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ABSTRACT

Transesterification of tris(hexafluoroisopropyl) phosphite with racemic 3-methyl-1-phenyl-butane-
1,3-diol gave two isomeric hexafluoroisopropyl-substituted 1,2,3-dioxaphosphinanes.
phosphites were hydrolyzed rapidly and enantioselectively by water catalyzed by HCI. The respec-
tive metalated H-phosphonates were added to ethyl 3-chloropyruvate and underwent a stereospe-
cific a-hydroxyphosphonate-phosphate rearrangement to protected phosphoenol pyruvates. This
sequence with oxygen isotope-labeled enantiomers represents an alternative approach to P-chiral

['0,”0,"®0]phosphoenol pyruvates.
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If the chiral '80-labeled 1,3-diol and H,'70 are used, (Rp)- and
(Sp)-['0,"70,"80]phosphoenol pyruvate will be obtained.

Introduction

Phosphoenol pyruvate (PEP) is a high energy compound in liv-
ing cells produced in the glycolytic cycle. It is used by pyru-
vate kinase to regenerate ATP from ADP. The phosphorus atom
in PEP is a pro-pro-chiral center, which can be made chiral by
replacing one of its three equivalent '*O atoms by an 7O atom
and a second one by an 0 atom.[':?] In the past many pro-
chiral, pro-pro-chiral phosphorus centers and even the pro-pro-
pro-chiral center of inorganic phosphatel>*! have been made
chiral by virtue of the oxygen isotopes alone or in combination
with sulfur. These compounds have been used to unravel the
stereochemistry of enzymes forming and breaking P-O bonds.
However, P-chiral PEP has never been prepared by chemi-
cal methods directly. Lowe et al. developed a method to cre-
ate a chiral phosphoryl group and attach it to alcohols and
ADP.%] Knowles et al. accessed it as an intermediate in a reac-
tion sequence from P-chiral phosphonopyruvate by means of
PEP phosphomutase catalyzing the intramolecular migration of
the phosphorus atom from the carbon to the oxygen atom.[®]
We have recently reported a direct chemical synthesis of the
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Scheme 1. Synthesis of the enantiomers of P-chiral PEP 1.

enantiomers of P-chiral phosphoenol pyruvate 1 as potassium
salts (Scheme 1).[7) In order to summarize the approach, it
started with diol (R)-['#0,]2 of ee > 99%, which was converted
to a roughly 1:1 cis/trans-mixture of cyclic H-phosphonates
['70,'%0,]4 via phosphoramidites ['0;]3 formed in a ratio of
at least 1:3.

The mixture of silylated H-phosphonates was allowed to
react with ethyl 3-chloropyruvate (Perkow reaction). The
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2:% PXs 2: _HpOMH* 2: \//
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(£)-7 X =OR
()-3 X = NMe,

Scheme 2. Conversion of 1,3-diol (%)-2 to cyclic H-phosphonates (+)-4.

obtained cis/trans-mixture of protected phosphoenol pyruvates
['70,'80,]5 was separated by flash chromatography and the
diastereomers were deprotected individually (only one is given
in Scheme 1) to give the enantiomers of P-chiral PEP 1 as potas-
sium salts.

We envisaged to improve the stereoselectivity for the forma-
tion of H-phosphonates ['70,'0,]4 from diol 2 and to shorten
the synthesis by building on the «-hydroxyphosphonate-
phosphate rearrangement!®-°! in place of the Perkow reaction to
generate the protected phosphoenol pyruvates.

Results and discussion

For simplicity, we performed all experiments with racemic diol
(£)-2 and derivatives thereof as the enantiomers will behave
similarly. It is known that 1,3-diols of type 2 react with phospho-
rus(III) compounds such as PCl; in the presence of a tertiary
amine, (RO);P, and (R;N);P to give cyclic phosphorochlo-
ridites, phosphites, and phosphoramidites (£)-6, (£)-7, and
(£)-3, respectively (Scheme 2). The position of X relative to Ph
in 3, 6 and 7 depends very much on X. For X = Cl and OR the
trans-isomer (Ph = equatorial, X = axial) is thermodynamically
more stable than the cis-isomer (Ph and X = equatorial). How-
ever, for X = NR; it is the other way round.['"!!] The exchange
of X for OH with H,O and H,'”O in the labeled series, has to be
performed in the presence of an amine for X = Cl to neutralize
the acid and for X = OR, NR; to speed up the reaction rate.

