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The reaction of cyclopropyl phenyl sulfoxide with a magnesium amide, generated from ethylmagnesium bromide
and diisopropylamine, gave 1-(phenylthio)cyclopropanol in 72% yield.  When the diisopropylmagnesium reagent was
treated with a thiol prior to an interaction with cyclopropyl phenyl sulfoxides, symmetrical and unsymmetrical cyclopro-
panone dithioacetals were produced in fair yields along with small quantities of the corresponding 1-(phenylthio)cyclo-
propanols.

 

In our previous paper we described that the reactions of sul-
foxides bearing 

 

α

 

-hydrogens 

 

1

 

 with magnesium amides, gen-
erated in situ by a treatment of ethylmagnesium bromide with
secondary amines, such as diisopropylamine or 2,2,6,6-tetra-
methylpiperidine in diethyl ether, afforded the corresponding
symmetrical dithioacetals 

 

3

 

 via Pummerer-type carbonium ion
intermediates 

 

2

 

 (Scheme 1).

 

1

 

  We have also reported that the
reaction of sulfoxides 

 

1

 

 with various thiols in the presence of a
magnesium amide gave unsymmetrical dithioacetals 

 

4

 

(Scheme 1).

 

2

 

  As an extension of these studies, we examined
the reactions of cyclopropyl phenyl sulfoxides with magne-
sium amides.  In this paper, we describe the results of our in-
vestigation, which offer simple routes to 1-(phenylthio)cyclo-
propanol and cyclopropanone dithioacetals.  Several reports on
Pummerer-type reactions of cyclopropyl sulfoxides have been
recorded previously.

 

3

 

  However, to the best of our knowledge,
no application to the preparation of cyclopropanone dithioace-
tals has been reported.

We began our investigation by first examining the reaction
between cyclopropyl phenyl sulfoxide (

 

5

 

) with magnesium
amides.  Sulfoxide 

 

5

 

 was treated with a magnesium amide,
generated from ethylmagnesium bromide (4 molar amounts)
and diisopropylamine (8 molar amounts) overnight at room
temperature.

 

1

 

 After the usual workup, purification of the crude
product by preparative TLC on silica gel afforded 1-(phenyl-
thio)cyclopropanol (

 

6

 

) in good yield, and no trace amounts of

bis(phenylthio)cyclopropane (

 

7

 

) could be detected (Scheme 2).
It can be assumed that no production of 

 

7

 

 is due to the low sta-
bility of the cyclopropyl carbonium ion intermediate.  de Boer
et al.  have reported on the preparation of 1-(alkylthio)cyclo-
propanols

 

4

 

 and their transformation into 1-substituted cyclo-
propyl sulfides with a variety of nucleophiles.  They synthe-
sized 1-(alkylthio)cyclopropanols using cyclopropanones and
thiols.  Although this method appears to be convenient, cyclo-
propanones are unstable and difficult to handle.

We next found that when the (diisopropylamino)magnesium
reagent was treated with a thiol prior to an interaction with cy-
clopropyl phenyl sulfoxide (

 

5

 

), cyclopropane dithioacetals 

 

8a

 

–

 

d

 

 were obtained in fair yields along with small quantities of 1-
(phenylthio)cyclopropanol (

 

6

 

), as shown in Scheme 3.  Reac-
tions of 

 

5

 

 with magnesium amide-thiol reagents, generated
from various ratios of ethylmagnesium bromide, diisopropyl-
amine, and a thiol, were initially examined.  The use of 6 molar
amounts each of ethylmagnesium bromide and diisopropyl-
amine, and 4 molar amounts of thiols was found to be most ef-
fective for the production of 

 

8

 

.  Cyclopropanone dithioacetals
have been synthesized by, for example, 1) the addition of di-
bromocarbene to olefins, followed by an exchange of the bro-
mines of the resulting dibromocyclopropanes by RS groups;

 

5

 

2) the base-induced cyclopropanation of 1,1,3-tris(phenyl-
thio)alkanes

 

6

 

 or 3) the reaction of sulfur-stabilized anions with
ketene bis(phenylthio)acetal [1,1-bis(phenylthio)ethylene].

