

Subscriber access provided by the University of Exeter

Article

One-Pot Synthesis of 2,4-Diacyl Thiophenes from #-Oxo Ketene Dithioacetals and Propargylic Alcohols

xue jian, Li-Gang Bai, Liang Zhang, Yue Zhou, Xiao-Long Lin, Neng-Jie Mou, Dong-Rong Xiao, and Qun-Li Luo

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.0c01093 • Publication Date (Web): 13 Jul 2020 Downloaded from pubs.acs.org on July 13, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

One-Pot Synthesis of 2,4-Diacyl Thiophenes from α-Oxo Ketene Dithioacetals and Propargylic Alcohols

Jian Xue,^a Li-Gang Bai,^{a, †} Liang Zhang,^a Yue Zhou,^a Xiao-Long Lin,^a Neng-Jie Mou,^a Dong-Rong Xiao,^a and Qun-Li Luo^{*, a, b}

^a College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.

<u>qlluo@swu.edu.cn</u>

^b Key Laboratory of Applied Chemistry of Chongqing Municipality, Southwest University, Chongqing 400715, China.

[†] New address: College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, China.

Table of Contents:

Abstract: Although thiophenes having various functionalities are the basic structural units in numerous bioactive compounds and optoelectronic materials, synthetic routes to acylated thiophenes from aliphatic sulfur-containing starting materials are still rare. In particular, there have been no reports concerning the straightforward synthesis of 2,4-diacylthiophenes from alkynes. Herein, we describe a highly efficient and metal-free three-step one-pot synthetic approach to tetrasubstituted

2,4-diacylthiophenes from propargylic alcohols and α -oxo ketene dithioacetals. This research features a relay catalysis system that integrates Brønsted acid-catalyzed propargylation, molecular iodine-mediated electrophilic cyclization and visible light-induced deiodinative oxygenation. The 2,4-diacylthiophenes serving as the key starting materials are readily synthesized, enabling facile construction of analogues of related biologically active compounds and the modular assembly of tetrasubstituted thienothiophenes.

Introduction

There are ongoing efforts to simplify synthetic methodologies for the construction of functional organic molecules, as well as to optimize reaction conditions, improve substrate accessibility and enhance atom and step economies.¹ Both relay catalysis and sequential transformations are useful approaches to these goals.² Relay catalysis, especially multiple relay catalysis, delivers a range of products that would not be accessible with the use of a single catalyst.³ Sequential transformations, which are known to chemists under the term "one-pot reactions" and consist of domino reactions and consecutive reactions, are able to produce the maximum possible structural complexity using a minimum number of pots.⁴ A successful sequential transformation will generate the desired organic compounds in good yields from simple starting materials in few steps and with a significant reduction in the amount of undesired by-products. Domino reactions (also described as tandem or cascade reactions) are an especially efficient type of sequential transformation that have frequently been reported to have significant usefulness.^{4b} Comparatively, consecutive reactions have not been as helpful as domino reactions, because the intermediate structures in such series are often stable and

isolatable, such that subsequent reactions may not proceed in the absence of additional promoters. Therefore, the examples of consecutive reactions combined with multiple relay catalysis have drawn increasing interest, as a result of the challenges associated with the minimal compatibility of the reagents and catalysts for specific reaction conditions.⁵

Fig. 1 Selected examples of bioactive molecules containing 2,4-diacyl thiophene scaffold.

Thiophene rings are found in numerous organic compounds, including natural products, bioactive substances, optoelectronic materials and synthetic intermediates.^{6, 7} Thiophene derivatives are also widely used as conductive organic materials due to their structural rigidity and electronic properties.⁸ As a result, there have been many attempts to develop reliable, high yield processes for synthesizing functionalized thiophenes.⁹ Thiophenes that are acylated at the 2- and 4-positions are especially important structural motifs in numerous bioactive molecules (Figure 1).¹⁰ The traditional approach to obtaining 2-acylthiophenes relies on late-stage modification via the Friedel-Crafts acylation of thiophenes using specific Lewis acid promotors combined with acyl anhydrides or acid chlorides, which often provides poor atom economy and/or deleterious environmental effects.¹¹ However, the synthesis of 2-acylthiophenes has received little attention and, to the best of our knowledge, there have been no reports to date concerning the straightforward synthesis of 2,4-diacylthiophenes from

alkynes.¹²

The intramolecular electrophilic cyclization of alkynes possessing a nucleophile in proximity to the carbon–carbon triple bond has proven to be a particularly efficient strategy for constructing functionalized heterocyclic rings (Scheme 1a).¹³ Based on this approach, a number of methodologies for synthesizing fused five-membered heterocycles bearing 3-iodo substituents through the iodocyclization of *o*-alkynylized anilines, aromatic ethers and thioethers have been developed.^{9a, 14} Similarly, aliphatic acetylenic analogues have been successfully employed to synthesize substituted five-membered N- and O-heterocycles.¹⁵ However, there has been very limited success with regard to the production of thiophene counterparts using this methodology.¹⁶

idea of this work; and (c) feature of this work.

Theoretically, stoichiometric iodine reagents are necessary in the iodocyclization step. Moreover, the iodocyclization products frequently need to be further converted into other functional targeted molecules via deiodinative transformations. Within a two-step operation comprising iodocyclization followed by deiodinative transformation, potentially toxic halide waste products are generated twice.^{15h} We therefore envisioned that a catalytic iodocyclization/deiodinative transformation would greatly reduce the amount of iodine reagent required and thus limit the production of halide waste. This would be significantly beneficial in terms of atom economy and environmental impact (Scheme 1b). Herein, we describe a reliable one-pot catalytic protocol for the direct assembly of 2,4-diacyl thiophenes from propargyl alcohols and α -oxo ketene dithioacetals through relay catalysis, using trifluoroacetic acid (TFA), molecular iodine and visible light (Scheme 1c).

Results and discussion

 α -Oxo ketene dithioacetals are versatile sulfur-containing reagents that have been widely used as 1,3-bis-electrophilic three-carbon synthons and two-carbon fragments equivalent to polarized alkenes.^{17, 18} Recently, we reported that α -oxo ketene dithioacetals exhibit unique behavior as synthons.¹⁹ C,O-bis-nucleophilic two-carbon These compounds could also serve as specific annulations in conjunction C,S-bis-nucleophiles in cascade with appropriate bis-electrophiles.¹⁸ Thus, we examined the acid-catalyzed sequential propargylation/iodocyclization of α -oxo ketene dithioacetal 2a using propargylic alcohol 1a (for details of the reaction optimization process, see Table S1).²⁰

The general feasibility of the propargylation/iodocyclization of a-oxo ketene dithioacetals was

assessed by examining the reactions of substrates 2, having a variety of substituents, with a series of propargyl alcohols 1 under the optimized conditions. Propargyl alcohols containing different R^1 and R^2 substituents were initially investigated through reactions with 2a (Table 1). The substituents at the *para-* or *meta-*positions on the α -phenyl moiety in propargyl alcohols 1a–1k were found to have insignificant effects on reactivity, and the majority of the alcohols gave very good yields (3a–3k).

Table 1. Scope of propargyl alcohols for the propargylation/iodocyclization.^a

^{*a*} Conditions: **1** (0.36 mmol), **2a** (0.3 mmol), TFA (0.06 mmol), and CH₃CN (1 mL) at 50 $^{\circ}$ C for 2 h, then I₂ (0.3 mmol) was added and further reacted for 2 h. Isolated yields are given. TFA: trifluoroacetic acid.

In contrast, the presence of *ortho*-substituents resulted in lower yields owing to the effects of steric hindrance (3I-3n vs 3a-3k). A series of α -fused aryl or heteroaryl-derived propargyl alcohols was also evaluated. Those compounds having aryl groups with electron-donating substituents were determined to give better results than those with electron-withdrawing groups, because the former provided a conjugation effect in conjunction with the α -aryl moiety that stabilized the propargyl

carbocation (30, 3p, 3s, 3r vs 3q-3r). Trials in which the distal group on the alkyne moiety in the propargyl alcohol was an alkyl-substituted aryl, such as 4-methylphenyl or 2-methylphenyl, gave the products in vields (3u - 3v), while the 4-methoxyphenvl desired verv good and 4-bromophenyl-substituted counterparts only led to moderate yields (3w-3x). These results imply that the conjugation effect of R^2 in these propargyl alcohols had a negative effect on the reaction. The yields obtained from propargyl alcohols bearing a distal alkyl or hydrogen of alkyne moiety were slightly inferior to those obtained from reactants with a distal phenyl group (3y-3z vs 3b, 3aa vs 3a).

The use of α -oxoketene dithioacetals containing different R³ and R⁴ substituents was subsequently investigated based on reactions with **1a** (Table 2). A bis(benzylthio)-substituted dithioacetal gave the product in lower yield than the other compounds (**3ae** vs **3a**–**3ad**) due to the relatively low stability of α -oxoketene dithioacetals containing the benzylthio group in the presence of iodine. In contrast, α -oxoketene dithioacetals with small α -alkyl groups were superior to those with bulky groups (**3a** vs **3af–3ag**) because of the effects of steric hindrance. The yields from α -oxoketene dithioacetals containing α -aryl groups were slightly inferior to those produced from analogues containing α -alkyl moieties (**3ah–3ao** vs **3a–3ad**). This result is attributed to decreased polarization of the carbon–carbon double bond in the α -oxoketene dithioacetal because of the conjugation effect. This, in turn, reduced the nucleophilicity of the α -aryl α -oxoketene dithioacetals relative to the α -alkyl counterparts. X-ray single-crystal analysis established that the iodo carbon-carbon double bond in **3ad** had the *E* configuration (see the Supporting Information).^{20, 21} The stereochemistry of each of the other compounds in series **3** was assigned by comparison with that of **3ad**.

Table 2. Scope of ketene dithioacetals for the propargylation/iodocyclization.^a

^{*a*} Conditions: **1a** (0.36 mmol), **2** (0.3 mmol), TFA (0.06 mmol), and CH₃CN (1 mL) at 50 $^{\circ}$ C for 2 h, then I₂ (0.3 mmol) was added and further reacted for 2 h. Isolated yields are given. PMP: *para*-methoxyphenyl. TFA: trifluoroacetic acid.

When a solution of **3a** in deuterated chloroform was allowed to stand in contact with air for several days, the compound partially converted into the deiodinatively oxygenated product, whereas the same compound in its pure state was stable in air. We therefore suspected that the deiodinative oxygenation was triggered by exposure to visible light. Under optimal conditions (Table S2),²⁰ this same photoinduced reaction proceeded rapidly in conjunction with exposure to a 30 W household compact fluorescent lamp, using ethyl acetate as the solvent in an ambient atmosphere.²² As shown in Table 3, all the specimens underwent the deiodinative oxygenation smoothly to give the desired diacyl thiophenes **4** in mostly good to excellent yields. There were only two exceptions (**4aa**, **4ae**) for which the isolated yields were lower than 75%, because of either the instability of formyl toward aerobic oxidations (**4aa**) or the instability of the benzylthio group in the presence of the iodine species formed *in situ* (Table 2, **3ae**).

^{*a*} Conditions: **3** (0.2 mmol), EtOAc (2 mL), 30 W CFL, RT for 2 h. Isolated yields are given. The reaction vessel was general heavy-wall glass flask. ^{*b*} 0.15 mmol of **3aa** was used. CFL: household compact fluorescent lamp that was a white household light bulb. PMP: *para*-methoxyphenyl.

After the optimized conditions for the propargylation, iodocyclization and photoinduced deiodinative oxygenation were established, we focused on developing a sequential relay catalysis to enable the efficient synthesis of 2,4-diacylthiophenes through a one-pot operation (Table S3).²⁰ It was found to be necessary to dilute the reaction mixtures in the second stage and to prolong the radiation time to 15–20 h because these mixtures became darker during the propargylation step, thereby blocking light transmission. The addition of a small amount of silica gel (such as typically used for

column chromatography) proved to be an efficient solution for preliminary decolorization. Under optimal conditions, the relay catalysis was accomplished very successfully and some representative results are summarized in Table 4. The isolated yields reached 62%–74%, which correspond to average yields of 85%–90.5% for each step of the three-step consecutive reaction process. This one-pot synthesis technique completely avoids the need to isolate and purify any intermediate products or to provide a stoichiometric amount of any additive, thereby reducing the time, resources and energy requirements.

^{*a*} *Conditions*: **1** (0.36 mmol), **2** (0.3 mmol), TFA (0.06 mmol), and CH₃CN (1 mL), at 50 °C for 2h. EtOAc (10 mL), I₂ (0.18 mmol) and 350 mg of silica gel (200–300 mesh) were then added, and the reaction flask was magnetically stirred and irradiated with a 30 W CFL at RT for 15–20 h (typically, 15 h). The reaction vessel and light source were same as that shown in Table 3. Isolated yields are given. PMP: *para*-methoxyphenyl.

Gram-scale preparations of 3 and 4 were found to be feasible. Scaling the synthesis of 3a by as

much as 20-fold and that of **4a** by 15-fold had no obvious effect on the reaction efficiency, further attesting to the robust nature of this process (Scheme 2a).

Scheme 2. Scale-up Syntheses and Transformations. (a) Scale-up syntheses of 3a and 4a; (b) late-stage functionalizations of 3ad and 4ad; and (c) modular syntheses of tetrasubstituted thieno[2,3-*b*]thiophenes.

The late-stage transformations of **3ad** and **4ad** were further explored (Scheme 2b). The Suzuki coupling of **3ad** with phenylboronic acid readily gave the tetrasubstituted dihydrothiophene derivative **5a** bearing an exocyclic double bond, while base-catalyzed deiodinative hydrolysis of **3ad** delivered

the tetrasubstituted thiophen-2-yl carbinol **5b** in good yield. The highly efficient oxidation of **4ad** with *m*-chloroperbenzoic acid (*m*-CPBA) furnished sulfone **6** containing the 3-acyl-5-aroyl-2-(methylsulfonyl)thiophene scaffold that exactly maps onto the key substructure of GLP-1 receptor agonist **6a**.^{10a}

Notably, the modular synthesis of tetrasubstituted thieno[2,3-*b*]thiophenes was particularly convenient when using **4** as precursors (Scheme 2c). Thieno[2,3-*b*]thiophenes are useful building blocks for the construction of organic semiconductors possessing different conjugation lengths.^{6d} Although the synthesis of thieno[2,3-*b*]thiophene and its derivatives has been previously achieved using several different protocols,^{6, 23} these frequently suffer from one or more disadvantages, such as tedious multistep syntheses, harsh conditions, relatively low total yields and product mixtures containing symmetric substituents or lack of functional groups. The present protocol provides a facile modular synthetic approach to diverse functionalized thieno[2,3-*b*]thiophenes bearing four different substituents in a four-step two-pot operation under mild conditions.

Conclusion

In conclusion, we have established a versatile protocol for the synthesis of structurally diverse 2,4-diacylthiophenes through relay catalysis combining chemo- and photo-catalysis. This method provides a facile approach to structures of interest to researchers in the life sciences and materials sciences, using inexpensive reagents and easily accessible precursors together with a minimum number of pots. Under visible light irradiation, a sub-stoichiometric amount of I_2 efficiently realized the cascade iodocyclization/deiodinative transformation of alkyne thioether intermediates for the first time. The reactions were demonstrated to be extremely reliable and to give high yields while enabling

the synthesis to proceed in either a stepwise or consecutive manner under mild conditions. The products of iodocyclization could be converted to functionalized tetrasubstituted dihydrothiophene and thiophene derivatives. Our strategy of consecutive reactions permits the facile modular synthesis of diversely functionalized thieno[2,3-b]thiophenes, and thus opens up avenues for the development of synthetic methodologies for heterocycles from simple precursors via relay catalysis.

Experimental Section

General methods

Unless otherwise noted, commercially available reagents were used as received. Propargylic alcohols 1a-1z and α -oxo ketene dithioacetals 2a-2o were prepared according to literature procedures. ^{19, 24, 25} All solvents for chromatographic separations were distilled before use. Solvents for the water-free reactions were dried with standard procedures and stored with Schlenk flasks over molecular sieves. Column chromatography was carried out with 200-300 mesh silica gel. Thin-layer chromatography (TLC) was performed on glass-backed silica plates. UV light, I₂, and solutions of 2, 4-dinitrophenylhydrazine were used to visualize products. Concentrating a solution under reduced pressure refers to distillation using a rotary evaporator attached to a vacuum pump (3 - 10 mmHg). Products obtained as solids or high boiling oils were dried under vacuum (1 - 3 mmHg). ¹H and ¹³C NMR spectra were recorded on a 600 MHz NMR spectrometer at 293 K and the chemical shifts (δ) were internally referenced by the residual solvent signals relative to tetramethylsilane ($CDCl_3$ at 7.26 ppm for ¹H, and at 77.00 ppm for ¹³C). Data are reported as (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad; coupling constant(s) in Hz; integration). The yields in the text refer to isolated yields of compounds.

