Copper Complex of Aminoisoborneol Schiff Base Cu₂(SBAIB-d)₂: An Efficient Catalyst for Direct Catalytic Asymmetric Nitroaldol (Henry) Reaction

Ramalingam Boobalan,^a Gene-Hsian Lee,^b and Chinpiao Chen^{a,*}

^a Department of Chemistry, National Dong Hwa University, Soufeng, Hualien 974, Taiwan, Republic of China Fax: (+886)-3-836-0475; e-mail: chinpiao@mail.ndhu.edu.tw

^b Instrumentation Center, College of Science, National Taiwan University, Taipei 106, Taiwan, Republic of China

Received: April 20, 2012; Published online:

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201200337.

Abstract: A new bifunctional copper complex of the aminoisoborneol Schiff base – $Cu_2(SBAIB-d)_2$ – has been developed for the effective direct catalytic asymmetric Henry reaction. One mol% of this catalyst produces the expected Henry products in high yields (up to 99%) with excellent enantioselectivities (up to 98% *ee*). The utility of the present catalyst was also extended to the Henry reaction with nitroethane and 1-nitropropane that furnished the corresponding products in moderate to high yields (up to 99%) with moderate to high enantioselectivities of

Introduction

The direct nitroaldol (Henry) reaction is one of the most renowned C-C bond formation reactions in the organic synthesis. The resultant bifunctional β-hydroxynitroalkane product is a highly versatile synthon for the synthesis of numerous functionally varying compounds such as 1,2-amino alcohols, α -hydroxy ketones, α -amino ketones, α -hydroxycarboxylic acid and various pharmaceuticals.^[1] Since Shibasaki's asymmetric variant of this reaction,^[2] numerous efforts have been devoted to the development of a catalytic asymmetric Henry reaction by various metal catalysts in-cluding copper,^[3] zinc,^[4] chromium,^[5] cobalt,^[6] bimetal catalysts,^[7] rare-earth metals,^[8] with structurally varying chiral ligands, organocatalysts^[9] as well as by biocatalysts.^[10] In terms of chiral ligands, Shibasaki's BINOL complex,^[2] Evans' BOX complex,^[3b] Pedro's *N*,*N*-ligand (especially aminopyridine),^[1d] Lan's bisimidazoline,^[3q] Wan's bissulfonamide-diamine,^[3r] Wang's recently reported tertiary amino alcohol,^[3u] and Trost's dinuclear zinc-amino alcohol^[4a] are some of the most successful ligands for the Henry reaction. Although salen and Schiff base ligands are considered as one of the most privileged ligands in asymmetric

syn (up to 98% *ee*) and *anti* (up to 98% *ee*) diastereomers. The highlights of this catalytic system are easy manipulation, air and moisture tolerance, the need for 1 mol% of an easily synthesizable catalyst and the high enantioselectivities achieved for a wide range of substrates.

Keywords: asymmetric catalysis; copper(II) complexes; enantioselectivity; Henry reaction; Schiff bases

synthesis,^[11] their applications in the Henry reaction have not attracted considerable attention because of the formation of nitroaldol products in moderate to good *ee*. Figure 1 shows the structures of various salen and Schiff base ligands and their metal complexes used in the Henry reaction.

Among Wang's β -amino alcohol Schiff base-Cu complexes 1–4,^[12a,c] the 2.5 mol% of complex 4^[12c] showed moderate to good ee in EtOH. Pedro's N,N-ligands Schiff bases,^[3i] and iminopyridines 5 and 6 were the most promising ligand with $Cu(OAc)_2 \cdot 2H_2O$ at -65 °C using 11 mol%, however, only a maximum of 85% chiral induction was achieved. The bisthiophene Schiff base 7 was reported to give a mere 17% ee in this reaction.^[3j] The Cu(I) complex of phosphine-Schiff base ligand **8** also yielded the corresponding product with only 80% $ee^{[12b]}$ Other Schiff bases **9**,^[12d] 11.^[12e] and 12^[12g] were found to be inefficient ligands for the Henry reaction. Although the recently reported chiral Cu(II) complex of paracyclopane Schiff base 10 has shown good $ee_{,}^{[12f]}$ its substrate scope was limited only to 2-nitrobenzaldehye. Interestingly, amino or diamino compounds, formed by reduction of these Schiff bases, became excellent catalysts for the Henry reaction; for example, Pedro's N,N-diamine (amino-

```
Adv. Synth. Catal. 0000, 000, 0-0
```

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

1

Figure 1. The structure of Schiff bases, salen ligands and its metal complexes used in the asymmetric Henry reaction.

pyridine) ligand^[1d] and the recently reported^[3u] tridentate proline alcohol ligand. Compared to Schiff bases, various metal complexes (Co,^[6] Cr,^[5] Cu^[3g,7b]) of salen ligands 13-17 showed enhanced chiral induction; however, they did have limitations such as absence of a strong chiral induction for *m*- and *p*-substituted benzaldehydes, demand for an inert atmosphere, and a low reaction temperature. The development of highly efficient and simple asymmetric catalysts is one of our goals.^[13] With our present state of understanding, we envisioned that the bifunctional copper complex of Schiff bases of aminoisoborneol [Cu₂ (SBAIB)₂] (Scheme 1) would overcome this prolonged inefficiency of Schiff base ligands for the Henry reaction. The strong steric hindrance in the exo-aminoisoborneol backbone is considered to play a pivotal role for high chiral induction, in contrast to most of the reported β -amino alcohol Schiff bases that do not possess such a huge steric hindrance when forming metal complexes.

