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ABSTRACT: An α-vinylation of enolizable ketones has been developed by using β-bromostyrenes and a KOtBu/NMP system.
β,γ-Unsaturated ketones of E configuration were obtained in excellent yield and selectivity. Further synthetic possibilities are
highlighted by one-pot functionalization via trapping of intermediate dienolates with alkyl, allyl, benzyl, and propargyl halides to
generate quaternary centers. The reported transformation is believed to involve phenylacetylene and propargylic alcohol
derivatives.

The regio- and stereoselective synthesis of β,γ-unsaturated
carbonyl compounds is an important transformation in

organic chemistry since these units are present in many natural
products and serve as building blocks to access complex
structures.1 The search for efficient and selective methods to
yield allylic carbonyl compounds has a long history. With an
objective of alleviating the intrinsic limitation of prototropic
rearrangement of β,γ-unsaturated carbonyl compounds into
their α,β-unsaturated counterparts,2 many syntheses have been
developed based on the use of organometallic reagents,3 metal-
mediated coupling reactions,4 and transition-metal catalyzed α-
vinylation reactions of enolates.5 In contrast, there have been
few reports for the synthesis of allylic carbonyl compounds that
do not require transition metals.6 In early investigations on
radical-chain transformations, Bunnett reported the photo-
stimulated reaction between potassium acetonate and vinyl
halides.7 An observation made by Galli in 1993 showed that a
competing elimination−addition pathway via acetylene inter-
mediates was involved under certain conditions.8 The presence
of propargylic alcohols hinted at an ionic mechanism involving
Favorsky-type reactions. Multiple contributions by Galli,
Rappoport, and Rossi later hinted that an unequivocal SRN1
ketone α-vinylation reaction occurred only for triphenylvinyl
bromide, highlighting the rich mechanistic world of vinylic
substitution reactions. Recently, Trofimov developed on Galli’s
initial observation by developing a general base-mediated
synthesis of β,γ-unsaturated ketones by the reaction of
enolizable ketones and arylacetylenes at temperatures ≥80
°C.9 The reactions proceed in the presence of either KOH or
KOtBu in DMSO to provide β,γ-unsaturated ketones in good

selectivities; however, isomerization into their α,β-unsaturated
ketones derivatives could not be avoided (minimally 5−10%).
We recently developed a transition-metal-free protocol for the
α-arylation of enolizable ketones with aryl halides using a
mixture of KOtBu and DMF.10 Since the reactions of aryl
iodides proceed at room temperature under these conditions,
we believed that the development of a very mild α-vinylation of
enolizable ketones was feasible. Our main goal was to achieve
complete selectivity for β,γ-unsaturated ketone isomers of E
configuration at low temperatures.
To start our investigation, we reacted propiophenone 1a

with β-bromostyrene 2a11 in DMF for 1 h at 70 °C in the
presence of KOtBu as base (Table 1). Under these conditions,
addition of 3 equiv of the latter gave the expected β,γ-
unsaturated ketone 3a in 66% yield, along with 16% of enone
4a (entry 1). Switching the solvent to DMSO or NMP
furnished 3a in 72% and 93% yields, respectively, along with
trace amounts of the isomerized enone 4a when NMP was
employed (entries 2 and 3). The yields of 3a decreased to 61%
and 22% by using only 2 and 1 equiv of KOtBu (entries 4 and
5). The use of NaOtBu gave a low yield (entry 6), while
LiOtBu proved to be totally unsuitable since phenylacetylene
5a and propargylic alcohol 6a were generated in 11% and 72%
yields, respectively (entry 7). Other potassium bases, such as
KOH or K2CO3, also gave disappointing results (entries 8, 9),
and reactions at room temperature only led to 39% and 52%
yields, after 1 and 24 h, respectively (entry 10). Moreover,
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lower 3a/4a ratios were obtained at 25 °C than at 70 °C.
Under the optimal conditions, ketones were thus reacted with
β-bromostyrenes in the presence of 3 equiv of KOtBu in NMP
at 70 °C for 1 h (entry 3).
We subsequently turned our attention to the scope of the