For 4 the cis-isomer is thermodynamically more stable than
the trans-isomer.['?) Importantly, H-phosphonates tautomerize
slowly in the presence of water under neutral conditions, but
rapidly under acidic conditions.['?] As phosphorochloridites are
unstable and difficult to purify, we decided to study cyclic phos-
phites 7 with X = OCH(CF3),. It was hoped that its isomers can
be separated and that they are more amenable to hydrolysis than
analogs with ordinary alkoxy groups.

Tris(hexafluoroisopropyl) phosphitel!*] was prepared and
handled under exclusion of moisture and oxygen, as it is easily
hydrolyzed to the H-phosphonate and oxidized to the respective
phosphate. Compared to trialkyl phosphites exchange of hex-
afluoroisopropoxy groups in the presence of Et;N proceeded
already easily below or at room temperature with diol (&)-
2 to give a mixture of two diastereomeric cyclic phosphites
7 (Scheme 3). When the reaction was performed in CH,Cl,
at room temperature, two isomeric compounds were formed.
They were separated by HPLC and the less polar isomer deliv-
ered crystals from hexane with a low melting point (37-38°C),
which were amenable to X-ray structure analysis. It proved
that the 1,3-substituents in the six-membered ring of (+£)-7,

ﬁ/O‘P + Phﬁ/O\P/OR

OH (RO)P/EEN
Ol R = (F5C),CH
P

(#)-2 trans-(i)- cis-(£)-7
CH,Cly, RT cisl/trans 1:2
CH,Cl,, -78 °C to RT 1:3.7
THF, RT 1:0.8
CH3CN, RT 1:3.3

Scheme 3. Transesterification of tris(hexafluoroisopropyl) phosphite with 1,3-diol
(£)-2.

the phenyl and hexafluoroisopropoxy group, are trans-arranged
(Figure 1).

Worth mentioning are the differences in bond lengths for the
P-O single bonds influenced by the fluorine atoms; P1-O1 =
1.60836(10) A; P1-0O2 = 1.67053(10) A. The values for P2 are
almost the same. The O-C bond lengths vary also. Last but not
least the deviations of X-O-Y angles from 120° for O3 and O6
(both higher than 125°) should be noted.

Consequently, the isomer must be cis-(£)-7. Their ratio of
the isomers is determined by the solvent and the reaction tem-
perature. It ranged from 3.7:1 for CH,Cl, at -78°C with warm-
ing to room temperature in favor of trans-(£)-7 to 0.8:1 in THF
at room temperature in favor of cis-(£)-7. The trans-isomer is
assumed to be the thermodynamically more stable one.[!"1!) To
test the thermal configurational stability of trans-(£)-7, a small
sample was bulb-to bulb distilled (80°C/ 1 mbar). This isomer is
configurationally stable at 80°C during the short period of time
needed for vacuum distillation, as the distillate was still homoge-
neous. Hydrolysis was significant during flash chromatography
on silica gel as evidenced by loss of product. The cis-isomer is
more labile than the frans-isomer. Hydrolysis of (£)-7 in THF
containing water was minimal, but addition of TMSCI releas-
ing HCl upon reaction with water increased it very much. Thus,
when a mixture of cis/trans-(4)-3 was stirred in THF contain-
ing 3 equiv. of water and 0.5 equiv. of TMSCI at room tempera-
ture for 30 min, no starting material was detected in the reaction
mixture by TLC (Scheme 4).