Although many catalytic systems have been developed for the Henry reaction, many still have drawbacks such as the need of high catalyst loading, low reaction temperature, inert atmosphere to achieve high enantioselectivity, and, the limitation in the substrate scope of aldehydes as well as nitroalkanes other than nitromethane. Therefore, always finding a new catalyst results in breakthrough in prolonged failures and circumvents the limitations. Herein, this study describes a practically very simple, highly efficient asymmetric Henry reaction by using bifunctional Cu_2 (SBAIB)₂ for numerous aldehydes and nitroalkanes.

Results and Discussion

Preparation of Copper Complex Cu₂(SBAIB)₂

Considering the wide application of copper metal in the Henry reaction, we synthesized seven copper complexes **18–24** from camphor-based ligands. The Schiff bases of aminoisoborneol [SBAIB] **18a–24a** were prepared as shown in Scheme 1. These (+)-SBAIB ligands can be prepared easily from (1*R*)camphor in high yields, among these (+)-SBAIBa **18a** showed a good to excellent chiral induction in the asymmetric phenylacetylene addition reaction to various aldehydes.^[13c] The proposed structure of these complexes was verified by the X-ray crystal structure of $Cu_2[(+)-SBAIB-d]_2$ **21** (Figure 2).

2

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Advanced Synthesis & Catalysis

Scheme 1. Synthesis of copper complex of Schiff base ligands (SBAIB).

Figure 2. X-ray crystal structure of $Cu_2(SBAIB-d)_2$, 21 [CCDC 865431; these data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif].

Optimization of the Reaction Conditions

With the seven Cu complexes 18-24 in hand, the optimization of the Henry reaction was started with 4-nitrobenzaldehyde 25a and nitromethane in ethanol with 2.5 mol% of the Cu complex. Cu₂(SBAIB-d)₂ 21 was found to be the best catalyst among the seven Cu complexes (Table 1, entries 1–7). The reaction was carried out by addition of aldehyde 25a to the 3 h pre-stirred mixture of Cu complex and nitromethane in ethanol at room temperature under atmospheric

conditions. Various solvents were screened for this reaction with $2.5 \mod 8$ **21** (Table 1, entries 8–14). Among these solvents tert-butyl alcohol emerged as a promising solvent resulting in high yield (97%) and ee (86%) in 36 h reaction time. Then the higher mol% of catalyst 21 was tested and we found that there was no improvement for yield and ee of 2-nitro-1-(4-nitrophenyl)ethanol **25** (Table 1, entries 15–17). An immediate addition of aldehyde to the catalytic system has only afforded a lower yield and ee (Table 1, entry 18) in 36 h. When the amount of MeNO₂ was increased to 20 volumes (with respect to aldehyde 25a) with t-BuOH (20 volumes), a higher ee (91%) with the yield of 97% was obtained (Table 1, entry 21), conversely, when it was decreased from 10 equivalents, lower ees were observed (Table 1, entries 19 and 20). To enhance the enantioselectivity, the 20:20 volume ratio of MeNO₂ and t-BuOH was changed into 10:30, 30:10, and 40:0. However, the results (Table 1, entries 22-24) showed lower ee compared to the 20:20 solvent volume ratio result.

The mol% of ligand **21** was decreased to study any amplification in *ee* (Table 1, entries 25 and 26). As expected, both 1 mol% as well as 0.5 mol% **21** yielded the best results (93% *ee*), better than any of the earlier conditions with ligand **21**, however, the reaction time for the latter was long (Table 1 entry 26). Then the reaction temperature was optimized, a lower *ee* was resulted for both higher and lower temperatures (Table 1, 27 and 28). Finally the total volume of the reaction solvent (40 volumes) was decreased to 20 volumes (10:10 MeNO₂/t-BuOH) (Table 1, entry 29), also the reaction with the achiral base additive trie-thylamine (5 mol%) (Table 1, entry 30) was studied,

Adv. Synth. Catal. **0000**, 000, 0-0

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

Table 1. Catalyst screening and optimization.^[a]