reaction (Scheme 1). In addition to propiophenone,
acetophenone undergoes vinylation to give 3b in a very good
81% yield without the double vinylation product being
detected. In contrast, butyrophenone only led to a low 31%
yield of 3c. Electron-withdrawing and -donating substituents
are well tolerated at the para position of propiophenones,
giving 3d−3f in good to excellent yields. Cycloheptanone also
undergoes vinylation to give 3g in 59% yield and the reaction
also tolerated a p-tert-butyl substituent on the styrene partner,
yielding 77% of α-vinylketone 3h. Reactions of electron-rich or
-poor aryl ketones with various β-bromostyrenes substituted at
all positions (o, m, p) with methyl, tert-butyl, methoxy, and
naphthyl groups provided the desired compounds 3i−3u in
yields ranging from 49% to 95% (Scheme 1). Selectivity for
β,γ- vs α,β-unsaturated ketones is almost complete in all cases,
the lower yields being caused by incomplete conversions. In all
cases, β,γ-unsaturated ketones were obtained with complete
selectivity for E stereoisomers.
To further highlight the synthetic potential of this base-

mediated α-vinylation of ketones, we performed one-pot
trapping of intermediate dienolates with carbon-based electro-
philes (Scheme 2). As expected, β,γ-unsaturated ketones 7
bearing all-carbon quaternary centers at the α-position could
be isolated in good 60−71% yields, except for 7b leading to a
low 35% yield (Scheme 2).
Beyond iodoalkanes, this method enables efficient one-pot

procedures using allyl, benzyl, and propargyl bromides.
However, the use of iodobenzene did not lead to the
corresponding α-arylated ketone, probably due to steric
hindrance.
In order to gain insight into the reaction mechanism, we

reacted β-bromostyrene 2a with 1 equiv of KOtBu and
observed an 86% yield of phenylacetylene 5a in only 10 min at
50 °C (Scheme 3, path a). Under the same reaction conditions,

propargylic alcohol 6a is obtained in 58% yield and β,γ-
unsaturated ketone 3a (E configuration) in 40% yield when 2
equiv of KOtBu are used and 1 equiv of propiophenone 1a is
added after 10 min in a Favorsky-type reaction (Scheme 3,
path b).12 Both 5a and 6a, which were observed as byproducts

Table 1. α-Styrylation of Propiophenone 1a with β-Bromostyrene 2a: Reaction Conditionsa

entry base solvent temp (°C) 3a (%) 4a (%) 5a (%) 6a (%)

1 KOtBu DMF 70 66 16 0 0
2 KOtBu DMSO 70 72 23 0 0
3 KOtBu NMP 70 93b 2 0 0
4 KOtBuc NMP 70 61 2 2 0
5 KOtBud NMP 70 22 5 6 0
6 NaOtBu NMP 70 46 5 0 0
7 LiOtBu NMP 70 4 0 11 72
8 KOH NMP 70 8 4 4 0
9 K2CO3 NMP 70 0 0 0 0
10 KOtBu NMP 25 39 (52) 7 (8) 6 (5) 38 (36)

aReaction conditions: propiophenone 1a (2 mmol), β-bromostyrene 2a (1 mmol), base (3 mmol), solvent (9 mmol). Yields calculated by 1H
NMR using hexamethylbenzene as an internal standard. Yields in parentheses were calculated after 24 h. b70% from the β-iodostyrene and 28% for
the β-chlorostyrene. c2 mmol. d1 mmol.

Scheme 1. Substrate Scope of the α-Vinylation of Ketonesa

aReaction conditions: ketone 1 (2 mmol), β-bromostyrene 2 (1
mmol), KOtBu (3 mmol), NMP (0.9 mL), 70 °C, 1 h; isolated yields.
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during optimization (see Table 1), are likely reaction
intermediates or side reaction products.
It was then observed that, in the reaction conditions

disclosed herein, the reaction of propiophenone 1a and
phenylacetylene 5a to give 3a is efficient at low temperatures
(Table 2). While a low 7% yield of the latter is observed after 5

min at 50 °C, accompanied by 81% of intermediate 6a,
prolonging the reaction time to 4 h leads to an excellent 90%
yield in 3a (E isomer) (entries 1 and 2). The reaction gives the
same yield after 24 h at room temperature (entry 3). To the
best of our knowledge, the selective formation of β,γ-
unsaturated ketones of E configuration from simple ketones
and arylacetylenes has never been reported at temperatures
lower than 80 °C.9 It is worth noting that reactions performed
in the presence of stoichiometric amounts of hydroquinone