General procedure for the synthesis of 3

To the solutuion of **1** (0.36 mmol) and **2** (0.3 mmol) in CH₃CN (1 mL) was added trifluoroacetic acid (5 μ L, 0.06 mmol) with stirring. The reaction mixture was continually stirred at 50 °C in an oil bath until **1** was consumed as indicated by TLC (*ca*. 2 h). Iodine (76 mg, 0.3 mmol) was added. The solution was stirred at 50 °C in the oil bath until the intermediate was consumed as indicated by TLC (*ca*. 2 h). The mixture was cooled to RT, diluted with a saturated aqueous solution of sodium thiosulfate (5 mL), and extracted with ethyl acetate (3 × 5 mL). The combined organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate as eluent) to give the desired product **3**.

(E)-1-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)e than-1-one (3a). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3a (142 mg, 93%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, *J* = 8.6 Hz, 2H), 7.28 – 7.24 (m, 2H), 7.23 – 7.19 (m, 3H), 6.80 (d, *J* = 8.6 Hz, 2H), 5.10 (s, 1H), 3.73 (s, 3H), 2.80 (d, *J* = 7.4 Hz, 2H), 2.00 (s, 3H), 1.23 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 159.1, 156.3, 143.3, 142.8, 130.9 (CH×2), 130.0 (CH×2), 128.9 (CH×2), 128.6 (CH×2), 128.5 (CH×2), 113.9 (CH×2), 64.8, 55.2, 29.5, 28.2, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂IO₂S₂ 509.0100; found 509.0094.

(3b). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3b (119 mg, 83%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, *J* = 7.2 Hz, 2H), 7.34 (t, *J* = 6.6 Hz, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 7.28 (m, 4H), 5.23 (s, 1H), 2.88 (q, *J* = 7.4 Hz, 2H), 2.08 (s, 3H), 1.31 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.1, 156.6, 143.3, 142.6, 138.8, 129.7, 129.0 (CH×2), 128.9, 128.64 (CH×2), 128.55 (CH×2), 128.5 (CH×2), 127.7, 87.4, 65.5, 29.6, 28.3, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₂₀IOS₂ 478.9995; found 478.9996. (E)-1-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(p-tolyl)-4,5-dihydrothiophen-3-yl)ethan-1-one

(3c). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1,

 v/v) gave **3c** (130 mg, 88%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, *J* = 7.9 Hz, 2H), 7.35 – 7.31 (m, 2H), 7.28 (dd, *J* = 12.3, 7.1 Hz, 3H), 7.15 (d, *J* = 7.7 Hz, 2H), 5.19 (s, 1H), 2.88 (q, *J* = 7.4 Hz, 2H), 2.34 (s, 3H), 2.07 (s, 3H), 1.31 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.2, 156.4, 143.3, 142.8, 137.4, 135.8, 129.7, 129.2, 128.9 (CH×2), 128.8 (CH×2), 128.60 (CH×2), 128.55 (CH×2), 87.2, 65.2, 29.5, 28.2, 21.2, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂IOS₂ 493.0151; found 493.0139.

(E)-1-(4-(4-ethylphenyl)-2-(ethylthio)-5-(iodo(phenyl)methylene)-4,5-dihydrothiophen-3-yl)etha n-1-one (3d). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3d (137 mg, 90%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 2H), 7.34 – 7.27 (m, 5H), 7.17 (d, *J* = 8.0 Hz, 2H), 5.20 (s, 1H), 2.87 (d, *J* = 7.4 Hz, 2H), 2.64 (d, *J* = 7.6 Hz, 2H), 2.07 (s, 3H), 1.30 (t, *J* = 7.4 Hz, 3H), 1.24 (t, *J* = 7.6 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 156.5, 143.6, 143.3, 142.8, 135.9, 129.7, 128.9 (CH×2), 128.8 (CH×2), 128.61 (CH×2), 128.57 (CH×2), 128.0, 87.3, 65.2, 29.5, 28.5, 28.2, 15.3, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₄IOS₂ 507.0308; found 507.0312.

(E)-1-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-isopropylphenyl)-4,5-dihydrothiophen-3-yl) ethan-1-one (3e). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3e (139 mg, 89%) as a white solid, mp 118–120 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, *J* = 7.9 Hz, 2H), 7.32 (m, 5H), 7.19 (d, *J* = 7.8 Hz, 2H), 5.20 (s, 1H), 2.91 – 2.85 (m, 3H), 2.07 (s, 3H), 1.30 (dd, *J* = 10.2, 4.5 Hz, 3H), 1.26 (s, 3H), 1.25 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 156.5, 148.2, 143.2, 142.8, 136.0, 129.6, 128.9 (CH×4), 128.8 (CH×2), 128.6 (CH×2), 126.6 (CH×2), 87.4, 65.2, 33.8, 29.6, 28.2, 23.9, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₆IOS₂ 521.0464; found 521.0459.

(E)-1-(4-(4-(tert-butyl)phenyl)-2-(ethylthio)-5-(iodo(phenyl)methylene)-4,5-dihydrothiophen-3-y l)ethan-1-one (3f). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3f (149 mg, 93%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.49 (s, 2H), 7.34 (d, *J* = 8.4 Hz, 3H), 7.32 (s, 2H), 7.31 – 7.27 (m, 2H), 5.21 (s, 1H), 2.87 (q, *J* = 7.4 Hz, 2H), 2.07 (s, 3H), 1.31 (d, *J* = 6.5 Hz, 12H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 150.5, 143.2, 142.7,

ACS Paragon Plus Environment

135.6, 129.7 (CH×2), 128.8 (CH×2), 128.61 (CH×2), 128.58 (CH×2), 128.4 (CH×2), 125.4 (CH×2), 87.4, 65.1, 34.6, 31.3 (CH₃×2), 29.6, 28.2, 14.4. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₅H₂₈IOS₂ 535.0621; found 535.0624.

(E)-1-(2-(ethylthio)-4-(4-fluorophenyl)-5-(iodo(phenyl)methylene)-4,5-dihydrothiophen-3-yl)eth an-1-one (3g). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave 3g (124 mg, 83%) as a white solid, mp 130–132 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (dd, J = 7.8, 5.4 Hz, 2H), 7.34 (t, J = 7.2 Hz, 2H), 7.30 – 7.27 (m, 3H), 7.03 (t, J = 8.4Hz, 2H), 5.22 (s, 1H), 2.88 (q, J = 7.3 Hz, 2H), 2.09 (s, 3H), 1.31 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.9, 162.2 (d, ¹*J*_{CF} = 246 Hz), 156.6, 143.1, 142.2, 134.7 (d, ⁴*J*_{CF} = 2.9 Hz), 130.5 (d, ³*J*_{CF} = 8.0 Hz), 129.7, 129.0, 128.7 (CH×2), 128.5 (CH×2), 115.5 (d, ²*J*_{CF} = 21.4 Hz), 87.7, 64.7, 29.7, 28.4, 14.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₉FIOS₂ 496.9901; found 496.9891. (E)-1-(4-(4-chlorophenyl)-2-(ethylthio)-5-(iodo(phenyl)methylene)-4,5-dihydrothiophen-3-yl)eth an-1-one (3h). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave 3h (120 mg, 78%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, J = 8.1 Hz, 2H), 7.31 (m, 7H), 5.22 (s, 1H), 2.89 (dd, J = 14.7, 7.3 Hz, 2H), 2.10 (s, 3H), 1.32 (t, J = 7.4Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.8, 156.7, 143.1, 142.0, 137.4, 133.5, 130.2, 129.5, 129.0 (CH×2), 128.8 (CH×2), 128.7 (CH×2), 128.4 (CH×2), 87.8, 64.8, 29.7, 28.4, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₉CIIOS₂ 512.9605; found 512.9611.

(E)-1-(4-(4-bromophenyl)-2-(ethylthio)-5-(iodo(phenyl)methylene)-4,5-dihydrothiophen-3-yl)eth an-1-one (3i). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave 3i (134 mg, 80%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.48 (s, 4H), 7.35 (dd, *J* = 9.9, 4.5 Hz, 2H), 7.31 – 7.28 (m, 3H), 5.21 (s, 1H), 2.89 (q, *J* = 7.4 Hz, 2H), 2.10 (s, 3H), 1.31 (t, *J* = 7.5 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.8, 156.8, 143.1, 141.9, 137.9, 131.7, 130.6, 129.5 (CH×2), 129.0 (CH×2), 128.7 (CH×2), 128.4 (CH×2), 121.6, 87.9, 64.9, 29.7, 28.4, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₉BrIOS₂ 556.9100; found 556.9117.

(E)-1-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(3-methoxyphenyl)-4,5-dihydrothiophen-3-yl)e than-1-one (3j). Purification by flash column chromatography eluting with petroleum ether/ethyl

acetate (20/1, v/v) gave **3j** (140 mg, 92%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.32 (s, 2H), 7.30 (d, *J* = 7.5 Hz, 4H), 7.19 (d, *J* = 12.6 Hz, 2H), 6.87 – 6.82 (m, 1H), 5.20 (s, 1H), 3.83 (s, 3H), 2.87 (d, *J* = 7.4 Hz, 2H), 2.10 (s, 3H), 1.31 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.2, 159.7, 156.9, 143.2, 142.5, 140.2, 129.5, 129.3, 128.9 (CH×2), 128.6 (CH×2), 128.5, 121.4, 115.2, 112.6, 87.5, 65.3, 55.3, 29.6, 28.3, 14.3. HRMS (ESI-TOF) calcd for C₂₂H₂₂IO₂S₂ [M + H]⁺ : 509.0100; found 509.0104.

(E)-1-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(m-tolyl)-4,5-dihydrothiophen-3-yl)ethan-1-one (3k). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3k (127 mg, 86%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, *J* = 7.7 Hz, 1H), 7.30 (s, 1H), 7.28 – 7.24 (m, 2H), 7.24 – 7.18 (m, 3H), 7.15 (t, *J* = 7.6 Hz, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 5.11 (s, 1H), 2.81 (d, *J* = 7.4 Hz, 2H), 2.30 (s, 3H), 2.00 (s, 3H), 1.23 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.3, 155.6, 142.3, 141.7, 137.6, 137.2, 128.5 (CH×2), 128.4 (CH×2), 127.9, 127.6, 127.53, 127.50, 127.3, 125.2, 86.3, 64.4, 28.5, 27.2, 20.6, 13.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂IOS₂ 493.0151; found 493.0151.

(E)-1-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(2-methoxyphenyl)-4,5-dihydrothiophen-3-yl)e than-1-one (3l). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3l (85 mg, 56%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.53 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.38 – 7.35 (m, 2H), 7.34 – 7.29 (m, 4H), 6.99 (s, 1H), 6.94 (d, *J* = 8.2 Hz, 1H), 5.74 (s, 1H), 3.95 (s, 3H), 2.87 (d, *J* = 7.4 Hz, 2H), 2.10 (s, 3H), 1.32 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 192.1, 156.2, 156.0, 144.9, 144.5, 129.5, 129.0, 128.70, 128.67, 128.43, 128.36, 128.0, 127.5, 121.34, 121.27, 110.8, 84.5, 57.7, 55.4, 28.7, 28.0, 14.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂IO₂S₂ 509.0100; found 509.0100.

(E)-1-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(o-tolyl)-4,5-dihydrothiophen-3-yl)ethan-1-one (3m). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3m (108 mg, 73%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.57 – 7.53 (m, 1H), 7.36 – 7.32 (m, 2H), 7.28 (dd, *J* = 16.0, 7.3 Hz, 3H), 7.19 – 7.13 (m, 3H), 5.43 (s, 1H), 2.87 (q, *J* = 7.4 Hz, 2H), 2.73 (s, 3H), 2.14 (s, 3H), 1.30 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.6,

153.4, 144.20, 144.15, 138.2, 136.7, 132.0, 130.9, 129.5, 128.79, 128.76, 128.6, 128.3, 127.7, 127.5, 126.3, 84.8, 61.9, 30.3, 28.5, 20.9, 14.5. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₂H₂₂IOS₂ 493.0151; found 493.0152.

(E)-1-(4-(2-chlorophenyl)-2-(ethylthio)-5-(iodo(phenyl)methylene)-4,5-dihydrothiophen-3-yl)eth an-1-one (3n). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave 3n (78 mg, 51%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.56 – 7.53 (m, 1H), 7.31 – 7.27 (m, 2H), 7.23 – 7.16 (m, 6H), 5.60 (s, 1H), 2.78 (d, *J* = 7.4 Hz, 2H), 2.09 (s, 3H), 1.22 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.7, 144.1, 143.9, 137.7, 133.8, 130.4, 129.9, 129.0, 128.9 (CH×2), 128.8 (CH×2), 128.2 (CH×2), 127.8 (CH×2), 85.5, 60.5, 29.7, 28.2, 14.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₉CHOS₂ 512.9605; found 512.9604.

(E)-1-(4-(benzo[d][1,3]dioxol-5-yl)-2-(ethylthio)-5-(iodo(phenyl)methylene)-4,5-dihydrothiophen -3-yl)ethan-1-one (3o). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3o (149 mg, 95%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.32 (d, *J* = 7.8 Hz, 3H), 7.12 (d, *J* = 8.0 Hz, 1H), 7.08 (d, *J* = 1.2 Hz, 1H), 6.80 (d, *J* = 8.0 Hz, 1H), 6.03 – 5.97 (m, 2H), 5.17 (s, 1H), 2.89 (d, *J* = 7.4 Hz, 2H), 2.13 (s, 3H), 1.33 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.2, 156.6, 147.8, 147.1, 144.7, 143.2, 142.9, 132.3, 129.5, 128.9, 128.7, 128.5, 122.9, 108.8, 108.0, 101.2, 95.7, 87.6, 65.1, 29.6, 28.3, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₀IO₃S₂ 522.9893; found 522.9894.

(E)-1-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(naphthalen-1-yl)-4,5-dihydrothiophen-3-yl)eth an-1-one (3p). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3p (130 mg, 82%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.64 (d, *J* = 8.2 Hz, 1H), 7.85 (dd, *J* = 7.1, 2.4 Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.58 (t, *J* = 7.6 Hz, 1H), 7.48 (dd, *J* = 10.4, 4.9 Hz, 2H), 7.34 – 7.30 (m, 2H), 7.30 – 7.26 (m, 3H), 6.07 (s, 1H), 2.91 (q, *J* = 7.4 Hz, 2H), 2.00 (s, 3H), 1.32 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.7, 144.0, 133.7, 131.3, 129.0 (CH×2), 128.8 (CH×2), 128.72 (CH×2), 128.68 (CH×2), 128.3 (CH×2), 127.1 (CH×2), 125.9, 125.8, 125.7, 125.5, 86.2, 60.4, 30.4, 28.4, 14.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₂₂IOS₂ 529.0151; found 529.0146. (E)-1-(4-(3,5-difluorophenyl)-2-(ethylthio)-5-(iodo(phenyl)methylene)-4,5-dihydrothiophen-3-yl) ethan-1-one (3q). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave 3q (100 mg, 65%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.27 (t, *J* = 7.2 Hz, 2H), 7.25 – 7.21 (m, 3H), 7.08 (dd, *J* = 7.8, 1.8 Hz, 2H), 6.68 (tt, *J* = 8.7, 2.4 Hz, 1H), 5.17 (s, 1H), 2.83 (q, *J* = 7.4 Hz, 2H), 2.08 (s, 3H), 1.25 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.6, 163.0 (dd, *J*_{CF} = 249, 12.6 Hz), 157.3, 142.9, 142.6 (t, ³*J*_{CF} = 8.3 Hz), 141.1, 129.2, 129.1, 128.7 (CH×2), 128.4 (CH×2), 111.8 (dd, *J*_{CF} = 20.6, 5.2 Hz), 103.3 (t, ²*J*_{CF} = 25.4 Hz), 88.7, 64.9, 29.9, 28.6, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₈F₂IOS₂ 514.9806; found 514.9818.