		0 0 ₂ N 25a	CH ₃ NO ₂ , Cu ₂ (SBAIB) solvent		NO ₂		
Entry	Ligand [mol%]	MeNO ₂ [equiv.] ^[b]	Solvent [vol] ^[c]	Temp. [°C]	Time [h]	Yield [%] ^[d]	ee [%] ^[e]
1	18 (2.5)	10	EtOH (40)	r.t.	36	99	13
2	19 (2.5)	10	EtOH (40)	r.t.	36	99	16
3	20 (2.5)	10	EtOH (40)	r.t.	36	34	51
4	21 (2.5)	10	EtOH (40)	r.t.	36	48	62
5	22 (2.5)	10	EtOH (40)	rt	36	28	38
6	23 (2.5)	10	EtOH (40)	r.t.	36	72	41
7	24 (2.5)	10	EtOH (40)	r.t.	36	43	45
8	21 (2.5)	10	MeOH (40)	r.t.	36	50	33
9	21 (2.5)	10	<i>i</i> -PrOH (40)	r.t.	36	86	82
10	21 (2.5)	10	t-BuOH (40)	r.t.	36	97	86
11	21 (2.5)	10	THF (40)	r.t.	42	21	68
12	21 (2.5)	10	DCM (40)	r.t.	42	27	54
13	21 (2.5)	10	ACN (40)	r.t.	42	trace	NA
14	21 (2.5)	10	DMF (40)	r.t.	42	trace	NA
15	21 (5)	10	t-BuOH (40)	r.t.	36	50	78
16	21 (10)	10	t-BuOH (40)	r.t.	36	74	71
17	21 (20)	10	t-BuOH (40)	r.t.	36	83	81
18	21 (2.5) ^[f]	10	t-BuOH (40)	r.t.	36	80	81
19	21 (2.5)	1.5	t-BuOH (40)	r.t.	36	10	80
20	21 (2.5)	5	t-BuOH (40)	r.t.	36	50	78
21	21 (2.5)	20 (vol)	t-BuOH (20)	r.t.	42	98	91
22	21 (2.5)	10 (vol)	t-BuOH (30)	r.t.	40	98	87
23	21 (2.5)	30 (vol)	t-BuOH (10)	r.t.	40	88	90
24	21 (2.5)	40 (vol)	nil	r.t.	40	37	79
25	21 (1)	20 (vol)	t-BuOH (20)	r.t.	40	>99	93
26	21 (0.5)	20 (vol)	t-BuOH (20)	r.t.	60	97	93
27	21 (1)	20 (vol)	t-BuOH (20)	40	30	98	90
28	21 (1)	20 (vol)	t-BuOH (20)	10	76	57	91
29	21 (1)	10 (vol)	t-BuOH (10)	r.t.	40	96	91
30	21 (1) ^[g]	20 (vol)	t-BuOH (20)	r.t.	3	99	2

^[a] All the reactions were carried out in an 8-mL vial with 50 mg of **25a** (1 equiv.) under atmospheric air.

^[b] MeNO₂ used as purchased without further drying.

^[c] All the solvents were used as purchased without further drying.

^[d] Yield refers to the chromatographically pure compounds.

^[e] The *ee* was determined by chiral HPLC on Chiralcel OD-H column.

^[f] Aldehyde was added immediately to **21** in *t*BuOH/MeNO₂.

^[g] 5 mol% triethylamine was used as additive.

but the results were not promising, especially with triethylamine a mere 2% *ee* was obtained for the corresponding product despite the very short (3 h) reaction time.

Therefore, entry 25 (>99% yield and 93% *ee*) in Table 1 was chosen as an the optimized conditions and are as follows: an addition of aldehyde **25a** to the pre-stirred solution of catalyst $Cu_2[(+)-SBAIB-d]_2$ **21** (1 mol%) in 40 volumes of solvent (20:20 MeNO₂/*t*-BuOH) at room temperature under atmospheric conditions.

Enantioselective Henry Reaction of Various Aldehydes

The scope of the ligand was then explored under the optimized condition. The results are shown in Table 2. Numerous aldehydes were screened, which enabled preparation of the corresponding β -nitro alcohols in excellent yield (up to 99%) with very high enantiose-lectivity (up to 98%).

The electron-withdrawing and electron-donating substituents on aromatic aldehydes had a significant effect on the reaction rate; generally, the former had

asc.wiley-vch.de

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

		O21 {Cu₂[(+	//-SBAIB-d)2]} 1 mol				
	R	[−] H CH ₃ NO ₂	<u>e:</u> t-BuOH (1:1), r.t.	n _S			
Entry	$\mathbf{R}^{[a]}$	Product	Time [h]	Yield [%] ^[b]	<i>ee</i> [%] ^[c]	Sign/Conf. ^[d]	
1	4-NO ₂ C ₆ H ₄ 25a	25	40	99	93	+/S	
2	3-NO ₂ C ₆ H ₄ 26a	26	38	94	91	+/S	
3	$2-NO_2C_6H_4$ 27a	27	37	99	97	-S	
4	4-CH ₃ C ₆ H ₄ 28a	28	96	83	92	+/S	
5	3-CH ₃ C ₆ H ₄ 29a	29	96	86	94	+/S	
6	2-CH ₃ C ₆ H ₄ 30a	30	80	96	92	+/S	
7	4-CH ₃ OC ₆ H ₄ 31a	31	96	85	93	+/S	
8	3-CH ₃ OC ₆ H ₄ 32a	32	96	89	93	+/S	
9	2-CH ₃ OC ₆ H ₄ 33a	33	85	96	93	+/S	
10	$4-\mathrm{FC}_{6}\mathrm{H}_{4}$ 34a	34	90	96	95	+/S	
11	3-FC ₆ H ₄ 35a	35	96	93	95	+/NA	
12	2-FC ₆ H ₄ 36a	36	90	98	97	+/S	
13	4-ClC ₆ H ₄ 37a	37	96	91	94	+/S	
14	3-ClC ₆ H ₄ 38a	38	96	84	96	+/S	
15	2-ClC ₆ H ₄ 39a	39	86	97	98	+/S	
16	4-BrC ₆ H ₄ 40a	40	96	93	90	+/S	
17	3-BrC ₆ H ₄ 41a	41	96	90	94	+S	
18	2-BrC ₆ H ₄ 42a	42	84	98	98	+/S	
19	4-CNC ₆ H ₄ 43a	43	69	96	91	+/S	
20	3-CNC ₆ H ₄ 44a	44	69	88	91	+/NA	
21	4-EtOCOC ₆ H ₄ 45a	45	96	93	91	+/NA	
22	Ph 46a	46	96	90	91	+/S	
23	4- <i>t</i> -BuC ₆ H ₄ 47a	47	96	91	92	+/S	
24	4-PhC ₆ H ₄ 48a	48	96	89	89	+/S	
25	2-PhC ₆ H ₄ 49a	49	86	96	90	+/NA	
26	4-BnOC ₆ H ₄ 50a	50	96	52	89	+/NA	
27	3,5-(CH ₃ O) ₂ C ₆ H ₃ 51a	51	96	76	88	+/S	
28	2-naphthyl 52a	52	96	86	92	+/S	
29	1-naphthyl 53a	53	96	88	96	+/S	
30	furfuryl 54a	54	96	69	93	+/S	
31	2-thiophenyl 55a	55	100	56	92	+/S	
32	E-cinnamyl 56a	56	96	72	88	+/S	
33	α -Me- <i>E</i> -cinnamyl 57a	57	96	42	90	-S	
34	Me_2CHCH_2 58a	58	96	88	81	-S	
35	cyclohexyl 59a	59	96	65	83	+/S	
36	PhCH ₂ 60a	60	96	86	77	-S	
37	$PhCH_{2}CH_{2}$ 61a	61	96	96	96	-S	
38	<i>n</i> -heptyl 62a	62	96	91	82	+/S	
39	n-decyl 63a	63	96	86	76	+/S	