(entry 4) and galvinoxyl (entry 5) as potential radical
scavengers lowered the yields to 22% and 39%, respectively.
While an effect is observed, one cannot conclude that the
process involves radical intermediates.
We next investigated the conditions for the transformation

of propargyl alcohol 6a, as another potential intermediate of
the reaction (Scheme 3), into β,γ-unsaturated ketone 3a
(Table 3). In the absence of a base at 100 °C for 24 h, 6a is

recovered quantitatively (entry 1), but the presence of 1 equiv
of KOtBu already leads to 2% of 3a and 36% of 1a via a retro-
Favorsky reaction13 at only room temperature (entry 2). By
increasing the temperature up to 50 °C, 3a was obtained in
35% and 40% yields after 0.5 and 4 h, respectively (entries 3−
4). Complete rearrangement of 6a to 3a was obtained only via
the addition of 2 equiv of KOtBu at 50 °C, leading to 72% of
the desired compound 3a (entry 5). Interestingly, the use of a
catalytic amount of KOtBu (20 mol %) only led to a slight
rearrangement of 6a into 1a without formation of 3a, even at
100 °C (entry 6).
In light of these results, we propose an ionic mechanism

based on the one postulated by Trofimov for the base-
mediated addition of arylacetylenes to ketones (Scheme 4).9a−c

The arylacetylene and the enolate, in situ generated by β-

Scheme 2. One-Pot Trapping of Dienolate Intermediates for
the Generation of Quaternary Carbon Centersa

aReaction conditions: ketone 1 (2 mmol), β-bromostyrene 2a (1
mmol), KOtBu (3 mmol), NMP (9 mmol), 70 °C, 1 h, then R2−X (1
mmol), 0.5 h; isolated yields.

Scheme 3. Generation of Phenylacetylene 5a and
Propargylic Alcohol 6a from β-Bromostyrene 2a

Table 2. α-Styrylation of Propiophenone 1a with
Phenylacetylene 5aa

entry additive t (h) temp (°C) 3a (%)

1 − 0.09 50 7b

2 − 4 50 90
3 − 24 25 91
4 hydroquinone 4 50 22
5 galvinoxyl 4 50 39

aReaction conditions: propiophenone 1a (2 mmol), phenylacetylene
5a (1 mmol), additive (1 mmol), KOtBu (3 mmol), NMP (0.9 mL).
Yields calculated by 1H NMR using hexamethylbenzene as an internal
standard. b6a is obtained in 81% yield as a byproduct.

Table 3. Base-Mediated Rearrangement of Propargylic
Alcohol 6a to β,γ-Unsaturated Ketone 3aa

entry x t (h) temp (°C) 6a (%) 3a (%) 1a (%)

1 − 24 100 100 0 0
2 1 0.5 25 50 2 36
3 1 0.5 50 16 35 42
4 1 4 50 18 40 26
5 2 4 50 0 72 7
6 0.2 4 100 76 0 24

aReaction conditions: propargylic alcohol 6a (1 mmol), KOtBu (x
mmol), NMP (0.9 mL). Yields calculated by 1H NMR using
hexamethylbenzene as an internal standard.

Scheme 4. Plausible Reaction Mechanism
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elimination reaction of the bromostyrene and deprotonation of
the ketone, respectively, would react together by a concerted
trans addition with the assistance of HOtBu to provide the E
dienolate D after base-mediated isomerization of the
intermediate Z allylic ketone C. A Favorsky reaction could
also be envisioned from the attack of the corresponding
acetylide on the ketone.12 A retro-Favorsky reaction from the
corresponding propargylic alcohol A13 could then explain the
results obtained in Scheme 3 and Table 3.
In summary, we have developed a highly regio- and

stereoselective synthesis of β,γ-unsaturated ketones of E
configuration from enolizable ketones and β-bromostyrenes
under transition-metal-free conditions. The reactions can be
performed with KOtBu at room temperature for 24 h in
moderate yields or up to 70 °C for only 1 h without
isomerization into the thermodynamically favored enones. The
observation that radical scavengers did not completely
suppress the transformation, coupled with the successful
trapping of intermediates with carbon-based electrophiles to
generate all-carbon quaternary centers, rather points toward an
ionic mechanism.14
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