56 (2 C=CO ₂ Et); 154.59 (C=N-cyclohexyl); 161.24, 162.78 (2 C=O of CO ₂ Et)	444 (M ^{+,} 11) 415 (M ⁺ -C ₂ H ₅ , 28) 398 (M ⁺ -C ₂ H ₅ OH, 74) 315 (M ⁺ -C ₆ H ₁₁ N, 100)	
1e	1.22–1.36, 1.42–1.46, 1.64–1.81 (10H, 3m, CH ₂ of cyclohexyl); 2.11 (3H, s, CH ₃); 3.64–3.68 (1H, m, CH of cyclohexyl); 3.75, 3.94 (6H, 2s, CH ₃ of CO ₂ Me); 7.06–7.07, 7.15–7.16 (4H, 2m, Ar protons)	24.63, 25.21, 26.10 (cyclohexyl carbons); 33.76 (CH ₃); 53.35, 53.61 (2 CH ₃ of CO ₂ Me); 57.21 (CH of cyclohexyl); 89.47 (C $-$ CH ₃); 124.67, 127.45 (CH of C ₆ H ₄); 130.37, 138.25 (C _{ipso (C=C)} of C ₆ H ₄); 136.112, 136.85 (2 C=CO ₂ Me); 154.63 (C=N-cyclohexyl);161.52, 162.73 (2 C=O of CO ₂ Me)	405, 407 (M ⁺ , M+2, 15, 5) 390, 392 (M ⁺ , M ⁺ +2-CH ₃ , 28, 9) 373, 375 (M ⁺ , M ⁺ + 2-CH ₃ OH, 78, 28) 276,278 (M ⁺ , M ⁺ + 2-C ₆ H ₁₁ N, 100, 37) (<i>Continued on next page</i>)	

Table 1Spectroscopic Data of 1b-f

Cmpd	¹ H NMR (δ:ppm)	¹³ C NMR (δ:ppm)	MS (m/z)	
1f	1.23–1.81 (10 H, 4m, CH ₂	14.20, 14.67 (2 CH ₃ of CO ₂ Et);	433, 435 (M ⁺ , M ⁺ +2, 16, 6)	
	of cyclohexyl); 1.27,	24.73, 25.40, 26.28 (CH ₂ of	$404, 402 (M^+, M^+ + 2 - C_2 H_5,$	
	1.36 (6H, 2t, 2 CH ₃ of	cyclohexyl); 32.69 (CH ₃);	29, 9)	
	CO ₂ Et); 2.136 (3H, s,	57.35 (CH of cyclohexyl);	387, 389 (M ⁺ , M ⁺ +2	
	CH ₃); 3.68 (1H, m, CH	62.64, 63.30 (CH ₂ of CO ₂ Et);	-C ₂ H ₅ OH, 8, 30)	
	of cyclohexyl);	88.98 (C-CH ₃); 124.84,	304, 306 (M ⁺ , M ⁺ +2	
	4.186-4.23, 4.40-4.45	127.25 (CH of C ₆ H ₄); 130.47,	-C ₆ H ₁₁ N, 100, 38)	
	(4H, 2q, J = 14.36,	135.69 ($C_{ipso(C=C)}$ of C_6H_4);		
	7.11 Hz, 2 CH ₂ of	136.14, 138.65 (2 C=CO ₂ Et);		
	CO ₂ Et); 7.05 – 7.07,	154.63 (C=N-cyclohexyl);		
	7.13–7.15 (4H, 2m,	161.26, 162.62 (2 C=O of		
	Ar protons)	CO_2Et)		

 Table 1

 Spectroscopic Data of 1b-f (Continued)

iminolactone spot disappeared, the thermal interconversion of **1** into **2** was complete. At this stage, the solvent was removed under reduced pressure. The same procedure for the purification of **2a-f** was performed as for the one-pot procedure. Although the purified **2a-f** were obtained in 96–99% yields, the yields of indenes **2** reported in *Table 4* are those obtained in the one-pot reaction which is simpler and more convenient.

Compounds **1b-f** which were not previously described in *references* 21 and 22, can be obtained in 85–90% yields by the following procedure.