ОН

Table 2. Enantioselective Henry reaction of nitromethane with various aldehydes.

^[a] All the reactions were carried out in an 8-mL vial with 50 mg of aldehyde (1 equiv.) with 1 mol% **21**.

^[b] Yield refers to the chromatographically pure compounds.

[c] The *ee* was determined by chiral HPLC on various chiral columns, see the Supporting Information for more details.
 [d] The absolute configuration of the products was determined on the basis of sign of specific rotation and its peaks order in the chiral HPLC.

a higher reaction rate for this catalytic system. *ortho*-Substituted aromatic aldehydes exhibited a slightly higher enantioselectivity compared to *meta-* and *para*-substituted benzaldehydes (Table 2, entries 3, 12, 15, and 18). New substrates for the Henry reaction such as 3-fluoro- (**35a**), 3-cyano- (**44a**), 3-ethoxycarbonyl- (**45a**), 2-phenyl- (**49a**) and 4-benzyloxybenzaldehyde (**50a**) also yielded the corresponding Henry products

in high enantioselectivity (Table 2, entries 11, 20, 21, 25, and 26, respectively) with high yields except for 4benzyloxybenzaldehyde (**50a**), which showed a moderate yield in 96 h. The polycyclic aromatic aldehydes (1- and 2-naphthaldehydes, Table 2, entries 28 and 29) also yielded highly enantioenriched products. Gratifyingly, the heteroaromatic aldehydes, furfural (**54a**) and 2-thiophenecarboxaldehyde (**55a**), also showed

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

5

		$\begin{array}{c} O \\ H \end{array} \begin{array}{c} \textbf{21} \{Cu_2[(+)\text{-SBAIB-d}]_2\} \ 1 \ \text{mol}\% \end{array} \xrightarrow[]{} OH \\ \hline (H_3NO_2:t\text{-BuOH (1:1), r.t., H}_2O \ (20 \ \text{mol}\%) \end{array} \xrightarrow[]{} OH \\ \hline R \xrightarrow{\int} NO_2 \end{array}$							
Entry	Aldehyde ^[a]	Product	Time [h]	Yield [%] ^[b,d]	<i>ee</i> [%] ^[c,d]	Sign/Conf. ^[e]			
1	25a	25	40	96 (99)	92 (93)	+/S			
2 3	26a 27a	26 27	38 38	95 (94) 99 (99)	91 (91) 96 (97)	+/S -/S			

Table 3. Enantioselective Henry reaction with 20 mol% water.

^[a] The reactions were carried out with aldehydes (0.33 mmol), **21** (0.0033 mol, 1 mol%) and H_2O (0.066 mmol, 20 mol%).

^[b] Yield refers to the chromatographically pure compounds.

^[c] The *ee* was determined by chiral HPLC on Chiralcel OD-H column.

^[d] The values in brackets are the results of the Henry reactions without water (Table 2, entries 1, 2, and 3).

^[e] The absolute configuration of the products was determined on the basis of sign of specific rotation and its peaks order in the chiral HPLC.

very high chiral inductions with moderate yields (Table 2, entries 30, and 31). Although the yields were moderate to good for α,β -unsaturated aldehydes (Table 2, entries 32, and 33), they displayed good enantioselectivity in their products. We were delighted to find good to excellent enantioselectivities and yields for various unbranched and branched aliphatic aldehydes (Table 2, entries 34–39). As the best result for aliphatic aldehydes, the Henry product **61** (96% yield and 96% *ee*) was obtained for 3-phenylpropionaldehyde **61a** (Table 2, entry 37). All the Henry products synthesized using catalyst **21** possess the *S* configuration as compared with the literature.