(E)-1-(4-(2,4-dichlorophenyl)-2-(ethylthio)-5-(iodo(phenyl)methylene)-4,5-dihydrothiophen-3-yl) ethan-1-one (3r). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave 3r (76 mg, 46%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 8.5 Hz, 1H), 7.40 (d, *J* = 1.4 Hz, 1H), 7.36 (t, *J* = 7.3 Hz, 2H), 7.30 (t, *J* = 8.7 Hz, 3H), 7.26 (s, 1H), 5.62 (s, 1H), 2.86 (q, *J* = 7.3 Hz, 2H), 2.17 (s, 3H), 1.30 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 143.9, 143.2, 136.3, 134.5, 134.0, 131.3, 129.6, 129.3, 129.0 (CH×2), 128.8 (CH×2), 128.2 (CH×2), 100.0, 86.1, 60.3, 29.9, 28.4, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₈Cl₂IOS₂ 546.9215; found 546.9221.

(E)-1-(2-(ethylthio)-4-(furan-2-yl)-5-(iodo(phenyl)methylene)-4,5-dihydrothiophen-3-yl)ethan-1one (3s). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3s (124 mg, 88%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.40 (s, 1H), 7.35 (br.s, 4H), 7.32 – 7.29 (br.s, 1H), 6.41 (br.s, J = 2.8 Hz, 1H), 6.37 (s, 1H), 5.42 (s, 1H), 2.85 (d, J = 7.4Hz, 2H), 2.21 (s, 3H), 1.28 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.0, 158.5, 151.3, 142.9, 142.1, 139.9, 129.0, 128.7 (CH×2), 128.5 (CH×2), 125.2, 110.5, 108.3, 88.5, 59.8, 29.1, 28.2, 14.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₈IO₂S₂ 468.9787; found 468.9796.

(3t). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3t (132 mg, 91%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, *J* = 1.6 Hz, 1H), 7.33 (d, *J* = 7.4 Hz, 2H), 7.31 – 7.27 (m, 4H), 7.26 (s, 1H), 5.41 (s, 1H), 2.90 – 2.83 (m, 2H), 2.13 (s,

(E)-1-(5-(ethylthio)-2-(iodo(phenyl)methylene)-2,3-dihydro-[3,3'-bithiophen]-4-yl)ethan-1-one

3H), 1.30 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.1, 156.7, 142.9, 141.6, 138.7, 129.0 (CH×2), 128.6 (CH×2), 128.5 (CH×2), 127.1, 125.8, 123.6, 87.8, 61.3, 29.4, 28.3, 14.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₈IOS₃ 484.9559; found 484.9555.

(E)-1-(2-(ethylthio)-5-(iodo(p-tolyl)methylene)-4-phenyl-4,5-dihydrothiophen-3-yl)ethan-1-one

(**3u**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **3u** (126 mg, 85%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 7.2 Hz, 2H), 7.27 (d, *J* = 7.6 Hz, 2H), 7.22 (s, 1H), 7.12 (d, *J* = 8.1 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 5.14 (s, 1H), 2.82 (q, *J* = 7.4 Hz, 2H), 2.28 (s, 3H), 2.00 (s, 3H), 1.24 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.2, 157.0, 145.3, 142.0, 141.2, 140.4, 139.7, 139.0, 138.8, 131.0, 129.4, 129.3, 128.9, 128.5, 128.4, 127.7, 87.9, 65.4, 29.5, 28.2, 21.3, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂IOS₂ 493.0151; found 493.0164.

(**3v**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **3v** (121 mg, 82%) as a yellow oil. NMR spectra demonstrated there were two rotamers present in a ratio of about 1:1. ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, *J* = 7.2 Hz, 2H), 7.54 (d, *J* = 7.1 Hz, 2H), 7.38–7.27 (m, 6H), 7.24–7.18 (m, 5H), 7.16–7.12 (m, 2H), 6.91 (d, *J* = 7.6 Hz, 1H), 5.18 (s, 1H), 5.15 (s, 1H), 2.90 – 2.80 (m, 4H), 2.30 (s, 3H), 2.09 (s, 3H), 2.08 (s, 3H), 1.93 (s, 3H), 1.295 (t, *J* = 7.4 Hz, 3H), 1.293 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 191.2, 156.7, 156.4, 143.4, 143.2, 142.2, 142.0, 139.1, 138.8, 136.1, 134.9, 130.9, 130.8, 129.9, 129.7, 129.2, 129.1 (CH×2), 129.0, 128.9, 128.5, 128.4, 127.73, 127.68, 127.65, 126.52, 126.51, 85.9, 85.3, 64.3, 64.0, 29.49, 29.47, 28.33, 28.30, 19.5, 18.5, 14.3, 14.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂IOS₂ 493.0151; found 493.0155.

(E)-1-(2-(ethylthio)-5-(iodo(4-methoxyphenyl)methylene)-4-phenyl-4,5-dihydrothiophen-3-yl)eth an-1-one (3w). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3w (99 mg, 65%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.59 (d, *J* = 7.4 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 2H), 7.29 (d, *J* = 7.2 Hz, 1H), 7.24 (d, *J* = 8.7 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 5.20 (s, 1H), 3.81 (s, 3H), 2.89 (q, *J* = 7.4 Hz, 2H), 2.07 (s, 3H), 1.32 (t, *J* = 7.4 Hz, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.2, 159.8, 156.9, 141.8, 138.9, 135.8, 130.0, 129.5 (CH×2), 128.9 (CH×2), 128.5 (CH×2), 127.7, 113.9 (CH×2), 87.8, 65.3, 55.3, 29.5, 28.2, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₂IO₂S₂ 509.0100; found 509.0108.

(E)-1-(5-((4-bromophenyl)iodomethylene)-2-(ethylthio)-4-phenyl-4,5-dihydrothiophen-3-yl)etha n-1-one (3x). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3x (114 mg, 68%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, *J* = 7.3 Hz, 2H), 7.39 (d, *J* = 8.4 Hz, 2H), 7.27 (t, *J* = 7.4 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 7.09 (d, *J* = 8.4 Hz, 2H), 5.13 (s, 1H), 2.82 (q, *J* = 7.4 Hz, 2H), 2.00 (s, 3H), 1.25 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.1, 155.3, 142.4, 141.1, 137.5, 130.9, 129.1, 128.6 (CH×2), 127.9 (CH×2), 127.6 (CH×2), 126.8 (CH×2), 122.0, 84.5, 64.5, 28.6, 27.3, 13.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₉BrIOS₂ 556.9100; found 556.9114.

(E)-1-(5-(cyclopropyliodomethylene)-2-(ethylthio)-4-phenyl-4,5-dihydrothiophen-3-yl)ethan-1-o ne (3y). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3y (96 mg, 75%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 7.3 Hz, 2H), 7.21 (t, *J* = 7.3 Hz, 2H), 7.17 (dd, *J* = 6.5, 1.8 Hz, 1H), 4.99 (s, 1H), 3.04 – 2.94 (m, 2H), 1.96 (d, *J* = 1.9 Hz, 3H), 1.39 – 1.33 (m, 4H), 0.82 (ddd, *J* = 13.3, 7.2, 4.7 Hz, 2H), 0.68 (dd, *J* = 4.8, 3.1 Hz, 1H), 0.56 (d, *J* = 5.0 Hz, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 156.0, 140.1, 138.9, 129.5, 129.0, 128.4, 127.5, 97.6, 64.8, 29.5, 28.7, 22.5, 19.9, 14.5, 11.9, 11.3, 10.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₂₀IOS₂ 442.9995; found 443.0007.

(E)-1-(2-(ethylthio)-5-(1-iodopentylidene)-4-phenyl-4,5-dihydrothiophen-3-yl)ethan-1-one (3z). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3z (95 mg, 69%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 7.2 Hz, 2H), 7.31 (s, 2H), 7.29 – 7.26 (m, 1H), 5.05 (s, 1H), 3.10 – 3.01 (m, 2H), 2.50 (dd, *J* = 10.2, 7.5 Hz, 2H), 2.07 (s, 3H), 1.57 – 1.46 (m, 2H), 1.45 (t, *J* = 7.4 Hz, 3H), 1.33 – 1.26 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 139.0, 138.5, 129.6, 128.9, 128.3, 127.5, 95.3, 64.7, 43.9, 36.4, 30.8, 29.5, 28.5, 21.7, 21.4, 16.6, 14.5, 13.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₄IOS₂ 459.0308; found 459.0303.

(E)-1-(2-(ethylthio)-5-(iodomethylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)ethan-1-o ne (3aa). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3aa (92 mg, 71%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 8.6 Hz, 2H), 6.21 (d, *J* = 1.5 Hz, 1H), 5.01 (d, *J* = 1.4 Hz, 1H), 3.79 (s, 3H), 3.03 – 2.94 (m, 2H), 2.02 (s, 3H), 1.41 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 159.1, 157.1, 145.7, 130.2, 129.9 (CH×2), 129.4, 113.9 (CH×2), 68.0, 61.9, 55.2, 29.3, 28.6, 28.6, 14.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₈IO₂S₂ 432.9787; found 432.9786.

(E)-1-(2-(hexylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)e than-1-one (3ab). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3ab (146 mg, 86%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, *J* = 8.5 Hz, 2H), 7.35 – 7.32 (m, 2H), 7.31 – 7.27 (m, 3H), 6.87 (d, *J* = 8.6 Hz, 2H), 5.17 (s, 1H), 3.80 (s, 3H), 2.84 (d, *J* = 7.4 Hz, 2H), 2.07 (s, 3H), 1.64 (s, 2H), 1.37 (s, 2H), 1.26 (br.s, 4H), 0.86 (t, *J* = 6.9 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 159.0, 143.2, 142.8, 131.0, 130.0, 129.7 (CH×2), 128.9 (CH×2), 128.62 (CH×2), 128.56 (CH×2), 113.9 (CH×2), 87.3, 64.8, 55.2, 34.1, 31.2, 29.5, 29.2, 28.3, 22.4, 14.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₆H₃₀IO₂S₂ 565.0726; found 565.0715.

(E)-1-(2-(butylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)e than-1-one (3ac). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3ac (142 mg, 88%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, *J* = 8.6 Hz, 2H), 7.35 – 7.31 (m, 2H), 7.29 (dd, *J* = 11.8, 7.1 Hz, 3H), 6.88 (d, *J* = 8.6 Hz, 2H), 5.18 (s, 1H), 3.81 (s, 3H), 2.85 (t, *J* = 7.4 Hz, 2H), 2.08 (s, 3H), 1.63 (s, 2H), 1.41 (d, *J* = 7.4 Hz, 2H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 159.0, 156.6, 143.2, 142.8, 131.0, 130.0, 129.7, 128.9 (CH×2), 128.61 (CH×2), 128.56 (CH×2), 113.9 (CH×2), 87.2, 64.8, 55.2, 33.7, 31.2, 29.5, 21.8, 13.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₆IO₂S₂ 537.0413; found 537.0420.

(E)-1-(5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-2-(methylthio)-4,5-dihydrothiophen-3-yl)ethan-1-one (3ad). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3ad (111 mg, 75%) as a yellow solid, mp 120–122 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, *J* = 8.6 Hz, 2H), 7.36 – 7.32 (m, 2H), 7.31 – 7.27 (m, 3H), 6.88 (d, *J* = 8.6 Hz, 2H),

 5.18 (s, 1H), 3.81 (s, 3H), 2.38 (s, 3H), 2.05 (s, 3H). ${}^{13}C{}^{1}H$ NMR (151 MHz, CDCl₃) δ 191.3, 159.1, 143.2, 42.7, 130.8 (CH×2), 130.0 (CH×2), 128.9 (CH×2), 128.7 (CH×2), 128.5 (CH×2), 113.9 (CH×2), 87.5, 65.0, 55.3, 29.3, 17.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₉O₃S₂ 383.0770; found 383.0777.

(E)-1-(2-(benzylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl) ethan-1-one (3ae). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3ae (99 mg, 58%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, *J* = 8.6 Hz, 2H), 7.27 (d, *J* = 6.9 Hz, 2H), 7.23 – 7.21 (m, 6H), 7.18 (s, 2H), 6.80 (d, *J* = 8.6 Hz, 2H), 5.09 (s, 1H), 4.02 (s, 2H), 3.74 (s, 3H), 1.98 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.3, 158.1, 154.5, 142.2, 141.8, 134.4, 129.7, 129.0 (CH×2), 129.0 (CH×2), 128.2 (CH×2), 127.9 (CH×2), 127.7 (CH×2), 127.6, 127.5 (CH×2), 126.8, 112.9 (CH×2), 86.4, 63.5, 54.2, 37.7, 28.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₄IO₂S₂ 571.0250; found 571.0257.

Ethyl(E)-4-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)-4-oxobutanoate (3af). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3af (120 mg, 67%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, *J* = 8.6 Hz, 2H), 7.26 (d, *J* = 6.8 Hz, 2H), 7.22 (d, *J* = 7.2 Hz, 3H), 6.81 (d, *J* = 8.6 Hz, 2H), 5.17 (s, 1H), 4.02 (d, *J* = 7.1 Hz, 2H), 3.74 (s, 3H), 2.81 (d, *J* = 7.5 Hz, 3H), 2.51 (s, 1H), 2.33 (dt, *J* = 20.7, 6.1 Hz, 2H), 1.23 (t, *J* = 7.4 Hz, 3H), 1.15 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.3, 173.0, 159.1, 143.3, 142.8, 130.8 (CH×2), 130.0 (CH×2), 128.9 (CH×2), 128.64 (CH×2), 128.55 (CH×2), 114.0 (CH×2), 87.3, 64.1, 60.5, 55.2, 36.1, 28.2, 28.1, 14.2, 14.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₆H₂₈IO₄S₂ 595.0468; found 595.0458.

(E)-1-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)p ent-4-en-1-one (3ag). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3ag (130 mg, 79%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, *J* = 8.3 Hz, 2H), 7.35 – 7.31 (m, 2H), 7.29 (d, *J* = 7.4 Hz, 3H), 6.87 (d, *J* = 8.3 Hz, 2H), 5.77 – 5.67 (br.s, 1H), 5.21 (s, 1H), 4.96 – 4.86 (m, 2H), 3.81 (s, 3H), 2.87 (d, *J* = 7.3 Hz, 2H), 2.55 (m, 7.6 Hz, 1H), 2.28 (s, 2H), 2.20 – 2.09 (m, 1H), 1.30 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 192.8, 159.1, 156.4, 143.2, 142.8, 137.6, 130.9, 130.0, 129.2, 128.9, 128.6 (CH×2), 128.5 (CH×2), 114.8 (CH×2), 113.9 (CH×2), 87.2, 64.3, 55.2, 40.4, 28.2, 27.7, 14.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₂₆IO₂S₂ 549.0413; found 549.0404.

(E)-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)(4nitrophenyl)methanone (3ah). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3ah (157 mg, 85%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 8.20 (d, *J* = 8.6 Hz, 2H), 7.45 (d, *J* = 8.6 Hz, 2H), 7.39 – 7.29 (m, 5H), 7.11 (d, *J* = 8.5 Hz, 2H), 6.73 (d, *J* = 8.6 Hz, 2H), 5.33 (s, 1H), 3.76 (s, 3H), 2.86 (dd, *J* = 7.4, 2.4 Hz, 2H), 1.28 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 188.0, 158.9, 158.6, 157.2, 155.4, 149.0, 146.0, 143.2, 142.0, 131.1, 129.5, 129.0, 128.7 (CH×2), 128.4 (CH×2), 128.2 (CH×2), 123.6, 113.9 (CH×2), 100.0, 88.0, 65.5, 55.2, 28.8, 14.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₃INO₄S₂ 616.0108; found 616.0106.

(E)-(4-chlorophenyl)(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrot hiophen-3-yl)methanone (3ai). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3ai (120 mg, 66%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.30 (s, 3H), 7.29 – 7.26 (m, 4H), 7.25 (s, 2H), 7.11 (d, *J* = 8.6 Hz, 2H), 6.68 (d, *J* = 8.6 Hz, 2H), 5.36 (s, 1H), 3.68 (s, 3H), 2.77 – 2.66 (m, 2H), 1.16 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 189.2, 158.8, 152.0, 143.4, 142.8, 138.3, 137.8, 132.2, 131.5, 130.5, 129.4, 128.9, 128.7 (CH×2), 128.6 (CH×2), 128.5, 123.0, 113.9 (CH×2), 113.2 (CH×2), 87.3, 66.4, 55.2, 28.7, 14.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₃ClIO₂S₂ 604.9867; found 604.9863.