Synthesis of Compounds 1b-f. General Procedure

To a stirred solution of the acetophenone derivative (2 mmol) and dialkyl acetylenedicarboxylate (2 mmol) in *p*-xylene (15 mL) was added a mixture of alkyl isocyanide (2 mmol) in *p*-xylene (10 mL) dropwise at -10°C over 2 h. The reaction mixture was warmed to 75°C and stirred at 75°C for 10 h then allowed standing in a refrigerator for 24 h. The solvent was removed under reduced pressure and the residue was purified by column chromatography (silica gel, *n*-hexane: ethyl acetate 3:1) and recrystallized in acetone to afford the pure products **1** as colorless crystals. The results are shown in *Tables 1, 2*.

	Yields	mp	Element	tal Analysis (
Cmpd	(%)	(°C)	С	Н	Ν	Formula (M.W.)
1b	86	125	62.15(62.12)	6.35(6.33)	6.30(6.32)	C ₂₃ H ₂₈ N ₂ O ₇ (444.48)
1c	90	108	60.57(60.56)	5.81(5.82)	6.73(6.73)	C ₂₁ H ₂₄ N ₂ O ₇ (416.42)
1d	87	112	62.15(62.13)	6.35(6.33)	6.30(6.31)	C ₂₃ H ₂₈ N ₂ O ₇ (444.48)
1e	87	97	62.14(62.11)	5.96(5.93)	3.45(3.49)	C ₂₁ H ₂₄ ClNO ₅ (405.87)
1f	85	105	63.66(63.63)	6.50(6.47)	3.23(3.25)	C ₂₃ H ₂₈ ClNO ₅ (433.93)

 Table 2

 Yields, mps and Elemental Analysis of 1b-f

Cmpd	¹ H NMR (δ :ppm)	¹³ C NMR (δ :ppm)	MS (m/z)
2a	1.33–1.94 (10H, 4m, CH ₂ of cyclohexyl); 2.67 (3H, s, CH ₃); 3.68, 3.88 (6H, 2s, CH ₃ of CO ₂ Me); 3.78–3.80 (1H, m, CH of cyclohexyl); 7.61–7.62, 8.32–8.37 (1H, d, $J =$ 8.35 Hz; 2H, m, Ar protons); 8.48–8.50 (1H, d, $J = 0.65$ Hz, NH).	23.04, 23.72, 24.60, CH_2 of cyclohexyl); 32.94 (CH_3); 49.17 (C_{ipso} of cyclopentene); 61.56, 63.08 (2 CH_3 of CO_2Me); 68.92(C of cyclohexyl); 117.33, 123.00, 125.77, 137.22, 144.15, 148.41, 151.23, 152.49 (Alkene and Ar carbons); 163.71, 164.09 ($C=O$ of CO_2Me); 171.03($C=O$ of amide).	416 (M ⁺ , 15) 384 (M ⁺ -MeOH,16) 291 (M ⁺ -C ₆ H ₁₁ NCO, 95) 252 (M ⁺ -C ₆ H ₁₁ NCO, CH ₃ OH, 100)
2b	1.15–1.18 (3H, t, CH ₃ of, CO ₂ Et); 1.34–1.44, 1.75–1.93(13 H, 4m, CH ₃ of CO ₂ Et, CH ₂ of cyclohexyl); 2.66 (3H, s, CH ₃); 3.7–3.78 (1H,m,CH of cyclohexyl); 4.00–4.06, 4.26, 4.28(2H, 2m, CH ₂ of CO ₂ Et); 4.28–4.34 (2H, q,CH ₂ of CO ₂ Et); 7.30–7.61, 8.32–8.36 (3H, 2m, Ar protons); 8.56–8.57 (1H, d, $J =$ 7.6 Hz, NH)	13.04, 14.15 (CH ₃ of CO ₂ Et); 24.94, 25.97, 26.60 (CH ₂ of cyclohexyl); 33.02 (CH ₃); 49.17 (C _{ipso} of cyclohexyl); 61.28, 63.08 (CH ₂ of CO ₂ Et); 68.92 (CH of cyclohexyl); 118.06, 122.63, 125.32, 137.43, 143.74, 148.41, 151.50, 152.49 (Alkene and Ar carbons); 163.73, 164.09 (2 C=O of CO ₂ Et); 170.75 (C=O of amide)	444 (M ⁺ , 12) 398 (M ⁺ -C ₂ H ₅ OH, 25) 319 (M ⁺ -C ₆ H ₁₁ NCO, 83) 273(M ⁺ -C ₆ H ₁₁ NCO, C ₂ H ₅ OH, 100)
2c	1.23–1.82 (10H, 4m, CH ₂ of cyclohexyl); 2.70 (3H, s, CH ₃); 3.40–3.96 (1H, m, CH of cyclohexyl); 4.04–4.16 (6H, 2s, CH ₃ of CO ₂ Me); 7.68–7.71, 8.33–8.58 (3H, 2m, Ar protons); 8.60 (1H, d, J = 7.1 Hz, NH)	23.23, 24.15, 24.71 (CH2 of cyclohexyl); 32.39 (CH ₃); 50.56 (C $_{ipso}$ of cyclopentene ring); 62.04, 63.15 (2 CH ₃ of CO ₂ Me); 69.12 (CH ofcyclohexyl); 120.56,123.93, 125.85, 135.19, 141.45, 146.30, 149.00, 149.74 (Alkene and Ar cabons); 161.23, 162.70 (2 C=O of CO ₂ Me); 171.03 (C=O of amide)	416 (M ⁺ , 13) 384 (M ⁺ -CH ₃ OH, 23) 291 (M ⁺ -C ₆ H ₁₁ NCO, 80) 259 (M ⁺ -C ₆ H ₁₁ NCO, CH ₃ OH, 100)