Although the optimized conditions for this reaction used commercially available *t*-BuOH without further drying, to test the effect of water, studies were conducted with 20 mol% of water. Interestingly, the obtained results were considerably promising (Table 3). The effect of water is significantly low as the enantioselectivity and yield of the corresponding products remained almost same as for products obtained without water. This became credible evidence that the current catalytic system is tolerable for moisture, is practically very simple, and can be achieved without any precaution for exclusion of moisture.

Nitroaldol (Henry) Reaction with Other Nitroalkanes

The scope of the nitroaldol (Henry) reaction with nitroalkanes other than nitromethane remains limited for many catalytic systems in the literature. Therefore, the feasibility of this catalytic system for other nitroalkanes was studied. When the optimized conditions were used for nitroethane, yields in the range of low to moderate with low diastereoselectivity and moderate *ee* were obtained in 120 h (Table 4, entries 1–4). However, *ortho*-nitrobenzaldehyde (**27a**) showed high *ee* for both *syn* **27b** (96%) and *anti* **27c** (96%) diastereomers in moderate yield (62%) with moderate de for *anti* (66:34). Achiral additives (bases and phenols) have been known to influence the yield, ee, and de in the Henry reaction.^[14] We initially carried out the reaction with various achiral bases as additives (not shown), nevertheless, none of them yielded a promising result. Therefore, we then screened several phenolic additives for the reaction between nitroethane and either *p*- and *m*-nitrobenzaldehyde (25a and 26a, respectively) (Table 4, entries 5-9). Although no enhancement in de occurred, we were pleased to find a good yield (92%) and ee (syn 25b/anti 25c; 80/93) for the aldehyde 25a with 10 mol% of 4-methoxyphenol [4-MeOC₆H₄OH] as an additive (Table 4, entry 9). However, when applying 10 mol% 4-MeOC₆H₄OH to the reaction of a slightly electron-rich aldehyde, 2methylbenzaldehyde (30a), (Table 4, entry 10), the diastereomeric mixture syn 30b/anti 30c was obtained in only a moderate yield (60%) with moderate ee (syn/anti; 89:80). To amplify the yield and ee, various mole amounts of 4-MeOC₆H₄OH were screened (Table 4, entries 11-14). Consequently, 50 mol% 4-MeOC₆H₄OH afforded the Henry product in an excellent yield (99%) with excellent ee of syn 30b (94%) and *anti* **30c** (91%) (Table 4, entry 12).

Under these optimized conditions then various aldehydes were explored (Table 4, entries 15–21). Yields and *ees* were in the range of good to excellent; however, for the 2-fluorobenzaldehyde product **36b**/ **36c** (Table 4, entry 19) only a moderate yield (51%) was obtained. As a best result 98% *ee* was obtained for *syn* diastereomer **33b** of the 2-methoxybenzaldehyde product. For the *anti* isomer, both 2-methyl-(**30a**) and 2-bromobenzaldehyde (**42a**) yielded the best result (91% *ee*).

Thereafter, when 10 mol% benzoic acid [PhCO₂H] was used as an achiral additive, a superior *ee* was determined for aldehyde **30a** (Table 4, entry 22) compared to 4-MeOC₆H₄OH (50 mol%). A series of alde-

asc.wiley-vch.de

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

ΟН

011

			O 21 [(Cu) ₂ (SBAIB-d) ₂] 1 m	nol%	$B^1 + - \sqrt{F}$	۲ ¹		
		R	(a)	R ¹ = Me R ¹ = Et	$\begin{array}{c ccccc} R & & & & R & \\ & & NO_2 & & NO_2 \\ R^1 = Me & syn (b) & & anti (c) \\ R^1 = Et & syn (d) & & anti (e) \end{array}$			
Entry	RCHO	\mathbf{R}^1	Additive [mol%]	Time [h]	Yield [%] ^[b]	anti/syn ^[c]	ee [%] ^[d]
				100	• •		syn	únii
	25a	Me	none	120	28	56:44	43	63
2	26a	Me	none	120	51	59:41	76	77
3	27a	Me	none	120	62 2.5	66:34	96	96
4	46a	Me	none	120	35	55:45	68	69
)	26a	Me	$4 - NO_2C_6H_4OH$ (10)	100	85	53:47	73	74
5	25a	Me	$2,4-Me_2C_6H_3OH(10)$	96	76	52:48	55	67 7 0
/	25a	Me	$2,4-(t-Bu)_2C_6H_3OH(10)$	96	74	57:43	61	78
8	25a	Me	$3,4-Cl_2C_6H_3OH(10)$	96	81	57:43	80	90
9	25a	Me	$4-\text{MeOC}_6\text{H}_4\text{OH} (10)$	96	92	58:42	80	93
10	30 a	Me	$4-\text{MeOC}_6\text{H}_4\text{OH}$ (10)	120	60	55:45	89	80
11	30 a	Me	$4-\text{MeOC}_6\text{H}_4\text{OH}$ (25)	120	99	55:45	94	84
12	30a	Me	$4-\text{MeOC}_6\text{H}_4\text{OH}$ (50)	120	99	54:46	94	91
13	30a	Me	$4-\text{MeOC}_6\text{H}_4\text{OH}$ (75)	120	99	52:48	94	90
14	30a	Me	$4-MeOC_{6}H_{4}OH$ (100)	120	99	57:43	93	89
15	25a	Me	$4-\text{MeOC}_6\text{H}_4\text{OH}$ (50)	120	86	56:44	84	86
16	26a	Me	$4-MeOC_{6}H_{4}OH(50)$	120	88	60:40	80	80
17	27a	Me	$4-MeOC_{6}H_{4}OH(50)$	120	90	63:37	90	94
18	33 a	Me	$4-\text{MeOC}_6\text{H}_4\text{OH}$ (50)	120	82	58:42	98	76
19	36a	Me	$4-MeOC_{6}H_{4}OH$ (50)	120	51	57:43	91	86
20	42a	Me	$4-\text{MeOC}_6\text{H}_4\text{OH}$ (50)	120	72	57:43	95	91
21	46a	Me	$4-\text{MeOC}_6\text{H}_4\text{OH}$ (50)	120	99	55:45	77	74
22	30a	Me	$PhCO_2H(10)$	120	98	57:43	94	96
23	25a	Me	$PhCO_{2}H(10)$	100	88	55:45	87	98
24	26a	Me	$PhCO_{2}H(10)$	100	90	59:41	85	86
25	27a	Me	$PhCO_{2}H(10)$	100	94	64:36	97	97
26	33 a	Me	$PhCO_{2}H(10)$	100	80	56:44	98	81
27	36a	Me	$PhCO_{2}H(10)$	100	98	57:43	92	87
28	42a	Me	$PhCO_{2}H(10)$	100	81	58:42	65	83
29	46a	Me	$PhCO_{2}H(10)$	96	82	59:41	84	83
30	25a	Et	$4-MeC_{6}H_{4}OH(10)$	120	40	61:39	81	82
31	25a	Et	$PhCO_{2}H(10)$	120	58	60:40	85	82
32	26a	Et	$PhCO_{2}H(10)$	120	63	59:41	85	93
33	30a	Et	$PhCO_2H(10)$	120	53	55.45	89	91
	50 a	Li	1100211 (10)	120	55	55.75	07	71