 

7

 

Scheme 1.   



 

1368

 

Bull. Chem. Soc. Jpn., 

 

75

 

, No. 6 (2002) Synthesis of Cyclopropanone Dithioacetals

 

[BULLETIN 2002/06/03 19:32] 01441

 

Transformations of cyclopropanone dithioacetals into other
useful organic compounds have also been reported.

 

5,8

 

Subsequently, a similar treatment of 2,2-dimethylcyclopro-
pyl phenyl sulfoxide (

 

9

 

) with the magnesium amide in the
presence of 4-methylbenzenethiol under the above-mentioned
conditions gave the expected dithioacetal 

 

12

 

 along with 2,2-
dimethyl-1-(phenylthio)cyclopropanol (

 

13

 

) and 2-methyl-4-(4-
methylphenylthio)-3-phenylthio-2-butene (

 

14

 

), as illustrated in
Scheme 4.  The formation of 

 

14

 

 can be explained by a rear-
rangement of the cyclopropyl carbonium ion intermediate 

 

10

 

to the stable allyl carbonium ion intermediate 

 

11

 

.
In conclusion, the present magnesium amide-mediated

Pummerer-type reactions can provide convenient methods for
preparing 1-(phenylthio)cyclopropanol and cyclopropanone
dithioacetals.  The present methods may find some value in or-
ganic synthesis because of simple manipulations as well as the
ready availability of the starting materials.

 

Experimental

General.    

 

The melting points were determined on a Laborato-
ry Devices MEL-TEMP 

 

Ⅱ

 

 melting point apparatus and are uncor-
rected.  The IR spectra were recorded on a Perkin-Elmer 1600 Se-

ries FT IR spectrometer.  The 

 

1

 

H NMR spectra were determined
using SiMe

 

4

 

 as an internal reference with a JEOL JNM-GX270 FT
NMR spectrometer operating at 270 MHz in CDCl

 

3

 

.  Low-resolu-
tion mass spectra were recorded on a JEOL AUTOMASS 20 spec-
trometer (Center for Joint Research and Development, this Uni-
versity).  High-resolution mass spectra were performed on a JEOL
JMS-AX505 HA spectrometer (Faculty of Agriculture, this Uni-
versity).  Thin layer chromatography (TLC) was carried out on
Merck Kieselgel 60 PF

 

254

 

.  All of the solvents used were dried
over appropriate drying agents and distilled under argon prior to
use.

 

Starting Materials.    

 

Cyclopropyl phenyl sulfoxide (

 

5

 

) and
2,2-dimethylcyclopropyl phenyl sulfoxide (

 

9

 

) were prepared fol-
lowing procedures reported by Oae et al.

 

3b

 

  All other chemicals
used in this study were commercially available.

 

1-(Phenylthio)cyclopropanol 6.

 

4

 

    

 

To a solution of EtMgBr
(4.0 mmol) in Et

 

2

 

O (5 mL) at 0 °C under argon was added 

 

i

 

-
Pr

 

2

 

NH (0.81 g, 8.0 mmol); the mixture was heated at reflux tem-
perature for 1 h.  The turbid solution was cooled to 0 °C and cy-
clopropyl phenyl sulfoxide (

 

5

 

) (0.17 g, 1.0 mmol) was added.  The
temperature was raised to room temperature and the mixture was
stirred overnight.  The resulting mixture was quenched by adding
aqueous NH

 

4

 

Cl and extracted with Et

 

2

 

O.  The organic layer was

Scheme 2.   

Scheme 3.   

Scheme 4.   