(E)-(4-bromophenyl)(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrot hiophen-3-yl)methanone (3aj). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3aj (131 mg, 67%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, *J* = 8.3 Hz, 2H), 7.31 – 7.27 (m, 4H), 7.22 (s, 2H), 7.20 (s, 1H), 7.11 (d, *J* = 8.6 Hz, 2H), 6.68 (d, *J* = 8.6 Hz, 2H), 5.35 (s, 1H), 3.68 (s, 3H), 2.72 (m, 2H), 1.16 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 189.3, 158.8, 143.4, 142.6, 138.8, 131.6 (CH×2), 131.4 (CH×2), 129.5 (CH×2), 129.4 (CH×2), 128.9 (CH×2), 128.7 (CH×2), 128.5 (CH×2), 126.2, 113.9 (CH×2), 87.3, 66.3, 55.2, 28.7,

 14.7. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₇H₂₃BrIO₂S₂ 648.9362; found 648.9355.

(E)-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)(ph enyl)methanone (3ak). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3ak (130 mg, 76%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.38 (t, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 7.5 Hz, 2H), 7.32 – 7.25 (m, 6H), 7.22 (t, *J* = 6.9 Hz, 1H), 7.09 (d, *J* = 8.5 Hz, 2H), 6.65 (d, *J* = 8.5 Hz, 2H), 5.40 (s, 1H), 3.67 (s, 3H), 2.78 – 2.64 (m, 2H), 1.15 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.5, 158.7, 150.4, 143.5, 142.9, 140.1, 132.7, 131.6, 131.5, 129.5 (CH×2), 128.8 (CH×2), 128.7 (CH×2), 128.5 (CH×2), 128.3 (CH×2), 127.9, 113.8 (CH×2), 87.0, 66.5, 55.2, 28.6, 14.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₄IO₂S₂ 571.0257; found 571.0251.

(E)-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)(4methoxyphenyl)methanone (3al). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3al (133 mg, 74%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, *J* = 8.7 Hz, 2H), 7.33 (d, *J* = 7.2 Hz, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.21 (dd, *J* = 15.5, 6.9 Hz, 3H), 6.78 (d, *J* = 8.7 Hz, 2H), 6.70 (d, *J* = 8.6 Hz, 2H), 5.44 (s, 1H), 3.76 (s, 3H), 3.67 (s, 3H), 2.66 (m, 2H), 1.12 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 189.7, 162.9, 158.7, 143.6, 143.1, 132.1 (CH×2), 131.6 (CH×2), 130.9 (CH×2), 129.3 (CH×2), 128.7 (CH×2), 128.6 (CH×2), 128.5 (CH×2), 113.9, 113.6 (CH×2), 86.7, 67.1, 55.4, 55.1, 28.6, 14.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₆IO₃S₂ 601.0363; found 601.0373.

(E)-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)(p-t olyl)methanone (3am). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3am (128 mg, 73%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.28 (m, 6H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.15 (d, *J* = 8.6 Hz, 2H), 7.09 (d, *J* = 7.9 Hz, 2H), 6.67 (d, *J* = 8.6 Hz, 2H), 5.43 (s, 1H), 3.67 (s, 3H), 2.73 – 2.62 (m, 2H), 2.30 (s, 3H), 1.13 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.4, 158.7, 143.6, 143.2, 142.5, 137.1, 131.6 (CH×2), 129.4 (CH×2), 129.0 (CH×2), 128.8 (CH×2), 128.6 (CH×2), 128.5 (CH×2), 128.4 (CH×2), 113.9 (CH×2), 86.8, 66.8, 55.1, 28.6, 21.7, 14.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₆IO₂S₂

585.0413; found 585.0423.

(E)-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)(m-tolyl)methanone (3an). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3an (126 mg, 72%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.30 (m, 4H), 7.23 (d, *J* = 6.9 Hz, 1H), 7.18 (d, *J* = 9.6 Hz, 2H), 7.16 – 7.13 (m, 2H), 7.11 (d, *J* = 8.6 Hz, 2H), 6.67 (d, *J* = 8.6 Hz, 2H), 5.39 (s, 1H), 3.68 (s, 3H), 2.77 – 2.64 (m, 2H), 2.27 (s, 3H), 1.15 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.7, 158.7, 143.0, 139.9, 138.0, 132.3, 131.6, 129.5 (CH×2), 128.8 (CH×2), 128.6 (CH×2), 128.53 (CH×2), 128.51 (CH×2), 128.1 (CH×2), 125.2, 113.8 (CH×2), 86.9, 66.6, 55.2, 28.6, 21.3, 14.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₆IO₂S₂ 585.0413; found 585.0389.

(E)-(2-(ethylthio)-5-(iodo(phenyl)methylene)-4-(4-methoxyphenyl)-4,5-dihydrothiophen-3-yl)(o-t olyl)methanone (3ao). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 3ao (128 mg, 73%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.30 – 7.25 (m, 4H), 7.24 – 7.19 (m, 2H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.00 (dd, *J* = 13.6, 7.5 Hz, 2H), 6.91 (d, *J* = 8.6 Hz, 2H), 6.62 (d, *J* = 8.6 Hz, 2H), 5.09 (s, 1H), 3.69 (s, 3H), 2.78 (m, 2H), 1.77 (s, 3H), 1.20 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.2, 158.7, 143.4, 142.7, 140.8, 135.8, 131.6, 130.9, 130.5, 129.8, 129.4 (CH×2), 128.9 (CH×2), 128.7 (CH×2), 128.5 (CH×2), 126.1, 125.4, 113.5 (CH×2), 87.2, 65.7, 55.2, 28.4, 18.6, 14.4. HRMS (ESI) m/z: [M + H]⁺calcd for C₂₈H₂₆IO₂S₂ 585.0413; found 585.0402.

General procedure for the synthesis of 4

The solution of compound **3** (0.2 mmol) in EtOAc (2 mL) was continually stirred at RT with the irradiation of 30 W household compact fluorescent lamp (CFL) until **3** was consumed as indicated by TLC (*ca*. 2 h). It was then diluted with a saturated aqueous solution of sodium thiosulfate (5 mL) and extracted with ethyl acetate (3×5 mL). The combined organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate as eluent) to give the desired product **4**.

1-(5-benzoyl-2-(ethylthio)-4-(4-methoxyphenyl)thiophen-3-yl)ethan-1-one (**4a**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4a** (66 mg, 83%) as a white solid, mp 82–84 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, *J* = 7.1 Hz, 2H), 7.23 (t, *J* = 7.4 Hz, 1H), 7.08 (t, *J* = 7.8 Hz, 2H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.59 (d, *J* = 8.6 Hz, 2H), 3.65 (s, 3H), 3.03 (q, *J* = 7.4 Hz, 2H), 1.76 (s, 3H), 1.40 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.8, 189.3, 159.7, 145.8, 139.1, 137.8, 135.8, 131.9, 131.1 (CH×2), 129.1 (CH×2), 127.8 (CH×2), 127.1 (CH×2), 113.7 (CH×2), 55.2, 30.4, 29.9, 13.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₁O₃S₂ 397.0927; found 397.0924.

1-(5-benzoyl-2-(ethylthio)-4-phenylthiophen-3-yl)ethan-1-one (**4b**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4b** (61 mg, 83%) as a white solid, mp 116–118 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, J = 7.3 Hz, 2H), 7.29 (t, J = 7.4 Hz, 1H), 7.18 – 7.11 (m, 7H), 3.15 – 3.07 (m, 2H), 1.79 (s, 3H), 1.48 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.6, 189.2, 154.1, 145.9, 138.9, 137.7, 136.1, 135.0, 132.0, 129.8 (CH×2), 129.1 (CH×2), 128.4 (CH×2), 128.2 (CH×2), 127.8, 30.4, 30.0, 13.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₉O₂S₂ 367.0821; found 367.0830.

1-(5-benzoyl-2-(ethylthio)-4-(p-tolyl)thiophen-3-yl)ethan-1-one (**4c**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4c** (61 mg, 80%) as a white solid, mp 102–104 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, *J* = 7.8 Hz, 2H), 7.30 (s, 1H), 7.14 (t, *J* = 7.6 Hz, 2H), 7.00 (d, *J* = 7.9 Hz, 2H), 6.94 (d, *J* = 7.7 Hz, 2H), 3.10 (d, *J* = 7.4 Hz, 2H), 2.24 (s, 3H), 1.82 (s, 3H), 1.47 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.7, 189.2, 153.7, 146.2, 139.1, 138.3, 137.9, 135.9, 132.0, 131.7 (CH×2), 129.7 (CH×2), 129.1 (CH×2), 128.9 (CH×2), 127.7, 30.4, 30.0, 21.1, 13.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₁O₂S₂ 381.0977; found 381.0977.

1-(5-benzoyl-4-(4-ethylphenyl)-2-(ethylthio)thiophen-3-yl)ethan-1-one (4d). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4d (62 mg, 78%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.34 (d, *J* = 7.2 Hz, 2H), 7.19 (d, *J* = 3.5 Hz, 1H), 7.04 (t, *J* = 7.7 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 6.87 (d, *J* = 7.9 Hz, 2H), 3.04 (d, *J* = 7.4 Hz, 2H), 2.45 (d,

J = 7.6 Hz, 2H), 1.74 (s, 3H), 1.40 (t, J = 7.4 Hz, 3H), 1.04 (d, J = 7.6 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.7, 188.3, 145.3, 143.7, 137.9, 136.8, 135.1, 131.1 (CH×2), 130.7 (CH×2), 128.8 (CH×2), 128.0 (CH×2), 126.7 (CH×2), 126.6, 29.4, 28.9, 27.6, 14.4, 12.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₃O₂S₂ 395.1134; found 395.1131.

1-(5-benzoyl-2-(ethylthio)-4-(4-isopropylphenyl)thiophen-3-yl)ethan-1-one (**4e**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4e** (67 mg, 82%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, *J* = 7.3 Hz, 2H), 7.23 (s, 1H), 7.08 (s, 2H), 6.99 (d, *J* = 7.8 Hz, 2H), 6.94 (d, *J* = 7.7 Hz, 2H), 3.12 (d, *J* = 7.4 Hz, 2H), 2.81 – 2.73 (m, 1H), 1.81 (s, 3H), 1.48 (s, 3H), 1.13 (d, *J* = 6.8 Hz, 6H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.7, 189.5, 154.4, 149.3, 146.3, 138.9, 137.8, 136.3, 132.2, 131.6 (CH×2), 129.9 (CH×2), 129.0 (CH×2), 127.6 (CH×2), 126.2 (CH×2), 33.8, 30.4, 29.9, 23.7, 13.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₅O₂S₂ 409.1290; found 409.1290.

1-(5-benzoyl-4-(4-(tert-butyl)phenyl)-2-(ethylthio)thiophen-3-yl)ethan-1-one (4f). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4f** (68 mg, 80%) as a white solid, mp 120–122 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.35 (s, 2H), 7.21 (d, *J* = 7.4 Hz, 1H), 7.09 (d, *J* = 8.2 Hz, 2H), 7.06 (s, 2H), 6.99 (d, *J* = 8.2 Hz, 2H), 3.12 (d, *J* = 7.4 Hz, 2H), 1.82 (s, 3H), 1.48 (t, *J* = 7.4 Hz, 3H), 1.20 (s, 9H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.7, 189.5, 154.3, 151.6, 146.2, 138.9, 137.8, 136.4, 131.8 (CH×2), 131.5 (CH×2), 129.7 (CH×2), 128.9 (CH×2), 127.6 (CH×2), 125.0 (CH×2), 34.5, 31.1, 30.4, 29.9, 13.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₂₇O₂S₂ 423.1447; found 423.1442.

1-(5-benzoyl-2-(ethylthio)-4-(4-fluorophenyl)thiophen-3-yl)ethan-1-one (**4g**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave **4g** (69 mg, 90%) as a white solid, mp 110–112 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, J = 7.7 Hz, 2H), 7.35 (t, J = 7.7 Hz, 1H), 7.19 (d, J = 7.6 Hz, 2H), 7.10 (dd, J = 8.4, 5.4 Hz, 2H), 6.86 (t, J = 8.4 Hz 2H), 3.11 (d, J = 7.4 Hz, 2H), 1.83 (s, 3H), 1.48 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.3, 188.9, 162.7 (d, ¹ $J_{CF} = 249$ Hz), 154.2, 144.7, 138.9, 137.7, 136.2, 132.2, 131.5 (d, ³ $J_{CF} = 8.2$ Hz, CH×2), 131.0 (d, ⁴ $J_{CF} = 3.6$ Hz), 129.1 (CH×2), 127.9 (CH×2), 115.3 (d, ² $J_{CF} = 21.7$ Hz, CH×2), 30.5, 30.0,

13.6. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₁H₁₈FO₂S₂ 385.0727; found 385.0728.

1-(5-benzoyl-4-(4-chlorophenyl)-2-(ethylthio)thiophen-3-yl)ethan-1-one (**4h**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave **4h** (71 mg, 89%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.40 (d, *J* = 7.3 Hz, 2H), 7.30 (d, *J* = 7.4 Hz, 1H), 7.13 (t, *J* = 7.7 Hz, 2H), 7.07 (d, *J* = 8.4 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 3.03 (q, *J* = 7.4 Hz, 2H), 1.78 (s, 3H), 1.40 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.1, 187.7, 153.2, 143.6, 137.8, 136.8, 135.2, 133.7, 132.5, 131.2 (CH×2), 130.0 (CH×2), 128.1 (CH×2), 127.4 (CH×2), 127.0, 29.6, 29.1, 12.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₈ClO₂S₂ 401.0431; found 401.0436.

1-(5-benzoyl-4-(4-bromophenyl)-2-(ethylthio)thiophen-3-yl)ethan-1-one (**4i**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave **4i** (77 mg, 87%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.47 (d, *J* = 7.8 Hz, 2H), 7.39 (t, *J* = 7.0 Hz, 1H), 7.30 (d, *J* = 8.1 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 2H), 7.01 (d, *J* = 8.1 Hz, 2H), 3.10 (d, *J* = 7.4 Hz, 2H), 1.86 (s, 3H), 1.47 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.1, 188.7, 154.2, 144.6, 138.8, 137.8, 136.2, 134.0, 132.2, 131.4 (CH×2), 131.3 (CH×2), 129.1 (CH×2), 128.0 (CH×2), 122.9, 30.6, 30.1, 13.6. HRMS (ESI) m/z; [M + H]⁺ calcd for C₂₁H₁₈BrO₂S₂ 444.9926; found 444.9929.

1-(5-benzoyl-2-(ethylthio)-4-(3-methoxyphenyl)thiophen-3-yl)ethan-1-one (**4j**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4j** (64 mg, 81%) as a white solid, mp 80–82 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, *J* = 7.3 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.17 (t, *J* = 7.7 Hz, 2H), 7.09 (t, *J* = 7.9 Hz, 1H), 6.75 (d, *J* = 7.5 Hz, 1H), 6.71 (dd, *J* = 8.3, 1.9 Hz, 1H), 6.64 (s, 1H), 3.67 (s, 3H), 3.13 (d, *J* = 7.4 Hz, 2H), 1.86 (s, 3H), 1.50 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.6, 189.2, 159.3, 154.1, 145.7, 138.8, 137.8, 136.2, 131.9, 129.3 (CH×2), 128.9 (CH×2), 127.7 (CH×2), 122.4, 115.4, 114.4, 55.2, 30.3, 30.0, 13.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₁O₃S₂ 397.0927; found 397.0924.

1-(5-benzoyl-2-(ethylthio)-4-(m-tolyl)thiophen-3-yl)ethan-1-one (**4k**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4k** (62 mg, 82%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.36 (d, *J* = 7.4 Hz, 2H), 7.21 (t, *J* = 5.7 Hz, 1H), 7.05 (t, *J* = 7.7 Hz, 2H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.86 (t, *J* = 8.7 Hz, 2H), 6.81 (s, 1H), 3.04 (q, *J* = 7.4 Hz, 2H),

2.08 (s, 3H), 1.74 (s, 3H), 1.40 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.7, 189.4, 154.1, 146.2, 137.9, 136.1, 134.8, 131.8, 130.7 (CH×2), 129.1(CH×2), 128.9 (CH×2), 128.1 (CH×2), 127.6, 126.9, 30.4, 30.0, 21.0, 13.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₁O₂S₂ 381.0977; found 381.0981.