Table 4. Henry reaction with nitroethane and 1-nitropropane.^[a]

[a] Reaction conditions: catalyst 21 (1 mol%, 0.01 equiv.) in t-BuOH/R¹CH₂NO₂ (20:20 vol) stirred for 1.5 h, additive addition, 1.5 h stirring and finally aldehyde (50 mg, 1 equiv.) addition and stirred for mentioned time.

^[b] Yield refers to the chromatographically pure compounds.

^[c] The *anti/syn* ratio was determined by ¹H NMR.

^[d] The *ees* of *syn* and *anti* forms were determined by chiral HPLC on various chiral columns.

hydes was then screened with 10 mol% PhCO₂H. All the aldehydes showed good yield and *ee* of diastereomeric mixtures (Table 4, entries 23–29). Even benzaldehyde (**46a**) yielded its product with a higher *ee* (Table 4, entry 29) compared to the result with 4-MeOC₆H₄OH. However, 2-bromobenzaldehyde (**42a**) showed an unreasonably moderate *ee*. This catalytic system was also investigated with regard to the scope of the Henry reaction with nitropropane. The products were furnished in moderate yields with good enantioselectivities (Table 4, entry 31–33) with 10 mol% PhCO₂H as an additive. These results showed that this catalytic system is highly promising not only for nitromethane, but also for other nitroal-kanes in the presence of achiral additive either 4-MeOC₆H₄OH (50 mol%) or PhCO₂H (10 mol%).

Proposed Mechanism for Chiral Induction

The observed absolute configuration of the Henry products obtained from the reaction of aldehydes

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

7

Scheme 2. Proposed mechanism for the absolute configuration of the Henry product (S)-46 obtained from benzaldehyde 46a and nitromethane.

with nitromethane is predicted by the proposed mechanism (Scheme 2). Benzaldehyde is taken as an example. Generally, a base or counter anion is needed to generate a nitronate anion in the Henry reaction. Hence the external base and the counter anion are absent in the present catalytic system; this must be a bifunctional catalytic system. The dimeric Cu complex (based on the X-ray) could be involved in the mechanism as proposed. Nitronate is considered to be formed by the removal of a proton by one of the phenoxides attached to the copper to give transition state-1 [TS-1]. Then the second copper could act as a Lewis acid which would coordinate with carbonyl oxygen of aldehyde to activate the electrophilicity of the carbonyl group as in TS-2. The aldehyde could arrange in such a fashion where steric hindrance between methyl groups in the camphor moiety and one of the two groups (H and Ph) in the aldehyde would become less as in TS-2. Furthermore, this TS-2 arrangement would yield a π - π interaction between aldehyde phenyl group and phenyl group of Schiff base. The opposite arrangement would have stronger steric hindrance and almost no π - π interaction, therefore, TS-2 would be the more favorable TS. The addition of nitronate to the Re-face of the aldehyde and cleavage from the catalyst through TS-3 would then afford (S)-46 and the regeneration of catalytic system.