Table 3Spectroscopic Data of 2a-f

(Continued on next page)

Cmpd	¹ H NMR (δ :ppm)	¹³ C NMR (δ:ppm)	MS (m/z)	
2d	1.15–1.78 (3H, t, CH ₃ of CO ₂ Et); 1.34–1.42, 1.75–1.93 (13H, 4m, CH ₃ of CO ₂ Et, CH ₂ of cyclohexyl); 2.68(3H, s, CH ₃); 3.75 (1H, m, CH of cyclohexyl); 4.26–4.35 (4H, 2q, CH ₂ of CO ₂ Et); 7.30–7.38, 7.60- 7.62, 8.33–8.38 (3H, 3m, Ar protons); 8.57–8.58 (1H, d, $J =$ 7.55Hz, NH)	14.94, 15.98 (2 CH ₃ of CO ₂ Et); 23.04, 24.15, 24.60 (CH ₂ of cyclohexyl); 33.69 (CH ₃); 49.12 (C _{ipso} of cyclopentene); 61.43, 63.63 (CH2 of CO ₂ Et); 68.32 (CH of cyclohexyl);117.28, 123.08, 125.92, 141.06, 142.02, 149.41,152.13, 153.60 (Alkene and Ar carbons); 163.23, 164.05 (2 C=O of CO ₂ Et); 171.08 (C=O of amide)	444 (M ⁺ , 11) 398 (M ⁺ -C ₂ H ₅ OH, 30) 319 (M ⁺ - C ₆ H ₁₁ NCO, 78) 273 (M ⁺ -C ₆ H ₁₁ NCO, C ₂ H ₅ OH, 100)	
2e	1.25–1.82 (10H, 4m, CH ₂ of cyclohexyl); 2.63 (3H, s, CH ₃); 3.96–3.99 (1 H, m, CH of cyclohexyl); 4.04, 4.15 (6H, 2s, CH ₃ of CO ₂ Me); 7.06–7.08, 7.13–7.17 (3H, 2m, Ar protons); 8.56–8.57(1H, d, $J = 4.41$ Hz, NH)	23.84, 24.49, 24.92 (CH ₂ of cyclohexyl); 33.24 (CH ₃); 50.06 (C _{ipso} of cyclopentene ring); 62.13–63.49 (2 CH ₃ of CO ₂ Me); 69.08 (¹³ CH of cyclohexyl); 123.45, 126.02, 127.44, 128.44, 129.17, 132.43, 146.24, 148.12 (Alkene and Ar carbons); 163.12, 164.39 (2 C=O of CO ₂ Me); 170.43 (C=O of amide)	405, 407 (M ⁺ , M ⁺ +2, 40, 12) 373, 375 (M ⁺ , M ⁺ +2-CH ₃ OH, 25, 6), 280, 282 (M ⁺ , M ⁺ +2- C ₆ H ₁₁ NCO, 85, 35) 248, 250 (M ⁺ , M ⁺ +2-C ₆ H ₁₁ NCO, CH ₃ OH, 100, 40)	