Concentration of the reaction mixture after addition of
1,1,1,3,3,3-hexamethyldisilazane for neutralization of the acid,

Figure 1. Crystal structure of cyclic phosphite trans-(=£)-7 drawn with 50% displace-
ment ellipsoids. The second molecule from the asymmetric unit was omitted for
clarity.
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Scheme 4. Acid-catalyzed hydrolysis of cyclic phosphites (£)-7.

followed by flash chromatography furnished a cis/trans-mixture
of H-phosphonates (+)-4 in 69% vyield. Importantly, when
trans-(£)-7 predominated in the starting material by 2:1,
H-phosphonate cis-(+)-4 was formed preferentially (2.5:1). This
result indicated at least a stereoselective inversion of configura-
tion upon hydrolysis. In order to study the behavior of individ-
ual homogeneous samples of cis- and trans-isomer, they were
hydrolyzed under the same conditions as their mixture before.
As expected, cis-()-7 gave preferentially trans-(£)-4 and vice
versa, but both in admixture with a small amount of the respec-
tive isomer. It is not clear whether pseudorotation!'*! interfered
with the hydrolytic process or whether partial epimerization of
phosphites!!* (£)-7 or H-phosphonates (+)-4 at phosphorus
under the acidic conditions caused the formation of the respec-
tive isomer. In any case, hydrolysis did not proceed stereospecif-
ically to deliver just one isomer as envisioned. However, it can be
used to prepare oxygen isotope-labeled H-phosphonates easily,
if H,'90 is replaced by H,'80 or H,'7O.

For convenience, the mixture of diastereomeric H-
phosphonates (£)-4 needed for the following experiments
was prepared by transesterification!®! of 1,3-diol (4)-2 with
bis(2,2,2-trifluoroethyl) phosphite and not by hydrolysis of
phosphites (£)-7. The first experiment was performed with
ethyl 3-bromopyruvate and DBU as base (pK, in CH3CN:
23.90'%]) in DMF at ambient temperature (Scheme 5). DBU
deprotonated the H-phosphonates (pK, in iPrOH: 17.4117]),
which attacked the «-carbonyl group of pyruvate. The mixture
of the cis/trans-hydroxyphosphonates (4)-8 formed under-
went a DBU-catalyzed «-hydroxyphosphonate-phosphate
rearrangement(®°! with expulsion of Br". The two enol phos-
phates could be separated by flash chromatography and their
spectra were identical to those of the literature.[”! Although the
yields for the cis- and trans isomer (21% and 9%) were low, it
was worth testing #-BuLi as base and ethyl 2-chloropyruvatel'®!
as the carbonyl compound at lower temperature. n-BuLi
converted the mixture of H-phosphonates (cis/trans 1.2:1)
to the corresponding lithium salts at —78°C quantitatively.
Addition of 3-chloropyruvate induced the formation of the
lithiated hydroxyphosphonates (+)-8, which rearranged upon
slowly warming the reaction mixture to -25°C in the cooling
bath. Neither H-phosphonate nor phosphonate derived from
3-chloropyruvate and lithiated phosphonate by nucleophilic
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Scheme 5. Preparation of protected PEP by using the «-hydroxyphosphate-
phosphate rearrangement.

substitution of chloride could be detected in the crude product
by 'H NMR spectroscopy.

The 1,3-diol (£)-2 was also present in the crude product
(cis-enol phosphate / trans-enol phosphate / 1,3-diol (£)-2 =
1:1:1) and was removed by flash chromatography. The yield of
cis- and trans-enol phosphate increased to acceptable 25% and
23%, respectively. Repetition of the experiment delivered the
same yields. To evaluate the stereoselectivity of the reaction, the
homogeneous H-phosphonates were similarly allowed to react
with n-BuLi and ethyl 3-chloropyruvate. H-Phosphonate cis-
(£)-5 containing 1% of trans-isomer furnished less polar enol
phosphate trans-(+£)-5 in 60% yield [crude product: trans-(£)-5
/ 1,3-diol (&)-2 = 1.0:0.30] in admixture with 1% of cis-(&4)-5.
However, homogeneous trans-H-phosphonate gave only the
more polar enol phosphate cis-(£)-5 in 56% yield [crude prod-
uct: cis-(£)-5 / 1,3-diol (£)-2 = 1.0:0.37 by '"H NMR]. There-
fore, lithiated H-phosphonates do not epimerize under the reac-
tion conditions and are added to the a-carbonyl group of ethyl
3-chloropyruvate with retention of configuration at the phos-
phorus atom. The subsequent rearrangement of the depro-
tonated o-hydroxyphosphonates follows a retentive course.
Satistyingly, each H-phosphonate undergoes a stereospecific
reaction.