Conclusions

In summary, this study shows that Cu₂(SBAIB-d)₂ 21 is an efficient catalyst for the asymmetric nitroaldol (Henry) reaction. Synthetically valuable Henry adducts were produced in excellent yields with high ee values for the reaction of various aldehydes with nitromethane. The merits of this catalytic system are its simplicity, mild reaction conditions, the need for as little as 1 mol% of catalyst 21, an easy synthesis of catalyst in high yield, and the broad generality of the aldehyde including aromatic, polycyclic aromatic, heteroaromatic, α , β -unsaturated, branched, and unbrached aliphatic aldehydes. The present catalytic system also has a high substrate scope for nitroalkanes other than nitromethane. Although lower des were obtained with nitroethane and nitropropane, excellent ee for both syn (up to 98%) and anti (up to 98%) diastereomers were obtained when either 50 mol% 4-MeOC₆H₄OH or 10 mol% PhCO₂H were added as an additive. Furthermore, this is the first Schiff base catalytic system that is highly effective for a wide range of substrates. Further studies of this catalyst for other asymmetric reactions will be reported in due course.

asc.wiley-vch.de

Experimental Section

General Procedure for Synthesis of Copper Complex of Aminoisoborneol Schiff Base [Cu₂(SBAIB)]₂

To a methanolic (40 vol) solution of aminoisoborneol Schiff base [(+)-SBAIB] (1 equiv.) in a single-neck round-bottom flask was added solid Cu(OAc)₂·H₂O (1.2 equiv.). The resulting yellowish green reaction mixture was stirred for 2 h at room temperature. Then solid NaOH (4 equiv.) was added to the above solution and stirring continued for 6 h. The resulting bluish solution was evaporated to dryness. To this residue was added brine and followed by extraction with benzene (4 times). The combined benzene layer was dried over anhydrous Na₂SO₄, filtered, and concentrated to obtain the corresponding copper complex as a solid product, which was used for the asymmetric Henry reactions.

General Procedure for Catalytic Enantioselective Henry Reactions [Table 2]

A mixture of $Cu_2[(+)$ -SBAIB-d]₂ **21** (1 mol%, 0.01 equiv.), *t*-BuOH (1 mL, 20 vol with respect to aldehyde) and MeNO₂ (1 mL, 20 vol with respect to aldehyde) in a screw-capped vial (8 mL) was stirred at room temperature for 3 h under atmospheric conditions. Then aldehyde (50 mg, 1 equiv.) was added to the above blue solution and stirred for the mentioned time. It was then quenched with 1 N HCl and the volatile material was evaporated by rotavapor to afford the crude product. This was purified by column chromatography (either 70–230 or 230–400 mesh silica gel). The resultant product was taken for the characterization. See the supporting informations for spectral data and HPLC spectra of Henry products.

General Procedure for Henry Reactions with Nitroethane and 1-Nitropropane [Table 4, entries 12– 33]

A mixture of $Cu_2[(+)$ -SBAIB-d]₂ (1 mol%, 0.01 equiv.), *t*-BuOH (1 mL, 20 vol) and either EtNO₂ or *n*-PrNO₂ (1 mL, 20 vol) in a vial (8 mL) was stirred at room temperature for 1.5 h. Then the additive either 4-MeOC₆H₄OH (50 mol%, 0.5 equiv.) or PhCO₂H (10 mol%, 0.1 equiv.) was added and the mixture stirred for another 1.5 h. Aldehyde (50 mg, 1 equiv.) was added and the resulting reaction mixture was stirred for the mentioned time. Afterwards, 1N HCl was added to quench the reaction and the volatiles were evaporated by rotavapor to afford the crude product. This was then purified by column chromatography (either 70–230 or 230–400 mesh silica gel) and taken for the characterization.

Acknowledgements

The authors thank Ms. L. M. Hsu, at the Instruments Center, National Chung Hsing University, for her help in obtaining mass spectral data, and the National Science Council of the Republic of China, for financially supporting this research under the contract NSC 100-2113M-259-006-MY3.