1-(5-benzoyl-2-(ethylthio)-4-(2-methoxyphenyl)thiophen-3-yl)ethan-1-one (**4l**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4l** (63 mg, 80%) as a white solid, mp 132–134 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, *J* = 7.5 Hz, 2H), 7.27 (s, 1H), 7.14 – 7.06 (m, 3H), 6.96 (dd, *J* = 7.4, 1.4 Hz, 1H), 6.72 (t, *J* = 7.4 Hz, 1H), 6.60 (d, *J* = 8.3 Hz, 1H), 3.67 (s, 3H), 3.11 (q, *J* = 7.4 Hz, 2H), 1.84 (s, 3H), 1.48 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.9, 189.5, 156.2, 142.1, 137.8, 136.5, 131.8, 131.5, 130.3 (CH×2), 128.7 (CH×2), 127.5 (CH×2), 124.3 (CH×2), 120.5, 110.3, 55.0, 29.8, 29.3, 13.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₁O₃S₂ 397.0927; found 397.0937.

1-(5-benzoyl-2-(ethylthio)-4-(o-tolyl)thiophen-3-yl)ethan-1-one (**4m**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4m** (62 mg, 82%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, *J* = 7.2 Hz, 2H), 7.35 (s, 1H), 7.22 (t, *J* = 7.7 Hz, 2H), 7.16 – 7.11 (m, 1H), 7.08 – 7.03 (m, 3H), 3.13 (s, 2H), 2.14 (s, 3H), 1.72 (s, 3H), 1.51 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.4, 188.8, 157.3, 146.2, 138.2, 137.0, 136.3, 135.1, 131.9, 130.1, 130.0 (CH×2), 128.7 (CH×2), 128.6 (CH×2), 127.7, 125.7, 29.6, 29.6, 20.1, 13.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₁O₂S₂ 381.0977; found 381.0984.

1-(5-benzoyl-4-(2-chlorophenyl)-2-(ethylthio)thiophen-3-yl)ethan-1-one (**4n**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave **4n** (67 mg, 84%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.47 (d, *J* = 7.4 Hz, 2H), 7.26 (t, *J* = 7.4 Hz, 1H), 7.17 (s, 1H), 7.14 (t, *J* = 7.6 Hz, 2H), 7.10 – 7.06 (m, 2H), 7.05 – 7.00 (m, 1H), 3.05 (q, *J* = 7.4 Hz, 2H), 1.78 (s, 3H), 1.42 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 193.8, 187.6, 155.5, 141.9, 137.1, 136.1, 135.2, 133.6, 132.6, 131.0, 130.8, 129.0, 128.5 (CH×2), 127.7 (CH×2), 126.8, 125.7, 28.8, 28.7, 28.4, 12.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₈ClO₂S₂ 401.0431; found 401.0424. **1-(4-(benzo[d][1,3]dioxol-5-yl)-5-benzoyl-2-(ethylthio)thiophen-3-yl)ethan-1-one** (**4o**).

Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4o** (62 mg, 75%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.47 (d, *J* = 7.3 Hz, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 2H), 6.59 (s, 2H), 6.57 (s, 1H), 5.87 (s, 2H), 3.10 (d, *J* = 7.4 Hz, 2H), 1.91 (s, 3H), 1.47 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.5, 189.2, 147.8, 147.5, 145.5, 137.9, 136.1, 131.9, 130.0 (CH×2), 128.5 (CH×2), 127.8 (CH×2), 123.8, 110.3 (CH×2), 108.2, 101.2, 30.4, 30.0, 13.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉O₄S₂ 411.0719; found 411.0713.

1-(5-benzoyl-2-(ethylthio)-4-(naphthalen-1-yl)thiophen-3-yl)ethan-1-one (**4p**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4p** (66 mg, 79%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.75 – 7.69 (m, 1H), 7.65 (s, 1H), 7.63 (s, 1H), 7.48 – 7.41 (m, 2H), 7.21 (d, J = 9.4 Hz, 4H), 7.05 (s, 1H), 6.80 (t, J = 7.4 Hz, 2H), 3.18 (q, J = 7.3 Hz, 2H), 1.53 (t, J = 7.4 Hz, 3H), 1.49 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.4, 189.5, 157.5, 137.9, 137.8, 137.1, 133.2, 132.9, 132.6, 131.4, 129.1 (CH×2), 128.5 (CH×2), 128.3 (CH×2), 127.9, 127.1, 126.1, 125.1, 124.9, 29.7, 29.4, 13.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₂₁O₂S₂ 417.0977; found 417.0974.

1-(5-benzoyl-4-(3,5-difluorophenyl)-2-(ethylthio)thiophen-3-yl)ethan-1-one (4q). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave 4q (64 mg, 79%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 7.3 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.26 (d, *J* = 7.8 Hz, 2H), 6.74 – 6.68 (m, 2H), 6.65 (tt, *J* = 8.9, 2.2 Hz, 1H), 3.10 (d, *J* = 7.4 Hz, 2H), 1.93 (s, 3H), 1.47 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.5, 188.4, 162.6 (dd, *J*_{CF} = 251, 13.1 Hz), 154.3, 143.0 (t, ⁴*J*_{CF} = 5.3 Hz), 138.5, 138.2 (t, ³*J*_{CF} = 10.0 Hz), 137.8, 136.5, 132.5, 128.9 (CH ×2), 128.0 (CH×2), 113.1 (dd, *J*_{CF} = 20.3, 5.8 Hz), 103.9 (t, ²*J*_{CF} = 25.1 Hz), 30.5, 30.2, 13.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇F₂O₂S₂403.0633; found 403.0634.

1-(5-benzoyl-4-(2,4-dichlorophenyl)-2-(ethylthio)thiophen-3-yl)ethan-1-one (**4r**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (40/1, v/v) gave **4r** (67 mg, 77%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, J = 7.3 Hz, 2H), 7.42 (s, 1H), 7.30 – 7.25 (m, 3H), 7.13 – 7.04 (m, 2H), 3.11 (q, J = 7.4 Hz, 2H), 1.92 (s, 3H), 1.48 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 194.4, 188.2, 156.4, 141.9, 138.2, 137.1, 136.3, 135.3, 134.3, 133.3, 132.4,

132.1, 129.4, 128.7 (CH×2), 128.0 (CH×2), 127.01, 100.0, 30.0, 29.7, 13.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇Cl₂O₂S₂ 435.0042; found 435.0038.

1-(5-benzoyl-2-(ethylthio)-4-(furan-2-yl)thiophen-3-yl)ethan-1-one (**4s**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4s** (59 mg, 83%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.56 (d, *J* = 7.5 Hz, 2H), 7.40 (s, 1H), 7.28 (d, *J* = 7.9 Hz, 3H), 6.20 (d, *J* = 3.1 Hz, 1H), 6.14 (s, 1H), 3.09 (d, *J* = 7.4 Hz, 2H), 1.99 (s, 3H), 1.46 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 194.8, 187.7, 144.23, 141.7, 136.8, 136.7, 133.0, 131.2, 127.9 (CH×2), 127.0 (CH×2), 112.4 (CH×2), 110.6 (CH×2), 29.1, 27.8, 12.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₇O₃S₂ 357.0614; found 357.0613.

1-(2-benzoyl-5-(ethylthio)-[3,3'-bithiophen]-4-yl)ethan-1-one (**4t**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4t** (63 mg, 84%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.20 (t, *J* = 7.7 Hz, 2H), 7.12 (dd, *J* = 4.8, 2.9 Hz, 1H), 7.01 (d, *J* = 1.6 Hz, 1H), 6.87 – 6.83 (m, 1H), 3.10 (q, *J* = 7.4 Hz, 2H), 1.89 (s, 3H), 1.47 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.6, 189.2, 153.7, 140.2, 138.9, 137.6, 136.7, 134.6, 132.0, 128.98 (CH×2), 128.95 (CH×2), 127.9, 126.0, 125.9, 30.0, 29.9, 13.6. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₉H₁₆O₂S₃Na 395.0205; found 395.0201.

1-(2-(ethylthio)-5-(4-methylbenzoyl)-4-phenylthiophen-3-yl)ethan-1-one (**4u**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4u** (62 mg, 81%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, *J* = 8.1 Hz, 2H), 7.18 (m, 3H), 7.15 – 7.12 (m, 2H), 6.96 (d, *J* = 7.9 Hz, 2H), 3.10 (q, *J* = 7.4 Hz, 2H), 2.27 (s, 3H), 1.80 (s, 3H), 1.47 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.6, 153.1, 145.6, 142.9, 139.0, 136.1, 135.1, 135.1, 129.8 (CH×2), 129.4 (CH×2), 128.5 (CH×2), 128.3 (CH×2), 128.2 (CH×2), 30.4, 30.0, 21.5, 13.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₁O₂S₂ 381.0977; found 381.0987.

1-(2-(ethylthio)-5-(2-methylbenzoyl)-4-phenylthiophen-3-yl)ethan-1-one (4v). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4v (61 mg, 80%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.07 – 7.00 (m, 3H), 6.96 (m, 4H), 6.84 (d, *J* = 7.6 Hz, 1H), 6.79 (t, *J* = 7.5 Hz, 1H), 3.05 (q, *J* = 7.4 Hz, 2H), 2.17 (s, 3H), 1.61 (s, 3H), 1.42 (s, 3H).

¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.0, 189.7, 156.4, 145.8, 137.7, 137.3, 136.6, 134.7, 133.6, 129.3, 129.0 (CH×2), 128.3 (CH×2), 127.3, 127.1, 126.9, 123.9, 29.1, 28.7, 18.6, 12.4. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₂H₂₁O₂S₂ 381.0977; found 381.0974.

1-(2-(ethylthio)-5-(4-methoxybenzoyl)-4-phenylthiophen-3-yl)ethan-1-one (4w). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4w (63 mg, 80%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, J = 8.6 Hz, 2H), 7.19 (d, J = 5.2 Hz, 3H), 7.16 (br.s, 2H), 6.65 (d, J = 8.6 Hz, 2H), 3.77 (s, 3H), 3.10 (d, J = 7.4 Hz, 2H), 1.82 (s, 3H), 1.47 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.8, 187.7, 163.0, 144.9, 136.3, 135.2, 131.8 (CH×2), 130.2 (CH×2), 129.8 (CH×2), 128.4 (CH×2), 128.3 (CH×2), 113.2 (CH×2), 100.0, 55.4, 30.4, 13.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₁O₃S₂ 397.0927; found 397.0920.

1-(5-(4-bromobenzoyl)-2-(ethylthio)-4-phenylthiophen-3-yl)ethan-1-one (**4x**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4x** (74 mg, 83%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.29 (d, *J* = 8.5 Hz, 2H), 7.26 (s, 1H), 7.25 – 7.21 (m, 2H), 7.17 (t, *J* = 7.5 Hz, 2H), 7.10 (d, *J* = 7.2 Hz, 2H), 3.12 (d, *J* = 7.4 Hz, 2H), 1.79 (s, 3H), 1.48 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.4, 188.1, 146.2, 138.8, 136.5, 135.7, 134.8, 131.0, 130.5 (CH×2), 129.9 (CH×2), 128.6 (CH×2), 128.3 (CH×2), 126.8 (CH×2), 30.4, 30.0, 13.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₈BrO₂S₂ 444.9926; found 444.9923.

1-(5-(cyclopropanecarbonyl)-2-(ethylthio)-4-phenylthiophen-3-yl)ethan-1-one (**4y**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4y** (54 mg, 82%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.38 (s, 3H), 7.33 (d, *J* = 6.5 Hz, 2H), 3.02 (d, *J* = 7.3 Hz, 2H), 1.68 (s, 3H), 1.40 (t, *J* = 7.3 Hz, 3H), 1.36 – 1.31 (m, 1H), 1.00 (s, 2H), 0.56 – 0.49 (br.s, 2H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.5, 193.7, 157.2, 145.0, 138.7, 137.4, 136.2, 129.7 (CH×2), 129.0 (CH×2), 128.7 (CH×2), 30.2, 29.5, 19.5, 13.3, 12.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₉O₂S₂ 331.0821; found 331.0818.

1-(4-acetyl-5-(ethylthio)-3-phenylthiophen-2-yl)pentan-1-one (**4z**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4z** (62 mg, 90%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.42 (s, 3H), 7.27 (d, *J* = 4.4 Hz, 2H), 3.03 (d, *J* = 7.4 Hz,

2H), 1.97 (t, J = 7.4 Hz, 2H), 1.65 (s, 3H), 1.41 (t, J = 7.4 Hz, 3H), 1.35 – 1.30 (m, 2H), 0.97 (d, J = 7.4 Hz, 2H), 0.64 (t, J = 7.3 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.2, 193.9, 158.3, 145.0, 138.5, 136.3, 129.3 (CH×2), 129.1 (CH×2), 128.8 (CH×2), 40.3, 30.2, 29.5, 26.4, 22.1, 13.6, 13.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₂₃O₂S₂ 347.1134; found 347.1134.

4-acetyl-5-(ethylthio)-3-(4-methoxyphenyl)thiophene-2-carbaldehyde (**4aa**). The reaction was performed in a scale of 0.15 mmol. Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4aa** (30 mg, 62%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 9.38 (s, 1H), 7.30 (d, *J* = 8.6 Hz, 2H), 7.01 (d, *J* = 8.6 Hz, 2H), 3.88 (s, 3H), 3.11 (q, *J* = 7.4 Hz, 2H), 1.87 (s, 3H), 1.49 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.0, 182.8, 161.5, 160.5, 151.2, 136.8, 136.4, 131.0 (CH×2), 125.4, 114.2 (CH×2), 55.4, 30.4, 29.8, 13.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₁₇O₃S₂ 321.0614; found 321.0613.

1-(5-benzoyl-2-(hexylthio)-4-(4-methoxyphenyl)thiophen-3-yl)ethan-1-one (**4ab**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4ab** (68 mg, 75%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, J = 7.2 Hz, 2H), 7.23 (s, 1H), 7.08 (t, J = 7.7 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.59 (d, J = 8.6 Hz, 2H), 3.65 (s, 3H), 3.00 (t, J = 7.4 Hz, 2H), 1.75 (s, 5H), 1.47 – 1.36 (m, 2H), 1.29 – 1.23 (m, 4H), 0.83 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.8, 188.3, 158.7, 153.4, 144.8, 137.9, 136.8, 134.7, 130.8 (CH×2), 130.1 (CH×2), 128.1 (CH×2), 126.8, 126.2, 112.7 (CH×2), 54.2, 34.9, 30.3, 29.4, 27.6, 27.4, 21.5, 13.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₆H₂₉O₃S₂ 453.1553; found 453.1559.

1-(5-benzoyl-2-(butylthio)-4-(4-methoxyphenyl)thiophen-3-yl)ethan-1-one (**4ac**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4ac** (66 mg, 78%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.43 (t, *J* = 14.9 Hz, 2H), 7.30 (dd, *J* = 14.8, 7.9 Hz, 1H), 7.14 (dd, *J* = 18.6, 11.1 Hz, 2H), 7.00 (dd, *J* = 22.3, 8.6 Hz, 2H), 6.65 (t, *J* = 11.1 Hz, 2H), 3.72 (s, 3H), 3.14 – 3.03 (m, 2H), 1.82 (d, *J* = 6.1 Hz, 3H), 1.81 – 1.76 (m, 2H), 1.57 – 1.45 (m, 2H), 1.04 – 0.87 (m, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.8, 189.3, 159.7, 154.4, 145.9, 138.9, 137.8, 135.7, 131.8, 131.1 (CH×2), 129.1 (CH×2), 127.8 (CH×2), 127.2, 113.7 (CH×2), 55.2, 35.6, 30.5, 30.4, 22.1, 13.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₅O₃S₂ 425.1240; found 425.1235.

1-(5-benzoyl-4-(4-methoxyphenyl)-2-(methylthio)thiophen-3-yl)ethan-1-one (**4ad**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4ad** (63 mg, 82%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, *J* = 7.2 Hz, 2H), 7.31 (d, *J* = 7.4 Hz, 1H), 7.16 (t, *J* = 7.7 Hz, 2H), 7.03 (d, *J* = 8.6 Hz, 2H), 6.68 (d, *J* = 8.6 Hz, 2H), 3.73 (s, 3H), 2.64 (s, 3H), 1.81 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 196.2, 189.2, 159.8, 157.6, 146.4, 137.9, 137.5, 135.5, 131.8, 131.1, 129.1 (CH×2), 127.8, 127.3, 114.9 (CH×2), 113.7 (CH×2), 55.3, 30.2, 18.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₉O₃S₂ 383.0770; found 383.0777.