Conclusion

We have shown that cyclic cis- and trans-phosphites derived
from 1,3-diol (+£)-2 and tris(hexafluoroisopropyl) phos-
phite are formed and easily hydrolyzed to give cyclic H-
phosphonates. These convert ethyl 3-chloropyruvate medi-
ated by n-Buli in a stereospecific a-hydroxyphosphonate-
phosphate rearrangement to protected PEP. When an '80-
labeled enantiomer of 1,3-diol 2 is utilized for the prepara-
tion of cyclic phosphites 7 and H,'7O for their hydrolysis,
the enantiomers of cylic H-phosphonates cis- and trans-
['70,'30,]4 will result. These can be transformed into protected
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(R)- and (S)-['*0,'70,'®O]phosphoenol pyruvate by the a-
hydroxyphosphonate-phosphate rearrangement. Deprotection
by the literature protocol will afford the P-chiral phosphoenol
pyruvates. The presented sequence is a formal synthesis of (R)-
and (S)-[!90,'”0,'80]phosphoenol pyruvate.

Experimental

'H, BC (J-modulated) and 3'P NMR spectra were recorded
in CDCl; and CD,Cl, with a Bruker Avance AV III 400 (*H:
400.27 MHz, 3C: 100.65 MHz, 3'P: 162.03 MHz) and with a
Bruker Avance AV III 600 ('H: 600.25 MHz, *C: 150.93 MHz,
31P: 242.94 MHz) spectrometer at 25°C. Chemical shifts (§) are
reported in parts per million (ppm) relative to CHCl; / CDCl;
(6u 7.24, 8¢ 77.0) and CHDCI, / CD,Cl, (8y 5.24, ¢ 53.5) and
external H3PO4 (85%; §p 0.0); coupling constants (J) are given
in Hz. Data for 'H NMR spectra are reported as follows: chem-
ical shift, multiplicity (s = singlet, d = doublet, t = triplet, q =
quartet, sept = septet, m = multiplet), coupling constants, and
integration. IR spectra were recorded with a Bruker VERTEX 70
IR Spectrometer in ATR mode. HPLC was performed either on
a Jasco System with a PU-980 pump, UV 975 and RI 930 detec-
tor (in case of analytical determination) or on a Dynamix Model
SD-1 with a UV-1 absorbance detector (in case of semiprepara-
tive separation using Nucleosil 50-5 column, @ 4.6 cm x 25 cm).
Melting points were measured with a Leica Galen III Thermovar
instrument and are uncorrected. Small amounts of liquids were
added to reaction mixtures by using a L syringe.

Flash (column) chromatography was performed with silica
gel 60 (230-400 mesh) and monitored by TLC, conducted on
glass-backed 0.25 mm thick silica gel 60 F;s4. Spots were visu-
alized by UV and / or dipping the plate into a solution of
(NH4)6Mo70,4 @ 4 H,O (23.0 g) and Ce(SO4), 4 H,O (1.0 g)
in 10% aqueous H,SO4 (500 mL), followed by heating with a
heat gun.

cis- and trans-(+)-2-[(1,1,1,3,3,3-Hexafluoropropan-2-
yl)oxy]-4,4-dimethyl-6-phenyl-1,3,2-dioxaphosphinane
[cis- and trans-(%)-7]

A mixture of diol (£)-2 (0.36 g, 2 mmol), tris(1,1,1,3,3,3-
hexafluoro-2-propyl) phosphitel!*] (1.117 g, 2.1 mmol, sensi-
tive to oxygen and moisture!) and Et;N (1 mmol, 0.14 mL)
in dry CH,Cl, (8 mL) was stirred under argon for 40 min at
room temperature and then concentrated under reduced pres-
sure (trans/cis, 2:1, by *'P NMR). The crude product was puri-
fied by bulb to bulb distillation (65-100°C / 1.4 mbar) to yield a
mixture of cyclic phosphites trans- and cis-(£)-7 (0.669 g, 89%)
as a colorless oil. The isomers were separated by semiprepara-
tive HPLC; injection of 1.8 mL of solution (25 mg of mixture
of cis/trans-(£)-7/mL); 10% CH,Cl, in hexanes (40 mL/min);
trans-(£)-7: t, = 2.32 min, mp 37-38°C (hexanes); cis-(£)-7: ¢,
= 2.77 min, colorless oil.