 

K. Kobayashi et al. Bull. Chem. Soc. Jpn., 

 

75

 

, No. 6 (2002)

 

1369

 

[BULLETIN 2002/06/03 19:32] 01441

 

washed with brine and dried over MgSO

 

4

 

.  After evaporation of
the solvent, the crude product was purified by preparative TLC on
SiO

 

2

 

 to give 

 

6

 

 (0.12 g, 72%) as a pale-yellow oil: 

 

R

 

f

 

 0.22 (1:5
EtOAc–hexane); bp 120 °C (bath temp)/26.7 Pa (lit.,

 

4

 

 90–93 °C/
4.0 Pa); IR (neat) 3371 and 3059 cm

 

−

 

1

 

; 

 

1

 

H NMR 

 

δ

 

 1.1–1.3 (4H,
m), 2.30 (1H, s), and 7.2–7.55 (5H, m); MS 

 

m

 

/

 

z

 

 (%) 166 (M

 

+

 

, 3.0)
and 110 (100).

 

1,1-Bis(phenylthio)cyclopropane 8a.

 

6a

 

    Typical Procedure
for the Reactions of Cyclopropyl Phenyl Sulfoxides with Thi-
ols in the Presence of a Magnesium Amide.    

 

  To a cooled (0
°C) turbid solution of a magnesium amide, generated from EtMg-
Br (6.0 mmol) and 

 

i

 

-Pr

 

2

 

NH (0.61 g, 6.0 mmol) in Et

 

2

 

O (8 mL), as
described above, benzenethiol (0.50 g, 4.0 mmol) was added un-
der stirring.  After the mixture was stirred for 20 min, cyclopropyl
phenyl sulfoxide (

 

5

 

) (0.17 g, 1.0 mmol) was added.  The resulting
mixture was allowed to warm to room temperature, and stirring
was continued overnight.  A workup in a similar manner as de-
scribed above gave a residue, which was purified by preparative
TLC on SiO

 

2

 

 (1:40 EtOAc–hexane) to give 

 

8a

 

 (0.18 g, 69%) along
with 9% yield of 

 

6

 

 (15 mg).  

 

8a

 

: a pale yellow oil; 

 

R

 

f

 

 0.46; IR
(neat) 3078, 3060, 1583, 1477, 1438, 1024, 889, 737, and 689
cm

 

−

 

1

 

; 

 

1

 

H NMR 

 

δ

 

 1.48 (4H, s), 7.27 (2H, t, 

 

J

 

 

 

=

 

 7.3 Hz), 7.33 (4H,
t, 

 

J

 

 

 

=

 

 7.3 Hz), and 7.47 (4H, d, 

 

J

 

 

 

=

 

 7.3 Hz); MS 

 

m

 

/

 

z

 

 (%) 258
(M

 

+

 

, 12) and 149 (100).  Found: 

 

m

 

/

 

z

 

 258.0537.  Calcd for
C

 

16

 

H

 

16

 

S

 

2

 

: M, 258.0522.

 

1-(4-Methylphenylthio)-1-(phenylthio)cyclopropane (8b):

 

a pale-yellow oil; 

 

R

 

f

 

 0.29 (1:20 EtOAc–hexane); IR (neat) 3074,
3017, 1584, 1491, 1478, 1089, 802, 738, and 690 cm

 

−

 

1

 

; 

 

1

 

H NMR

 

δ

 

 1.4–1.5 (4H, m), 2.34 (3H, s), and 7.1–7.5 (9H, m); MS 

 

m

 

/

 

z

 

 (%)
272 (M

 

+

 

, 12), 163 (68), 149 (71), 105 (91), and 91 (100).  Found:

 

m

 

/

 

z

 

 272.0692.  Calcd for C

 

16

 

H

 

16

 

S

 

2

 

: M, 272.0693.  Found: C,
70.76; H, 5.85; S, 23.49%.  Calcd for C

 

16

 

H

 

16

 

S

 

2

 

: C, 70.54; H, 5.92;
S, 23.54%.