1-(5-benzoyl-2-(benzylthio)-4-(4-methoxyphenyl)thiophen-3-yl)ethan-1-one (**4ae**). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4ae** (64 mg, 70%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, *J* = 7.3 Hz, 2H), 7.34 (d, *J* = 7.2 Hz, 2H), 7.26 (m, 4H), 7.09 (s, 2H), 6.94 (d, *J* = 8.5 Hz, 2H), 6.60 (d, *J* = 8.5 Hz, 2H), 4.20 (s, 2H), 3.65 (s, 3H), 1.72 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 195.9, 188.2, 158.8, 144.4, 139.1, 136.7, 135.3, 134.4, 131.0 (CH×2), 130.0 (CH×2), 128.3 (CH×2), 128.2, 127.7 (CH×2), 126.9 (CH×2), 126.8, 126.0, 112.7 (CH×2), 54.2, 39.9, 29.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₃O₃S₂ 459.1083; found 459.1077.

Ethyl 4-(5-benzoyl-2-(ethylthio)-4-(4-methoxyphenyl)thiophen-3-yl)-4-oxobutanoate (4af). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4af (77 mg, 80%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, *J* = 7.4 Hz, 2H), 7.31 (s, 1H), 7.16 (t, *J* = 7.7 Hz, 2H), 7.04 (d, *J* = 8.6 Hz, 2H), 6.67 (d, *J* = 8.6 Hz, 2H), 4.09 – 4.00 (m, 2H), 3.72 (s, 3H), 3.09 (d, *J* = 7.4 Hz, 2H), 2.44 (t, *J* = 6.5 Hz, 2H), 2.37 (t, *J* = 6.3 Hz, 2H), 1.46 (t, *J* = 7.4 Hz, 3H), 1.19 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 197.3, 189.2, 172.3, 159.7, 153.1, 145.5, 138.8, 137.8, 136.2, 131.9 (CH×2), 131.1 (CH×2), 129.1 (CH×2), 127.8, 127.0, 113.8 (CH×2), 60.4, 55.2, 37.4, 30.1, 28.5, 14.1, 13.6. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₆H₂₆O₅S₂Na 505.1114; found 505.1112.

1-(5-benzoyl-2-(ethylthio)-4-(4-methoxyphenyl)thiophen-3-yl)pent-4-en-1-one (4ag). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave **4ag** (69 mg, 82%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.41 – 7.37 (m, 2H), 7.23 (t, *J* = 7.4 Hz, 1H),

7.08 (t, J = 7.8 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 6.58 (d, J = 8.7 Hz, 2H), 5.53 – 5.44 (m, 1H), 4.76 – 4.67 (m, 2H), 3.65 (s, 3H), 3.02 (q, J = 7.4 Hz, 2H), 2.13 – 2.07 (m, 4H), 1.38 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 198.5, 188.3, 158.7, 144.2, 139.3, 136.7, 135.9, 130.9 (CH×2), 130.0 (CH×2), 128.2 (CH×2), 126.8 (CH×2), 126.0, 113.9 (CH×2), 112.8 (CH×2), 54.3, 40.8, 29.3, 27.1, 12.8. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₅H₂₄O₃S₂Na 459.1059; found 459.1067.

(5-benzoyl-2-(ethylthio)-4-(4-methoxyphenyl)thiophen-3-yl)(4-nitrophenyl)methanone (4ah). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4ah (86 mg, 85%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 8.1 Hz, 2H), 7.57 (d, *J* = 8.1 Hz, 2H), 7.41 (d, *J* = 7.1 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 1H), 7.04 (t, *J* = 6.9 Hz, 2H), 6.74 (d, *J* = 7.9 Hz, 2H), 6.28 (d, *J* = 7.9 Hz, 2H), 3.47 (s, 3H), 3.04 (d, *J* = 7.2 Hz, 2H), 1.35 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.2, 188.2, 158.4, 148.8, 144.2, 140.97, 141.0, 136.1, 131.3 (CH×2), 130.3 (CH×2), 129.2 (CH×2), 128.36 (CH×2), 128.4 (CH×2), 126.8 (CH×2), 125.0, 122.2, 112.5 (CH×2), 54.1, 30.0, 13.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₂NO₅S₂ 504.0934; found 504.0932.

(5-benzoyl-2-(ethylthio)-4-(4-methoxyphenyl)thiophen-3-yl)(4-chlorophenyl)methanone (4ai). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4ai (83 mg, 84%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, *J* = 8.5 Hz, 2H), 7.44 (d, *J* = 7.5 Hz, 2H), 7.21 (s, 1H), 7.14 (d, *J* = 8.5 Hz, 2H), 7.05 (t, *J* = 7.7 Hz, 2H), 6.79 (d, *J* = 8.6 Hz, 2H), 6.33 (d, *J* = 8.6 Hz, 2H), 3.51 (s, 3H), 2.96 (d, *J* = 7.4 Hz, 2H), 1.30 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.0, 188.3, 158.3, 144.9, 144.2, 140.3, 138.6, 136.8, 136.2, 134.4, 131.2 (CH×2), 130.1 (CH×2), 129.9 (CH×2), 128.4 (CH×2), 127.6 (CH×2), 126.8, 125.2, 112.4 (CH×2), 54.1, 30.4, 13.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₂ClO₃S₂ 493.0693; found 493.0700.

(5-benzoyl-2-(ethylthio)-4-(4-methoxyphenyl)thiophen-3-yl)(4-bromophenyl)methanone (4aj). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4aj (90 mg, 84%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.44 (d, *J* = 7.4 Hz, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.24 – 7.20 (m, 1H), 7.06 (s, 2H), 6.78 (d, *J* = 8.3 Hz, 2H), 6.34 (d, *J* = 8.3 Hz, 2H), 3.52 (s, 3H), 2.97 (d, *J* = 7.3 Hz, 2H), 1.30 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.2, 188.3, 158.3, 145.0, 144.2, 140.2, 136.8, 136.2, 134.8, 131.2, 130.6 (CH×2), 130.1 (CH×2), 130.0 (CH×2), 128.4 (CH×2), 127.5 (CH×2), 126.8, 125.2, 112.5 (CH×2), 54.1, 30.4, 13.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₂BrO₃S₂ 537.0188; found 537.0180.

(5-(ethylthio)-3-(4-methoxyphenyl)thiophene-2,4-diyl)bis(phenylmethanone) (4ak). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4ak (78 mg, 85%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, *J* = 7.3 Hz, 2H), 7.45 (d, *J* = 7.2 Hz, 2H), 7.32 (t, *J* = 7.4 Hz, 1H), 7.21 – 7.16 (m, 3H), 7.05 (t, *J* = 7.8 Hz, 2H), 6.81 (d, *J* = 8.7 Hz, 2H), 6.32 (d, *J* = 8.7 Hz, 2H), 3.49 (s, 3H), 2.95 (d, *J* = 7.4 Hz, 2H), 1.29 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 193.3, 189.4, 159.2, 145.4, 145.2, 142.2, 137.9, 137.3, 137.1, 133.2, 132.1 (CH×2), 131.1 (CH×2), 129.6 (CH×2), 129.4 (CH×2), 128.3 (CH×2), 127.8, 126.4, 113.3 (CH×2), 55.1, 31.5, 14.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₃O₃S₂ 459.1083; found 459.1089.

(5-benzoyl-2-(ethylthio)-4-(4-methoxyphenyl)thiophen-3-yl)(4-methoxyphenyl)methanone (4al). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4al (79 mg, 81%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.57 (d, *J* = 8.8 Hz, 2H), 7.46 (d, *J* = 7.8 Hz, 2H), 7.25 – 7.19 (m, 1H), 7.06 (s, 2H), 6.84 (d, *J* = 8.7 Hz, 2H), 6.69 (d, *J* = 8.8 Hz, 2H), 6.35 (d, *J* = 8.7 Hz, 2H), 3.72 (s, 3H), 3.51 (s, 3H), 2.93 (d, *J* = 7.4 Hz, 2H), 1.27 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 191.9, 189.5, 163.8, 159.2, 145.2, 138.1, 137.3, 132.1 (CH×2), 131.0 (CH×2), 130.1 (CH×2), 129.5 (CH×2), 127.8 (CH×2), 126.5 (CH×2), 113.7 (CH×2), 113.4 (CH×2), 55.4, 55.1, 31.6, 14.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₅O₄S₂ 489.1189; found 489.1188.

(5-benzoyl-2-(ethylthio)-4-(4-methoxyphenyl)thiophen-3-yl)(p-tolyl)methanone (4am). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4am (79 mg, 84%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 7.5 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.06 (s, 2H), 7.02 (s, 2H), 6.83 (d, *J* = 8.5 Hz, 2H), 6.34 (d, *J* = 8.6 Hz, 2H), 3.50 (s, 3H), 2.93 (q, *J* = 7.3 Hz, 2H), 2.24 (s, 3H), 1.27 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 193.0, 189.4, 159.2, 145.3, 144.4, 144.0, 142.8, 138.0, 137.3, 134.5, 132.1 (CH×2), 131.1 (CH×2), 129.9 (CH×2), 129.5 (CH×2), 129.1 (CH×2), 127.8, 126.5, 113.3 (CH×2), 55.1, 31.6, 21.7, 14.5. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₂₈H₂₅O₃S₂ 473.1240; found 473.1252.

(5-benzoyl-2-(ethylthio)-4-(4-methoxyphenyl)thiophen-3-yl)(m-tolyl)methanone (4an). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4an (78 mg, 83%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.45 (d, *J* = 7.5 Hz, 2H), 7.35 (s, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.13 (d, *J* = 7.4 Hz, 1H), 7.05 (m, 3H), 6.81 (d, *J* = 8.6 Hz, 2H), 3.49 (s, 3H), 2.95 (d, *J* = 7.4 Hz, 2H), 2.18 (s, 3H), 1.29 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 193.4, 189.5, 159.2, 145.4, 142.3, 138.0, 137.8, 137.3, 137.0, 134.1, 132.1, 131.1, 130.1 (CH×2), 129.5 (CH×2), 128.2 (CH×2), 127.8 (CH×2), 127.1, 126.5, 113.3 (CH×2), 55.1, 31.5, 21.1, 14.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₅O₃S₂ 473.1240; found 473.1241.

(5-benzoyl-2-(ethylthio)-4-(4-methoxyphenyl)thiophen-3-yl)(o-tolyl)methanone (4ao). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (20/1, v/v) gave 4ao (77 mg, 81%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, *J* = 7.2 Hz, 2H), 7.25 (d, *J* = 7.4 Hz, 1H), 7.14 – 7.08 (m, 4H), 6.99 (d, *J* = 7.8 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.80 (d, *J* = 8.7 Hz, 2H), 6.35 (d, *J* = 8.7 Hz, 2H), 3.56 (s, 3H), 3.08 (q, *J* = 7.4 Hz, 2H), 2.39 (s, 3H), 1.41 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 194.6, 189.4, 159.1, 149.2, 146.0, 141.6, 138.6, 137.6, 137.5, 131.9, 131.34, 131.25, 131.0 (CH×2), 130.6 (CH×2), 129.3 (CH×2), 127.7 (CH×2)), 126.7, 125.1, 113.1 (CH×2), 55.1, 30.8, 20.6, 14.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₈H₂₅O₃S₂ 473.1240; found 473.1229.

General procedure for the one-pot synthesis of 4

To the solution of **1** (0.36 mmol) and **2** (0.3 mmol) in CH₃CN (1 mL) was added TFA (5 μ L, 0.06 mmol). The mixture was continually stirred at 50 °C in an oil bath until **1** was consumed as indicated by TLC (*ca*. 2 h). The oil bath was removed. Silica gel (350 mg), ethyl acetate (10 mL) and iodine (46 mg, 0.18 mmol) were sequentially added. The solution was continually stirred under the irradiation with a 30 W CFL at RT until the intermediate (**3**) was consumed as indicated by TLC (15–20 h). It

was then quenched with a saturated aqueous solution of sodium thiosulfate (5 mL) and extracted with ethyl acetate (3×5 mL). The combined organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate as eluent) to give the desired product **4**.

1-(5-benzoyl-2-(ethylthio)-4-(4-methoxyphenyl)thiophen-3-yl)propan-1-one (4ap). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (30/1, v/v) gave **4ap** (84 mg, 68%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.46 (d, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.4 Hz, 1H), 7.15 (t, *J* = 7.7 Hz, 2H), 7.01 (d, *J* = 8.6 Hz, 2H), 6.65 (d, *J* = 8.6 Hz, 2H), 3.72 (s, 3H), 3.09 (q, *J* = 7.4 Hz, 2H), 2.08 (q, *J* = 7.2 Hz, 2H), 1.45 (t, *J* = 7.4 Hz, 3H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 201.1, 189.3, 159.6, 150.4, 145.1, 140.6, 137.7, 136.4, 131.9, 130.9, 129.2 (CH×2), 127.8 (CH×2), 127.0 (CH×2), 113.7 (CH×2), 55.2, 36.0, 30.4, 13.8, 8.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₃H₂₃O₃S₂ 411.1083; found 411.1083.

Scale-up synthesis of 3a

To the solution of **1a** (1.43 g, 6 mmol) and **2a** (0.95 g, 5 mmol) in CH₃CN (20 mL) was added TFA (75 μ L, 1 mmol). The mixture was continually stirred at 50 °C in an oil bath until **1a** was consumed as indicated by TLC (*ca.* 2h). Iodine (1.27 g, 5 mmol) was added, and the mixture was stirred at 50 °C in the oil bath until the intermediate was consumed as indicated by TLC (*ca.* 2 h). It was then diluted with a saturated aqueous solution of sodium thiosulfate (20 mL), and extracted with ethyl acetate (3 × 20 mL). The combined organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate as eluent, 10/1, v/v) to give the desired product **3a** (2.34 g, 92%).

Scale-up synthesis of 4a

The solution of compound **3a** (2.29 g, 4.5 mmol) in EtOAc (40 mL) was continually stirred under the irradiation with a 30 W CFL at RT until **3a** was consumed as indicated by TLC (*ca.* 2 h). The mixture was diluted with a saturated aqueous solution of sodium thiosulfate (20 mL), and extracted with ethyl acetate (3×40 mL). The combined organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate as eluent, 10/1, v/v) to give the desired product **4a** (1.43 g, 80%).

Suzuki-Miyaura coupling of 3ad with phenylboronic acid

A 10 mL Schlenk tube was charged with the mixture of **3ad** (0.2 mmol), Pd(PPh₃)₄ (0.01 mmol), KF (0.4 mmol), DMF (0.8 mL) and H₂O (0.2 mL) under an argon atmosphere. The mixture was continually stirred at 70 °C in an oil bath until **3ad** was consumed as indicated by TLC (*ca.* 5 h). It was then diluted with a saturated aqueous solution of ammonium chloride (5 mL), and extracted with ethyl acetate (3 × 5 mL). The combined organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate as eluent, 10/1, v/v) to give the desired product **5a** (58 mg, 65%) as a yellow solid, mp 118–122 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.27 (d, *J* = 6.2 Hz, 3H), 7.21 (d, *J* = 7.4 Hz, 2H), 7.17 – 7.13 (m, 1H), 7.09 (d, *J* = 7.2 Hz, 2H), 6.97 (d, *J* = 6.2 Hz, 3H), 7.21 (d, *J* = 7.4 Hz, 2H), 5.33 (s, 1H), 3.66 (s, 3H), 2.41 (s, 3H), 1.76 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.5, 158.4, 157.6, 140.6, 139.5, 137.9, 135.4, 131.6, 128.4 (CH×2), 128.1 (CH×2), 127.9 (CH×2), 127.5 (CH×2), 127.4 (CH×2), 127.3 (CH×2), 126.8, 126.5, 112.7 (CH×2), 57.3, 54.2, 28.0, 16.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₇H₂₅O₂S₂ 445.1290; found 445.1280.