Alternatively, a rapid flash chromatography (heptane /
EtOAc, 7:1, trans: Ry = 0.69, cis: R = 0.58) gave a mixture with
the same ratio of the isomers as in the crude product with mini-
mal loss of product. A standard flash chromatography (heptane

/ CH,Cl,, 5:1; TLC with heptane / CH,Cl,, 4:1; trans: Rf = 0.52,
cis: Re = 0.38) allowed the separation of the isomers, but with
losses in yields, especially for the more polar cis-isomer.

trans-(£)-7: IR (ATR): v = 1375, 1271, 1211, 1191, 1167,
1105, 1020, 1003, 965 cm™'. 'H NMR (400.27 MHz, CDCl;):
8 = 7.39-7.28 (m, 5H), 5.51 (ddd, J = 12.0, 3.2, 2.1 Hz, 1H),
4.61 (septd, ] = 6.4, 5.9 Hz, 1H), 2.20 (dd, ] = 14.3, 12.0 Hz,
1H), 1.87 (ddd, J = 14.3, 3.2, 2.1 Hz, 1H), 1.64 (s, 3H), 1.35 (s,
3H). ¥*C NMR (150.93 MHz, CDCl;): § = 140.7 (d, ] = 3.0 Hz),
128.6 (2C), 128.2, 125.7 (2C), 121.3 (q with fine structure, ] =
283.4 Hz,2C), 78.0 (d, ] = 9.1 Hz), 70.0 (septd, ] = 33.4, 23.8 Hz),
68.7 (d,J=3.0Hz),46.3 (d,] = 3.5Hz), 32.5 (d, = 4.5 Hz), 28.0.
3P NMR (162.03 MHz, CDCl;): § = 132.0 (sept, ] = 7.2 Hz).
Anal. Calcd for C14H;5FsO3P (376.23): C, 44.69; H, 4.02. Found:
C,44.78; H, 4.22.

cis-(£)-7: IR (ATR): v = 2917, 1375, 1290, 1228, 1197, 1107,
1057, 968 cm™'. '"H NMR (600.25 MHz, CD,Cl,): § = 7.34-7.23
(m, 5H), 5.24 (td, ] = 12.6, 3.3 Hz, 1H), 4.73 (septd, ] = 7.4,
6.0 Hz, 1H), 2.69 (dd, ] = 14.9, 12.6 Hz, 1H), 1.87 (td, ] = 14.9,
3.3 Hz, 1H), 1.47 (s, 3H), 1.35 (s, 3H). '3*C NMR (150.93 MHz,
CD,Cl,): § = 141.4, 128.6 (2C), 128.1, 126.1 (2C), 121.5 (q with
fine structure, ] = 284.5 Hz, 2C), 77.5 (d, ] = 7.6 Hz), 74.0 (d, ]
= 7.4 Hz), 70.4 (septd, ] = 33.7,27.2 Hz), 44.6 (d, ] = 15.7 Hz),
31.2,28.1 (d, J = 1.5 Hz). 3'P NMR (242.99 MHz, CD,Cl,): § =
132.3 (sept, ] = 7.9 Hz).

Test of thermal configurational stability of trans-(+)-7

A small sample (50 mg) of trans-(=£)-7 was bulb to bulb distilled
(80°C / 1 mbar). The 'H and *'P NMR spectrum recorded in
toluene-dg showed that the distilled sample was still homoge-
neous and did not contain cis-(%)-7.

Hydrolysis of cyclic phosphites (+)-7 - cis- and trans-(%)-
4,4-dimethyl-6-phenyl-1,3,2-dioxaphosphinane-2-oxides
[cis- and trans-(x)-4]

A mixture of phosphites cis- and trans-(£)-7 (0.75 g, 2.0 mmol,
trans/cis, 2:1), H,O (7.2 mmol, 0.13 mL) and TMSCI (0.11 g,
1.0 mmol, 0.12 mL) in dry THF (5 mL) was stirred at
room temperature under argon for 30 min. 1,1,1,3,3,3-
Hexamethyldisilazane (0.18 g, 1.1 mmol, 0.14 mL) was added
(under argon!) and the solution was concentrated under
reduced pressure. The crude product was dried (45°C/ 1 mbar)
for 5 min and then purified by flash chromatography (EtOAc,
R¢ = 0.50) to yield a crystalline mixture (0.31 g, 69%; cis/trans,
2.5:1 by 'H NMR) of cyclic H-phosphonates cis- and trans-4.
The NMR spectra (*H, *'P) were identical to those of the
literature. %!