2f	1.15–1.18 (3H, t, CH ₃ of CO ₂ Et); 1.34–1.42, 1.75–1.76, 1.77–1.93 (13H, 4m, CH ₃ of CO ₂ Et, CH ₂ of cyclohexyl); 2.66 (3H, s, CH ₃); 4.03 (1H, m, CH of cyclohexyl); 4.24–4.26, 4.26–4.29 (2H, 2m, CH ₂ of CO ₂ Et); 4.31–4.34 (2H, q, CH ₂ of CO ₂ Et); 7.06–7.07 (1H, d, $J =$ 4.59Hz, Ar protons); 7.14–7.17 (2H, m, Ar protons), 8.56–8.58 (1H, d, $J =$ 9.15Hz, NH)	14.32, 14.88 (2 CH ₃ of CO ₂ Et); 24.62, 25.91, 26.17 (CH ₂ of cyclohexyl); 33.13 (CH ₃); 49.08 (C _{ipso} of cyclopentene); 61.13, 63.48 (CH ₂ of CO ₂ Et); 68.92 (CH of cyclohexyl); 122.63, 125.32, 127.47, 128.42, 129.47, 132.43, 146.74, 148.41 (Alkene and Ar carbons); 163.19, 164.28 (2 C=O of CO ₂ Et); 171.15 (C=O of amide)	432, 434 (M^+ , M^+ +2, 25,8) 396, 398 (M^+ , M_+ 2-C ₂ H ₅ OH, 35, 9) 307, 309 (M^+ , M_+ 2- C ₆ H ₁₁ NCO, 85, 30) 261, 263 (M^+ , M_+ 2- C ₆ H ₁₁ NCO, C ₂ H ₃ OH, 100, 39)	

 Table 3

 Spectroscopic Data of 2a-f (Continued)

	*Vields	mn	Elemental Analysis (Found)			
Cmpd	(%)	(°C)	С	Н	N	Formula (M.W.)
2a	87	134–135	60.57(60.55)	5.81(5.80)	6.73(6.74)	C ₂₁ H ₂₄ N ₂ O ₇ (416.42)
2b	85	142-143	62.15(62.13)	6.35(6.32)	6.30(6.33)	C ₂₃ H ₂₈ N ₂ O ₇ (444.48)
2c	88	131-132	60.57(60.58)	5.81(5.80)	6.73(6.75)	C ₂₁ H ₂₄ N ₂ O ₇ (416.42)
2d	86	139–140	62.15(62.13)	6.35(6.35)	6.30(6.34)	C ₂₃ H ₂₈ N ₂ O ₇ (444.48)
2e	85	121-122	62.14(62.12)	5.96(5.94)	3.45(3.48)	C ₂₁ H ₂₄ ClNO ₅ (405.87)
2f	83	128–129	63.66(63.65)	6.50(6.47)	3.23(3.24)	C ₂₃ H ₂₈ ClNO ₅ (433.93)

 Table 4

 Yields, mps and Elemental Analysis of 2a-f

*Yields from one-pot procedure.

Acknowledgement

The support of this study by the Research Council at the University of Tehran is gratefully acknowledged.