DBU-catalyzed deiodinative hydrolysis of 3ad

A 10 mL Schlenk tube was charged with the mixture of **3ad** (0.2 mmol), DBU (0.3 mmol) and CH₃NO₂ (1 mL) under an argon atmosphere. The mixture was continually stirred at 70 °C in an oil bath until **3ad** was consumed as indicated by TLC (*ca.* 2 h). It was then diluted with a saturated aqueous solution of sodium thiosulfate (5 mL), and extracted with ethyl acetate (3 × 5 mL). The combined organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate as eluent, 5/1, v/v) to give the desired product **5b** (58 mg, 76%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.33 – 7.25 (m, 5H), 7.15 (d, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 8.0 Hz, 2H), 5.74 (s, 1H), 5.29 (s, 1H), 3.85 (s, 3H), 2.52 (s, 3H), 1.79 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 194.1, 158.6, 141.8, 140.5, 138.5, 135.2, 129.9 (CH×2), 127.5 (CH×2), 127.0 (CH×2), 127.0, 125.1 (CH×2), 113.2 (CH×2), 69.5, 54.3, 29.2, 17.6. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₁H₂₀O₃S₂Na 407.0746; found 407.0737.

Oxidation of 4ad with *m*-CPBA

To a solution of **4ad** (0.2 mmol) in dichloromethane (DCM, 1 mL) was added *m*-chloroperoxybenzoic acid (*m*-CPBA, 190 mg, 0.22 mmol) with stirring. The mixture was continually stirred at ambient temperature until **4ad** was consumed as indicated by TLC (*ca.* 3 h). It was then diluted with water (5 mL) and extracted with dichloromethane (DCM, 3×5 mL). The combined organic layer was washed with saturated aqueous NaHCO₃ (3×5 mL), water (3×5 mL), and brine, dried (Na₂SO₄), and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate as eluent, 10/1, v/v) to give the desired product **6** (77 mg,

93%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.58 (d, *J* = 7.5 Hz, 2H), 7.37 (d, *J* = 7.4 Hz, 1H), 7.20 (d, *J* = 6.3 Hz, 2H), 6.98 (d, *J* = 8.6 Hz, 2H), 6.66 (d, *J* = 8.6 Hz, 2H), 3.66 (s, 3H), 3.34 (s, 3H), 1.99 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 200.5, 188.7, 160.2, 147.3, 143.1, 142.5, 141.9, 136.3, 133.5, 130.6 (CH×2), 129.7 (CH×2), 128.3 (CH×2), 124.9 (CH×2), 114.3, 55.3, 46.5, 31.4. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₂₁H₁₈O₅S₂Na 437.0488; found 437.0485.

General procedure for the synthesis of thieno[2,3-b]thiophenes 7

To a mixture of **4** (0.2 mmol) and Cu(OTf)₂ (7 mol%) in 1,2-dichloroethane (DCE, 1 mL) was slowly added the solution of diazo compound (N₂=CHR⁵, 0.6 mmol) in DCE (1 mL) over 1 hour. The reaction mixture was continually stirred at 80 °C in an oil bath until **4** was consumed as indicated by TLC (*ca.* 3 h). It was then diluted with water (5 mL), and extracted with DCM (3 × 5 mL). The combined organic layer was washed with water and brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate) to give the desired product **7**.

ethyl 5-benzoyl-4-(4-methoxyphenyl)-3-methylthieno[2,3-b]thiophene-2-carboxylate (7a). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (30/1, v/v) gave 7a (62 mg, 71%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.18 (t, *J* = 7.7 Hz, 2H), 7.10 (d, *J* = 8.5 Hz, 2H), 6.70 (d, *J* = 8.5 Hz, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 3H), 2.26 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.2, 162.5, 159.5, 146.7, 145.6, 141.5, 141.3, 138.0, 131.8, 131.5 (CH×2), 130.5 (CH×2), 129.2 (CH×2), 127.8 (CH×2), 125.8, 113.3 (CH×2), 61.1, 55.2, 14.7, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₁O₄S₂ 437.0876; found 437.0878.

ethyl 5-benzoyl-4-(2-methoxyphenyl)-3-methylthieno[2,3-b]thiophene-2-carboxylate (7b). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (30/1, v/v)

gave **7b** (61 mg, 70%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.53 (d, *J* = 7.3 Hz, 2H), 7.27 (s, 1H), 7.12 (t, *J* = 7.8 Hz, 3H), 6.97 (dd, *J* = 7.4, 1.4 Hz, 1H), 6.72 (s, 1H), 6.65 (d, *J* = 8.3 Hz, 1H), 4.34 (q, *J* = 7.1 Hz, 2H), 3.72 (s, 3H), 2.20 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.4, 162.6, 156.8, 146.9, 145.4, 142.3, 141.6, 138.1, 137.7, 131.9, 131.8, 130.2 (CH×2), 128.8 (CH×2), 127.5 (CH×2), 123.0, 120.2, 110.0, 61.0, 55.1, 14.4, 13.4. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₂₁O₄S₂ 437.0876; found 437.0877.

ethyl 4-(benzo[d][1,3]dioxol-5-yl)-5-benzoyl-3-methylthieno[2,3-b]thiophene-2-carboxylate (7c). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (30/1, v/v) gave 7c (68 mg, 75%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, *J* = 7.3 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.23 (t, *J* = 7.7 Hz, 2H), 6.66 (d, *J* = 5.7 Hz, 2H), 6.62 (d, *J* = 8.3 Hz, 1H), 5.94 (s, 1H), 5.85 (s, 1H), 4.35 (q, *J* = 7.1 Hz, 2H), 2.31 (s, 3H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.1, 162.4, 147.6, 147.1, 146.5, 145.5, 141.8, 141.1, 140.9, 138.1, 131.8, 130.6 (CH×2), 129.1 (CH×2), 127.8 (CH×2), 127.1 (CH×2), 124.2 (CH×2), 61.1, 14.7, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₄H₁₉O₅S₂ 451.0668; found 451.0668.

ethyl 5-(cyclopropanecarbonyl)-3-methyl-4-phenylthieno[2,3-b]thiophene-2-carboxylate (7d).

Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (30/1, v/v) gave 7d (46 mg, 62%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.47 (dd, *J* = 5.1, 1.8 Hz, 3H), 7.44 – 7.41 (m, 2H), 4.33 (d, *J* = 7.1 Hz, 2H), 2.10 (s, 3H), 1.59 – 1.56 (m, 1H), 1.36 (t, *J* = 7.1 Hz, 3H), 1.09 (d, *J* = 1.0 Hz, 2H), 0.62 (dd, *J* = 7.8, 3.5 Hz, 2H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 194.6, 162.4, 147.3, 145.9, 145.1, 141.4, 140.3, 134.9, 130.3, 129.7 (CH×2), 128.8 (CH×2), 128.4 (CH×2), 61.1, 19.6, 14.3, 13.9, 12.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₉O₃S₂ 371.0770; found 371.0769.

ethyl 5-benzoyl-3-ethyl-4-(4-methoxyphenyl)thieno[2,3-b]thiophene-2-carboxylate (7e). Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (30/1, v/v) gave 7e (65 mg, 72%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.53 (dd, *J* = 16.2, 8.0 Hz, 2H), 7.34 (t, *J* = 7.4 Hz, 1H), 7.20 (t, *J* = 7.7 Hz, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.71 (d, *J* = 8.5 Hz, 2H), 4.35 (q, *J* = 7.1 Hz, 2H), 3.75 (s, 3H), 2.80 (q, *J* = 7.4 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H), 0.84 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 190.2, 162.1, 159.5, 148.0, 146.0, 145.9, 141.639, 141.2, 138.2, 131.8, 131.2, 130.2, 129.2 (CH×2), 127.8 (CH×2), 126.0 (CH×2), 113.2 (CH×2), 61.1, 55.2, 20.5, 14.7, 14.3. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₅H₂₃O₄S₂ 451.1032; found 451.1032. **3-methyl-5-(4-methylbenzoyl)-4-phenylthieno[2,3-b]thiophene-2-carbonitrile (7f).** Purification by flash column chromatography eluting with petroleum ether/ethyl acetate (30/1, v/v) gave **7f** (61 mg, 81%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.48 (d, *J* = 8.0 Hz, 2H), 7.23 (dd, *J* = 14.0, 6.5 Hz, 3H), 7.20 (d, *J* = 7.2 Hz, 2H), 6.99 (d, *J* = 8.0 Hz, 2H), 2.29 (s, 3H), 2.08 (s, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 189.2, 145.1, 144.4, 144.3, 143.3, 142.9, 139.9, 134.8, 133.1, 130.2, 129.6 (CH×2), 128.6 (CH×2), 128.4 (CH×2), 128.0 (CH×2), 113.9, 109.0, 21.6, 15.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₆NOS₂ 374.0668; found 374.0663.

Supporting Information

Reaction optimizations, mechanistic investigations, the crystal data for **3ad**, ¹H NMR and ¹³C NMR spectra for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: <u>qlluo@swu.edu.cn</u>

Notes

The authors declare no competing financial interest.

Acknowledgement

We thank Prof. Dr. Tang-Lin Liu for helpful discussions about this research. The authors thank the financial support from NSFC of China (20971105), the Natural Science Foundation of Chongqing (cstc2017jcyjAX0423), and the Fundamental Research Funds for the Central Universities

(XDJK2019AA003).

References and Footnotes

(1) For recent examples, see: (a) Bai, L.-G.; Zhou, Y.; Zhuang, X.; Zhang, L.; Xue, J.; Lin, X.-L.; Cai, T.; Luo, Q.-L. Base-promoted aerobic oxidation of N-alkyl iminium salts derived from isoquinolines and related heterocycles. *Green Chem.* 2020, *22*, 197–203. (b) Takale, B.-S.; Thakore, R.-R.; Kong, F.-Y.; Lipshutz, B.-H. An environmentally responsible 3-pot, 5-step synthesis of the antitumor agent sonidegib using ppm levels of Pd catalysis in water. *Green Chem.* 2019, *21*, 6258–6262. (c) Zhou, H.; Zhang, H.; Mu, S.; Zhang, W.-Z.; Ren, W.-M.; Lu, X.-B. Highly regio- and stereoselective synthesis of cyclic carbonates from biomass-derived polyols via organocatalytic cascade reaction. *Green Chem.* 2019, *21*, 6335–6341. (d) Zhang, J.; Yu, P.; Li, S.-Y.; Sun, H.; Xiang, S.-H.; Wang, J.-J.; Houk, K.-N.; Tan, B. Asymmetric phosphoric acid–catalyzed four-component Ugi reaction. *Science.* 2018, *361*, eaas8707. (e) Xu, S.-M.; Wei, L.; Shen, C.; Xiao, L.; Tao, H.-Y.; Wang, C.-J. Stereodivergent assembly of tetrahydro-γ-carbolines via synergistic catalytic cascade reaction. *Nat. Commun.* 2019, *10*, 5553.

(2) For recent examples, see: (a) Ye, K.-Y.; McCallum, T.; Lin,S. Bimetallic Radical Redox-Relay Catalysis for the Isomerization of Epoxides to Allylic Alcohols. *J. Am. Chem. Soc.* 2019, *141*, 9548–9554. (b) Pearson, C.-M.; Fyfe, J.-B.; Snaddon, T.-N. A Regio- and Stereodivergent Synthesis of Homoallylic Amines by a One-Pot Cooperative-Catalysis-Based Allylic Alkylation/Hofmann Rearrangement Strategy. *Angew. Chem. Int .Ed.* 2019, *58*, 10521–10527.

(3) For selected examples, see: (a) Jia, T.-Z.; B, A.; M, S.; Zhang, M.-N.; E, K.; Bing, B.; Walsh, P.-J. Diaryl Sulfoxides from Aryl Benzyl Sulfoxides: A Single Palladium-Catalyzed Triple Relay Process. *Angew. Chem. Int. Ed.* 2014, *53*, 260–264. (b) Yin, X.-P.; Zeng, X.-P.; Liu, Y.-L.; Liao, F.-M.; Yu, J.-S.; Zhou, F.; Zhou, P.-J. Asymmetric Triple Relay Catalysis: Enantioselective Synthesis of Spirocyclic Indolines through a One-Pot Process Featuring an Asymmetric 6π Electrocyclization. *Angew. Chem. Int. Ed.* 2014, *53*, 13740–13745. (c) Dhiman, S.; Mishra, U.-K.; Ramasastry, S.-V. One-Pot Trimetallic Relay Catalysis: A Unified Approach for the Synthesis of β-Carbolines and Other [c]-Fused Pyridines. *Angew. Chem. Int. Ed.* 2016, *55*, 7737–774. (d) B, A.; S, S.; Maji, M.-S. Benzannulation of 2-Alkenylindoles using Aldehydes by Sequential Triple - Relay Catalysis: A Route to Carbazoles and Carbazole Alkaloids. *Adv. Synth. Catal.* 2017, *359*, 1860–1866.

(4) (a) Tietze, L.-F.; Beifuss, U. Sequential Transformations in Organic Chemistry: A Synthetic Strategy with a Future. *Angew. Chem. Int. Ed.* 1993, *32*, 131–163. (b) Tietze, L.-F. Domino Reactions in Organic Synthesis. *Chem. Rev.* 1996, *96*, 115–136.

(5) For selected examples, see: (a) Dong, G.; Teo, P.; Wickens, Z.-K.; Grubbs, R.-H. Primary Alcohols from Terminal Olefins: Formal Anti-Markovnikov Hydration via Triple Relay Catalysis. *Science*. 2011, *333*, 1609-1612. (b) Romano, C.; Fiorito, D.; Mazet, C. Remote Functionalization of α,β-Unsaturated Carbonyls by Multimetallic Sequential Catalysis. *J. Am. Chem. Soc.* 2019, *141*, 16983–16990. (c) Corrado, M.-L.; Knaus, T.; Mutti, F.-G. Regio- and stereoselective

multi-enzymatic aminohydroxylation of β -methylstyrene using dioxygen, ammonia and formate. *Green Chem.* **2019**, *21*, 6246–6251.

(6) For recent reviews, see: (a) Wang, X.-Y.; Yao, X.; Narita, A.; Müllen, K. Heteroatom-Doped Nanographenes with Structural Precision. *Acc. Chem. Res.* 2019, *52*, 2491–2505. (b) Smolyar, I.-V; molyar, A.-K.; Nenajdenko, V.-G. Nenajdenko. Heteroaryl Rings in Peptide Macrocycles. *Chem. Rev.* 2019, *119*, 10032–10240. (c) Strakova, K.; Assies, L.; Goujon, A.; Piazzolla, F.; Humeniuk, H.-V.; Matile, S. Dithienothiophenes at Work: Access to Mechanosensitive Fluorescent Probes, Chalcogen-Bonding Catalysis, and Beyond. *Chem. Rev.* 2019, *119*, 10977–11005. (d) Cinar, M.-E; Ozturk, T. Thienothiophenes, Dithienothiophenes, and Thienoacenes: Syntheses, Oligomers, Polymers, and Properties. *Chem. Rev.* 2015, *115*, 3036–3140.

- (7) For recent examples, see: (a) Liu, T.; Wu, H.; Jiang, H.; Zhang, L.; Zhang, Y.; Mao, L. Thiophenes from Echinops grijsii as a Preliminary Approach To Control Disease Complex of Root-Knot Nematodes and Soil-Borne Fungi: Isolation, Activities, and Structure–Nonphototoxic Activity Relationship Analysis. *J. Agric. Food Chem.* 2019, 67, 6160–6168. (b) Son,S.-I.; Cao, J.; Zhu, C.-L.; Miller, S.-P.; Lin, H. Activity-Guided Design of HDAC11-Specific Inhibitors. *ACS Chem. Biol.* 2019, *14*, 1393–1397.
- (8) For selected examples, see: (a) Xu, X.-P.; Li, Z.-J.; Bi, Z.-Z.; Yu, T.; Ma, W.; Feng, K.; Peng, Q. Highly Efficient Non-fullerene Polymer Solar Cells Enabled by Copper(I) Coordination Strategy Employing an 1,3,4-Oxadiazole-containing Wide Bandgap Copolymer Donor. *Adv. Mater.* 2018, *30*, 1800737. (b) Xu, X.-P.; Yu, T.; Bi, Z.-Z.; Ma, W.; Peng, Q. Realizing Over 13% Efficiency in

Green-Solvent-Processed Non-Fullerene Organic Solar Cells Enabled by 1,3,4-Thiadiazole-Based Wide Bandgap Copolymers. *Adv. Mater.* **2018**, *30*, 1703973. (c) Ie, Y.; Umemoto, Y.; Okabe, M.; Kusunoki, T.; Nakayama, K.; Pu, Y.-J.; Tada, H.; Aso, Y. Electronegative Oligothiophenes Based on Difluorodioxocyclopentene-Annelated Thiophenes: Synthesis, Properties, and n-Type FET Performances. *Org. Lett.* **2008**, *10*, 833–866.