Similarly, phosphite cis-(3)-7 (0.15 g, 0.40 mmol) was con-
verted to H-phosphonate trans-(4)-4 [0.07 g, 78%, contained
10% of cis-(%)-4] as colorless solid.

Similarly, phosphite trans-(£)-3 (0.42 g, 1.12 mmol) was
converted to H-phosphonate cis-(£)-4 [0.23 g, 91%, contained
6% of trans-(1)-4] as colorless solid.



Preparation of enol phosphates (+)-5 using DBU as base

Ethyl 3-bromopyruvate (0.14 g, 90 uL, 0.72 mmol) and DBU
(0.21 g, 0.20 mL, 2 equiv.) were added to a solution of H-
phosphonates cis- and trans-(1)-4 (0.16 g, 0.71 mmol, cis/trans,
1.3:1) dissolved in dry DMF (4 mL) at 0°C under argon. The
dark colored reaction mixture was stirred for 30 min and con-
centrated under reduced pressure. The residue was diluted with
CH,Cl, (5 mL), washed with water (2 x 3 mL), dried (Na,SOy,)
and concentrated under reduced pressure. The residue was
flash chromatographed (hexane / EtOAc, 2:1, trans-(£)-5: Rf =
0.34; cis-(£)-5: R¢ = 0.20) to yield enol phosphate trans-(£)-5
(0.022 g, 9%) and cis-(£)-5 (0.050 g, 21%) as colorless oils. The
NMR spectra of the two compounds were identical to the ones
reported in the literature.!”!

Preparation of enol phosphates (+)-5 using n-Buli as base

n-BuLi (1.12 mL, 2.5 M solution in hexane; 2.8 mmol, 1.1
equiv.) was dropwise added to a solution of the mixture of H-
phosphonates (+)-4 (0.576 g, 2.55 mmol, cis/trans, 1.2:1) in dry
THF (7 mL) under argon at -78°C. After stirring for 3 min,
the solution of ethyl 3-chloropyruvate!'®! (0.422 g, 2.8 mmol,
1.1 equiv.) in dry THF (3 mL) was added quickly. The reac-
tion mixture was allowed to warm slowly in the cooling bath.
When the temperature had risen to -25°C (within 2 h), AcOH
(five small drops) was added. The reaction mixture was concen-
trated under reduced pressure. CH,Cl, (25 mL) and a saturated
aqueous solution of NaHCOj3; (20 mL) were added. The organic
phase was separated and the aqueous one was extracted with
CH,Cl; (2 x 10 mL). The combined organic layers were washed
with water (10 mL), dried (Na,SO,4) and concentrated under
reduced pressure. After recording 'H and *'P NMR spectra of
the residue (cis-enol phosphate / trans-enol phosphate / 1,3-diol
(£)-2, 1:1:1), it was flash chromatographed (CH,Cl, / acetone,
20:1, trans: Ry = 0.50; cis: Ry = 0.33; 1,3-diol (£)-2: Ry = 0.16) to
yield enol phosphates cis-(£)-5 (0.221 g, 25%) and trans-(%)-
5 (0.200 g, 23%), both as colorless crystals, and 1,3-diol (£)-
2 (0.080 g, 18%) as gum. The NMR spectra of the three com-
pounds were identical to the ones reported in the literature.!”>1%]

Similarly, H-phosphonate cis-(+)-4 (0.440 g, 1.95 mmol,
contained 1% of trans-isomer) was converted to homogeneous
enol phosphate trans-(£)-5 (0.395 g, 60%).

Similarly, homogeneous H-phosphonate trans-(+)-4
(0.534 g, 2.36 mmol) was converted to homogeneous enol
phosphate cis-(£)-5 (0.447 g, 56%).
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