References

- 1. Z. G. Hajos, R. M. Micheli, D. R. Parrish and E. P. Oliveto, Synthesis, 3008 (1967).
- 2. D. Zargarian, Coord. Chem. Rev., 233, 157 (2002).
- 3. R. Leino, P. Lehmus and A. Lehtonen, Eur. J. Inorg. Chem., 3201 (2004).
- 4. S. Tu, L. H. Xu, L. Y. Ye, X. Wang, Y. Sha and Z. Y. Xiao, J. Agric. Food Chem., 56, 5247 (2008).
- 5. V. C. Jordan, Pharmacol. Rev., 36, 245 (1984).
- 6. K. Serge, G. K. Pantelis, P. Daniel, B. Francoise and V. D. V. Patrick, Il Farmaco., 54, 678 (1999).
- I. M. Karaguni, K. H. Glüsenkamp, A. Langerak, C. Gerisen, G. Winde, T. Möröy and D. Müller, Bioorg. Med. Chem. Lett., 12, 709 (2002).
- A. D. Stefano, P. Sozio, I. Cacciatore, A. Cocco, G. Giorgioni, B. Gasta, M. Motali, A. Lucacchini, C. Martinni, G. Spoto, F. D. Pietrantonio, E. D. Matteo and F. Pinner, *J. Med. Chem.*, 48, 2646 (2005).
- 9. C. F. H. Allen and J. W. Gates, J. Am. Chem. Soc., 65, 2129 (1943).
- 10. W. E. Parham and W. C. Montgomery, J. Org. Chem., 39, 2048 (1974).
- 11. Y. Kuninobu, A. Kawata and K. Takai, J. Am. Chem. Soc., 127, 13498 (2005)
- 12. T. Takahashi, Y. Kuzuba, F. Kong, K. Nakajima and Z. Xi, J. Am. Chem. Soc., 127, 17188 (2005).
- H.-P. Bi, L.-N. Guo, X.-H. Duan, F. R. Gou, S.-H. Huang, X.-Y. Liu and Y.-M. Liang, Org. Lett., 9, 397 (2007).
- 14. Z. A. Khan and T. Wirth, Org. Lett., 11, 229 (2009).
- 15. P. G. Karmarkar, V. R. Chinchore and M. S. Wadia, Synthesis, 228 (1981).
- 16. D. Basavaiah, M. Bakthadoss and G. J. Reddy, Synthesis, 919 (2001).

- H. Yanagisawa, K. Miura, M. Kitamura, K. Narasaka and K. Ando, *Helv. Chim. Acta.*, 85, 3130 (2002).
- 18. A. Zonouzi, D. Kazemi and M. Nezamabadi, Org. Prep. Proced. Int., 38, 307 (2006).
- 19. A. Zonouzi, H. Rahmani, D. Kazemi and Z. Izakian, J. Chem. Research., 4, 222 (2008).
- 20. A. Zonouzi, Z. Izakian and M. Biniaz, Org. Prep. Proced. Int., 41, 543 (2009).
- V. Nair, A. U. Vinod, J. S. Nair, A. R. Sreekanth and N. P. Rath, *Tetrahedron Lett.*, 41, 6675 (2000).
- V. Nair, A. U. Vinod, N. Abhilash, R. S. Menon, V. Santhi, R. L. Varma, S. Viji, S. Mathew and R. Srinivas, *Tetrahedron*, 59, 10279 (2003).
- 23. A. Zonouzi, H. Rahmani and H. Samareh Afsari, Z. Kristallogr. NCS, 220, 547 (2005).
- 24. G. L. Schmiar and B. A. Cunninghom, J. Am. Chem. Soc., 87, 5692 (1965).
- 25. A. V. Butin and S. K. Smirnov, Tetrahedron Lett., 46, 8443 (2005).
- 26. M. W. George, A. Miltra and K. B. Sukumaran, Angew. Chem. Int. Ed. Engl., 19, 973 (1980).
- 27. A. Padwa, T. J. Blacklock and R. Ioza, J. Am. Chem. Soc., 103, 2404 (1981).
- 28. G. Liang, Y. Xu, I. B. Seiplet and D. Trainer, J. Am. Chem. Soc., 128, 1102 (2006).
- M. A. Oliaruso and J. F. Wolf, Synthesis of Lactones and Lactams, J. Wiley & Sons, New York. (1993).
- 30. J. K. Rupprecht, Y. H. Hut and J. L. Mclauglin, J. Nat. Prod., 53, 237 (1990).