(9) For selected recent examples, see: (a) Kitamura, T.; Morita, K.; Nakamori, H.; Oyamada, J. Synthesis of [1]Benzothieno[3,2-b][1]benzothiophene Derivatives via Successive Iodocyclization/ Photocyclization of Alkynes. J. Org. Chem. 2019, 84, 4191–4199. (b) Yang, S.; Cheng, R.; Zhao, T.; Luo, A.; Lan, J.; You, J. Rhodium-Catalyzed C–H/C–H Cross Coupling of Benzylthioethers or Benzylamines with Thiophenes Enabled by Flexible Directing Groups. Org. Lett. 2019, 21, 5086–5090. (c) Garvin, M.-P.; John, D.-T. Pendant Photochromic Conjugated Polymers Incorporating a Highly Functionalizable Thieno[3,4-b]thiophene Switching Motif. J. Am. Chem. Soc. 2019, 141, 3146–3152. (d) Fujieda, H.; Maeda, K.; Kato, N. Efficient and Scalable Synthesis of Glucokinase Activator with a Chiral Thiophenyl-Pyrrolidine Scaffold. Org. Process Res. Dev. 2019, 23, 69–77.

(10) For selected examples, see: (a) Ana, B.-B.; Aaron, D.-S.; David, B.-W.; Aranzazu, M.; James, F.; Francis, S.-W.; Kyle, W.-S. Positive Allosteric Modulation of the Glucagon-like Peptide-1 Receptor by Diverse Electrophiles. *J. Biol. Chem.* 2016, 291, 10700–10715. (b) Huang,L.-J.; Kuo, S.-C. Perng, C.-Y.; Chao, Y.-H.; Wu, T.-S.; Andrew, T.-M.; Anthony, M.; Cheng, H.-H.; Lee, K.-H. Synthesis and cytotoxicity of acetyl-4H, 9H-naphtho[2,3-b]thiophene-4,9-diones. *Bioorg.*

Med. Chem. Lett. **1998**, *8*, 2763–2768. (c) Cathrin, L.; Dirk, K.-S.; Vortherms, L.-H.; Helge, P.; Klaus, M. 8-Halo-substituted naphtho[2,3-b]thiophene-4,9-diones as redox-active inhibitors of keratinocyte hyperproliferation with reduced membrane-damaging properties. *Eur. J. Med. Chem.* **2016**, *110*, 280–290. (d) Jennifer, A.-B.; Nicolas, A.; Sophie, M.-B.; Ryan, P.-B.; Paul, S.-C.; Colin, J.-S.; Robert, J.-Y. Structurally Diverse Mitochondrial Branched Chain Aminotransferase (BCATm) Leads with Varying Binding Modes Identified by Fragment Screening. *J. Med. Chem.* **2016**, *59*, 2452–2467. (e) Thomas, J.-G.; John, M.-S.; Robert, E.-D.; Hemaka, A.-R.; Ronald, K.-C.; John, J.-R.; Jonathan, T.-K.; John, A.-M. Potent, selective and orally bioavailable leucine-rich repeat kinase 2 (LRRK2) inhibitors. *Bioorg. Med. Chem. Lett.* **2016**, *26*, 2631–2635. (f) Annamaria, L.; Sampo, K.; Sari, A.-R.; Pasi, K.; Nina, J.; Kaisa, H.; Kimmo, V.; Kristiina, W. Synthesis and Biological Evaluation of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) Inhibitors Based on a Thieno[2,3-d]pyrimidin-4(3H)-one Core. *J. Med. Chem.* **2009**, *52*, 6660–6671.

(11) Farrar, M.-W.; Levine, R. Condensations Effected by Boron Fluoride Complexes. III. The Acylation of Certain Substituted Thiophenes and Furans. J. Am. Chem. Soc. 1950, 72, 3695–3698.

(12) (a) Kim, B.-S.; Choi, K.-S.; Kim, K. Reactions of Thioaroylketene S,N-Acetals with
1,3-Dicarbonyl Compounds in the Presence of Mercury(II) Acetate: A General Route to
2-Acyl-and
2-Aroyl-3-(alkylamino)-5-arylthiophenes

2-(Ethoxycarbonyl)-3-(methylamino)-5-arylthiophenes. J. Org. Chem. 1998, 63, 6086-6087. (b) Adib, M.; Rajai-Daryasarei, S.; Pashazadeh, R.; Jahani, M.; Yazzaf, R.; Amanlou, M. A

Consecutive Four-Component Synthesis of Polysubstituted Thiophenes in Aqueous Medium. *Eur. J. Org. Chem.* **2018**, 3001–.3016.

(13) (a) Godoi, B.; Schumacher, R.-F.; Zeni, G. Synthesis of Heterocycles via Electrophilic Cyclization of Alkynes Containing Heteroatom. *Chem. Rev.* 2011, *111*, 2937–2980. (b) Ren, X.-F.; Turos, E.; Lake, C.-H.; C, M.-R. Regiochemical and stereochemical studies on halocyclization reactions of unsaturated sulfides. *J. Org. Chem.* 1995, *60*, 6468–6483. (c) Liu, Y.-L.; Wang, B.; Qiao, X.-F.; Tung, C.-H.; Wang, Y.-F. Iodine/Visible Light Photocatalysis for Activation of Alkynes for Electrophilic Cyclization Reactions. *ACS Catal.* 2017, *7*, 4093–4099. (d) Yi, W.; Liu, W.; Fang, X.-X.; Lou, S.-C.; Liu, G.-Q. Preparation of oxazolines and oxazoles via PhI(OAc)₂-promoted cyclization of N-propargylamides. *Org. Biomol. Chem.* 2018, *16*, 7012–7018.

(14) (a) Yue, D.; Larock, R.-C. Synthesis of 2,3-Disubstituted Benzo[b]thiophenes via Palladium-Catalyzed Coupling and Electrophilic Cyclization of Terminal Acetylenes. J. Org. Chem. 2002, 67, 1905–1909. (b) Claudine, S.; Lars, A.; Dieter, S. Bernd, F.-S.; Till, O. Iodocyclization of o-Alkynylbenzamides Revisited: Formation of Isobenzofuran-1(3H)-imines and 1H-Isochromen-1-imines Instead of Lactams. J. Org. Chem. 2012, 77, 10118–10124. (c) Volpe, R.; L, A.; G, G.-M.; Krenske, E.-H.; Flynn, B.-L. Mapping the Interactions of I₂, I, Γ, and I⁺ with Alkynes and Their Roles in Iodocyclizations. Chem. Eur. J. 2015, 21, 10191–10199. (d) Yuichiro, T.; Ryota, K.; Naoko, K.; Keiichi, N. Akio, S. Molecular-Iodine-Catalyzed Cyclization of 2-Alkynylanilines via Iodocyclization–Protodeiodination Sequence. Org. Lett. 2017, 19, 6744–6747. (e) Walter, C.; Fallows, N.; Kesharwani, T. Copper-Catalyzed Electrophilic

The Journal of Organic Chemistry

Chlorocyclization Reaction Using Sodium Chloride as the Source of Electrophilic Chlorine. *ACS Omega.* **2019**, *4*, 6538–6545. (f) Hessian, K. O.; Flynn, B. L. Selective endo and exo Iodocyclizations in the Synthesis of Quinolines and Indoles. *Org. Lett.* **2006**, *8*, 243–246.

(15) (a) Zha, T.; Tong, X.; Deng, Y.; Peng, F.; Shao, Z. Catalytic Asymmetric and Divergent Synthesis of Tricyclic and Tetracyclic Spirooxindoles: Controllable Site-Selective Electrophilic Halocyclization of 1,6-Enynes. Org. Lett. 2019, 21, 6068-6073. (b) Garre, M.-S.; Sucunza, D.; Aguilar, E.; Garcá, P.; Vaquero, J.-J. Regiodivergent Electrophilic Cyclizations of Alkynylcyclobutanes for the Synthesis of Cyclobutane-Fused O-Heterocycles. J. Org. Chem. 2019, 84, 5712-5725. (c) Li, M.; Yang, F.; Yuan, T.; Li, H.; Li, J.; Chen, Z.-S.; Ji, K. Syntheses of Z-Iodovinylfurans and 2-Acyl Furans via Controllable Cyclization of Ynenones. J. Org. Chem. 2019, 84, 12617-12625. (d) Huang, H.; Zhu, X.; He, G.; Liu, Q.; Fan, J.; Zhu, H. Controlled Synthesis of 1,3,5-Oxadiazin-2-ones and Oxazolones through Regioselective Iodocyclization of Ynamides. Org. Lett. 2015, 17, 2510-2513. (e) Okitsu, T.; Sato, K.; Wada, A. Reagent-Controlled Oxidative Aromatization in Iodocyclization: Switchable Access to Dihydropyrazoles and Pyrazoles. Org. Lett. 2010, 12, 3506–3509. (f) Arimitsu, S.; Jacobsen, J.-M.; Hammond, G.-B. Synthesis of 2,4,5-Trisubstituted 3-Fluorofurans via Sequential Iodocyclization and Cross-Coupling of gem-Difluorohomopropargyl Alcohols. J. Org. Chem. 2008, 73, 2886–2889. (g) Suzuki, S.; Saito, A. Single-Step Synthesis of Iodinated Oxazoles from N-Propargyl Amides Mediated by I2/Iodosylbenzene/Trimethylsilyl Trifluoromethanesulfonate Systems. J. Org. Chem. 2017, 82, 11859-11864. (h) Kim, I.; Kim, S. G.; Kim, J. Y.; Lee, G. H. A novel approach to 3-acylated

indolizine structures via iodine-mediated hydrative cyclization. *Tetrahedron Lett.* 2007, 48, 8976–8981.

- (16) Gabriele, B.; Mancuso, R.; Salerno, G.; Larock, R.-C. An Iodocyclization Approach to Substituted 3-Iodothiophenes. J. Org. Chem. 2012, 77, 7640–7645.
- (17) Pan, L.; Bi, X.; Liu, Q. Recent Developments of Ketene Dithioacetal Chemistry. *Chem. Soc. Rev.***2013**, *42*, 1251–1286.

(18) For selected examples, see: (a) Fang, Z.-X.; Yuan, H.-Y.; Liu, Y.; Tong, Z.-X.; Li, H.-Q.; Zhang, J.-P.: Liu, O.: Bi, X.-H. gem-Dialkylthio vinylallenes: alkylthio-regulated reactivity and application in the divergent synthesis of pyrroles and thiophenes. Chem. Commun. 2012, 48, 8802-8804. (b) Fang, G.-C.; Li, J.-C.; Wang, Y.-M.; Gou, M.-Y.; Liu, Q.; Li, X.-Q.; Bi, X.-H. An Atom-Economic Route to Thiophenes and 2,2-Bithiophenes by Intramolecular Transannulation of gem-Dialkylthio Enynes. Org. Lett. 2013, 15, 4126-4129. (c) Fang, Z.-X.; Liu, J.-Q.; Liu, Q.; Bi, X.-H. [3+2] Cycloaddition of Propargylic Alcohols and a-Oxo Ketene Dithioacetals: Synthesis of Functionalized Cyclopentadienes and Further Application in a Diels-Alder Reaction. Angew. Chem. Int. Ed. 2014, 53, 7209-7213. (d) Zheng, G.; Ma, X.-L.; Liu, B.-Y.; Dong, Y.; Wang, M. Iodine-Catalyzed Intramolecular Oxidative Thiolation of Vinylic Carbon-Hydrogen Bonds via Tandem Iodocyclization and Dehydroiodination: Construction of 2 Methylene-3-thiophenones. Adv. Synth. Catal. 2014, 356, 743-748. (e) Li, Q.; Wang, Y.-M.; Fang, Z.-X.; Liao, P.-Q.; Barry, B.-D.; Che, G.-B.; Bi, X.-H. Iron(III)-Catalyzed Dehydration C(sp₂)–C(sp₂) Coupling of Tertiary Dithioacetals: Propargyl Alcohols and α-Oxo Ketene А New Route to

gem-Bis(alkylthio)-Substituted Vinylallenes. *Synthesis*. **2013**, *45*, 609–614. (f) Wang, M.-M.; Bai, D.-C.; Kong, L.-H.; Liu, B.-X.; Li, X.-W. Ag(I)-Catalyzed Nucleophilic Addition and Friedel-Crafts Alkylation between α-Oxo ketene Dithioacetals and Propargyl Carbonates. *Org. Lett.* **2018**, *20*, 7775–7778.

(19) Bai, L.-G.; Chen, M.-T.; Xiao, D.-R.; Zhao, L.-B.; Luo, Q.-L. Access to Multisubstituted Furan-3-carbothioates via Cascade Annulation of α-Oxo Ketene Dithioacetals with Isoindoline-1,3-dione-Derived Propargyl Alcohols. J. Org. Chem. 2018, 83, 7648–7658.

(20) For details, see the Supporting Information.

(21) The crystal data and experimental details of the structural refinement for **3ad** are provided in the Supporting Information.²⁰ CCDC 1973997 (**3ad**) contains the supplementary crystallographic data for this publication. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

(22) A mechanism of photoinduced deiodinative oxygenation is proposed in Scheme S3 according to references and our mechanistic experiments.^{13c, 13d, 20} Wan and coworkers reported the deiodinative oxidation of iodoalkylidenedihydrooxazolesoxazole at 80 °C in the presence of dioxygen (1 atm), but there were no mechanistic investigations carried out. See: Hu, Y.; Yi, R.; Wang, C.; Xin, X.; Wu, F.; Wan, B. From Propargylamides to Oxazole Derivatives: NIS-Mediated Cyclization and Further Oxidation by Dioxygen. *J. Org. Chem.* 2014, *79*, 3052–3059.

(23) For recent examples, see: (a) Sun, R.; Du, Y.; Tian, C.; Li, L.; Wang, H.; Zhao, Y.-L. Copper(II)-catalyzed Domino Reaction of the Acyclic Ketene-(S,S)-Acetals with Diazo

Compounds: Convenient Synthesis of Polysubstituted Thiophenes. *Adv. Synth. Catal.* **2019**, *361*, 5684–5689. (b) He, Y.; Lou, J.; Wu, P.; Zhou, Y.-G.; Yu, Z.-K. Copper-Catalyzed Annulative Coupling of S,S-Disubstituted Enones with Diazo Compounds to Access Highly Functionalized Thiophene Derivatives. *J. Org. Chem.* **2020**, *85*, 1044–1053.

- (24) (a) Nandi, G-C.; Soumini, K. Catalyst-Controlled Straightforward Synthesis of Highly Substituted Pyrroles/Furans via Propargylation/Cycloisomerization of α-Oxo ketene-N,S-acetals. J. Org. Chem. 2016, 81, 11909–11915. (b) Cao, H.; Huang, H. Nano-Cu₂O-Catalyzed Formation of C-C and C-O Bonds: One-Pot Domino Process for Regioselective Synthesis of α-Carbonyl Furans from Electron-Deficient Alkynes and 2-Yn-1-ols. Chem.Eur. J. 2010, 16, 10553–10559. (c) Sanz, R.; Rodriguez, F. Brønsted Acid Catalyzed Propargylation of 1,3-Dicarbonyl Derivatives. Synthesis of Tetrasubstituted Furans. Org. Lett. 2007, 9, 727–730.
- (25) (a) Chang, J.; Liu, B.; Yang, Y.; Wang, M. Pd-Catalyzed C–S Activation/Isocyanide Insertion/Hydrogenation Enables a Selective Aerobic Oxidation/Cyclization. Org. Lett. 2016, 18, 3984–3987. (b) Lubbe, M.; Bendrath, F.; Trabhardt, T.; Villinger, A.; Fischer, C.; Langer, P. Regioselective synthesis of 3-(methylthio)phenols by formal [3+3]-cyclocondensations of 3-oxo-bis(methylthio)ketenacetals with 1,3-bis(trimethylsilyloxy)-1,3-butadienes and 1,3-dicarbonyl dianions. Tetrahedron. 2013, 69, 5998–6007.