 

1-(4-Chlorophenylthio)-1-(phenylthio)cyclopropane (8c):

 

a pale-yellow oil; 

 

R

 

f

 

 0.29 (1:40 EtOAc–hexane); IR (neat) 3058,
3003, 1583, 1438, 1415, 1296, 1177, and 889 cm

 

−

 

1

 

; 

 

1

 

H NMR 

 

δ

 

1.45–1.5 (4H, m) and 7.25–7.5 (9H, m); MS 

 

m

 

/

 

z

 

 (%) 292 (M

 

+

 

,
8.0), 183 (41), and 149 (100).  Found: 

 

m

 

/

 

z

 

 292.0142.  Calcd for
C

 

15

 

H

 

13

 

ClS2: M, 292.0147.  Found: C, 61.82; H, 4.73; S, 21.86%.
Calcd for C15H13ClS2: C, 61.52; H, 4.47; S, 21.90%.

1-(Benzylthio)-1-(phenylthio)cyclopropane (8d):     a pale-
yellow oil; Rf 0.50 (1:20 EtOAc–hexane); IR (neat) 3059, 3027,
1583, 1493, 1477, 1453, 1438, 1026, 738, and 687 cm−1; 1H NMR
δ 1.05–1.1 (2H, m), 1.2–1.25 (2H, m), 4.00 (2H, s), and 7.2–7.55
(10H, m); MS m/z (%) 272 (M+, 4.2), 181 (29), 167 (64), and 91
(100).  Found: m/z 272.0674.  Calcd for C16H16S2: M, 272.0693.

1,1-Dimethyl-2-(4-methylyphenylthio)-2-(phenylthio)cyclo-
propane (12):    a pale-yellow oil; Rf 0.30 (1:40 EtOAc–hexane);
IR (neat) 3057, 3018, 1584, 1491, 1478, 1090, 800, and 690 cm−1;

1H NMR δ 1.19 (1H, d, J = 5.6 Hz), 1.22 (1H, d, J = 5.6 Hz),
1.49 (3H, s), 1.53 (3H, s), 2.32 (3H, s), and 7.1–7.35 (9H, m); MS
m/z (%) 300 (M+, 7.7), 177 (33), and 135 (100).  Found: m/z
300.1009.  Calcd for C18H20S2: M, 300.1006.  Found: C, 72.00; H,
6.80%.  Calcd for C18H20S2: C, 71.95; H, 6.71%.

2,2-Dimethyl-1-(phenylthio)cyclopropanol (13):     a pale-
yellow oil; Rf 0.05 (1:40 EtOAc–hexane); IR (neat) 3422 and
3058 cm−1; 1H NMR δ 0.90 (1H, d, J = 5.6 Hz), 0.94 (1H, d, J =
5.6 Hz), 1.30 (3H, s), 1.36 (3H, s), 2.32 (1H, s), and 7.1–7.45 (5H,
m); MS m/z (%) 194 (M+, 6.8) and 150 (100).  Found: m/z
194.0764.  Calcd for C11H14OS: M, 194.0765.

2-Methyl-4-(4-methylphenylthio)-3-phenylthio-2-butene
(14):    a pale-yellow oil; Rf 0.25 (1:40 EtOAc–hexane); IR (neat)
1625, 1583, 1491, 1478, and 738 cm−1; 1H NMR δ 1.75 (3H, s),
2.01 (3H, s), 2.30 (3H, s), 3.71 (2H, s), and 7.0–7.35 (9H, m); MS
m/z (%) 300 (M+, 8.1), 176 (33), and 135 (100).  Found: m/z
300.1008.  Calcd for C18H20S2: M, 300.1006.  Found: C, 71.84; H,
6.70%.  Calcd for C18H20S2: C, 71.95; H, 6.71%.

We wish to thank Mrs. Miyuki Tanmatsu of this Department
for determining the mass spectra.
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