References

- For reviews on the asymmetric Henry reaction, see:
 a) F. A. Luzzio, *Tetrahedron* 2001, 57, 915–945;
 b) J. Boruwa, N. Gogoi, P. P. Saikia, N. C. Barua, *Tetrahedron: Asymmetry* 2006, 17, 3315–3326;
 c) C. Palomo, M. Oiarbide, A. Laso, *Eur. J. Org. Chem.* 2007, 2561–2574;
 d) G. Blay, V. Henandez-Olmos, J. R. Pedro, *Synlett* 2011, 1195–1211.
- [2] H. Sasai, T. Suzuki, S. Arai, T. Arai, M. Shibasaki, J. Am. Chem. Soc. 1992, 114, 4418–4420.
- [3] References for Cu-catalyzed asymmetric Henry reaction: a) C. Christensen, K. Juhl, K. A. Jorgensen, J. Org. Chem. 2002, 67, 4875-4881; b) D. A. Evans, D. Seidel, M. Rueping, H. W. Lam, J. T. Shaw, C. W. Downey, J. Am. Chem. Soc. 2003, 125, 12692-12693; c) H. Maheswaran, K. L. Prasanth, G. G. Krishna, K. Ravikumar, B. Sridhar, M. L. Kantam, Chem. Commun. 2006, 4066-4068; d) K. Y. Ma, J. S. You, Chem. Eur. J. 2007, 13, 1863-1871; e) B. Qin, X. Xiao, X. H. Liu, J. L. Huang, Y. H. Wen, X. M. Feng, J. Org. Chem. 2007, 72, 9323-9328; f) M. Bandini, M. Benaglia, R. Sinisi, S. Tommasi, A. Umani-Ronchi, Org. Lett. 2007, 9, 2151-2153; g) Y. Xiong, F. Wang, X. Huang, Y. H. Wen, X. Feng, Chem. Eur. J. 2007, 13, 829-833; h) T. Arai, M. Watanabe, A. Yanagisaka, Org. Lett. 2007, 9, 3595-3597; i) G. Blay, E. Climent, I. Fernandez, V. Hernandez, J. R. Pedro, Tetrahedron: Asymmetry 2007, 18, 1603-1612; j) M. Bandini, F. Picinelli, S. Tommasi, A. Umani-Ronchi, C. Ventrici, Chem. Commun. 2007, 616-618; k) G. Blay, L. R. Domingo, V. Hernandez-Olmos, J. R. Pedro, Chem. Eur. J. 2008, 14, 4725-4730; l) K. Y. Spangler, C. Wolf, Org. Lett. 2009, 11, 4724-4727; m) G. Q. Zhang, E. Yashima, W. D. Woggon, Adv. Synth. Catal. 2009, 351, 1255-1262; n) M. Breuning, D. Hein, M. Steiner, V. H. Gessner, C. Strohmann, Chem. Eur. J. 2009, 15, 12764-12769; o) A. Noole, K. Lippur, A. Metsala, M. Lopp, T. Kanger, J. Org. Chem. 2010, 75, 1313-1316; p) M. Steurer, C. Bolm, J. Org. Chem. 2010, 75, 3301-3310; q) L. Cheng, J. Dong, J. You, G. Gao, J. Lan, Chem. Eur. J. 2010, 16, 6761-6765; r) W. Jin, X. Li, Y. Huang, F. Wu, B. Wan, Chem. Eur. J. 2010, 16, 8259-8261; s) I. Panov, P. Drabina, Z. Padelkova. P. Simunek, M. Sedlak, J. Org. Chem. 2011, 76, 4787-4793; t) D. Didier, C. Magnier-Bouvier, E. Schulza, Adv. Synth. Catal. 2011, 353, 1087-1095; u) G. Lai, F. Guo, Y. Zheng, Y. Fang, H. Song, K. Xu, S. Wang, Z. Zha, Z. Wang, Chem. Eur. J. 2011, 17, 1114-1117; v) Y. Q. Ji, G. Qi, Z. M. A. Judeh, Eur. J. Org. Chem. 2011, 4892–4898.
- [4] References for Zn-catalyzed asymmetric Henry reaction: a) B. M. Trost, V. S. C. Yeh, Angew. Chem. 2002, 114, 889–891; Angew. Chem. Int. Ed. 2002, 41, 861–863;
 b) C. Palomo, M. Oiarbide, A. Laso, Angew. Chem. 2005, 117, 3949–3952; Angew. Chem. Int. Ed. 2005, 44, 3881–3884; c) S. Liu, C. Wolf, Org. Lett. 2008, 10, 1831–1834; d) A. Bulut, A. Aslan, O. Dogan, J. Org. Chem. 2008, 73, 7373–7375.
- [5] References for Cr-catalyzed asymmetric Henry reaction: a) R. Kowalczyk, L. Sidorowicz, J. Skarzewaski, *Tetrahedron: Asymmetry* 2007, 18, 2581–2586; b) R. Kowalczyk, P. Kwiatkowski, J. Skarzewski, J. Jurczak, J.

Adv. Synth. Catal. 0000, 000, 0-0

© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

asc.wiley-vch.de

9

Org. Chem. 2009, 74, 753-756; c) A. Zulauf, M. Mellah, E. Schulz, J. Org. Chem. 2009, 74, 2242-2245.

- [6] References for Co-catalyzed asymmetric Henry reaction: a) Y. Kogami, T. Nakajima, T. Ikeno, T. Yamada, Synthesis 2004, 1947–1950; b) J. Park, K. Lang, K. A. Abboud, S. Hong, J. Am. Chem. Soc. 2008, 130, 16484-16485.
- [7] References for bimetal-catalyzed asymmetric Henry reaction: a) H. Sasai, T. Tokunaga, S. Watanabe, T. Suzuki, N. Itoh, M. Shibasaki, J. Org. Chem. 1995, 60, 7388-7389; b) S. Handa, K. Nagawa, Y. Sohtome, S. Matsunaga, M. Shibasaki, Angew. Chem. 2008, 120, 3274-3277; Angew. Chem. Int. Ed. 2008, 47, 3230-3233; c) T. Nitabaru, A. Nojiri, M. Kobayashi, N. Kumagai, M. Shibasaki, J. Am. Chem. Soc. 2009, 131, 13860-13869.
- [8] Reference for rare earth metal-catalyzed asymmetric Henry reaction: B. M. Choudary, K. V. S. Ranganath, U. Pal, M. L. Kantam, B. Sreedhar, J. Am. Chem. Soc. **2005**, 127, 13167–13171.
- [9] References for organocatalysts in asymmetric Henry reaction: a) E. J. Corey, F. Y. Zhang, Angew. Chem. 1999, 111, 2057-2059; Angew. Chem. Int. Ed. 1999, 38, 1931–1934; b) T. Ooi, K. Doda, K. Maruoka, J. Am. Chem. Soc. 2003, 125, 2054-2055; c) Y. Sohtome, Y. Hashimoto, K. Nagasawa, Adv. Synth. Catal. 2005, 347, 1643-1648; d) H. M. Li, B. M. Wang, L. Deng, J. Am. Chem. Soc. 2006, 128, 732-733; e) T. Marcelli, R. N. S. van der Haas, J. H. van Maarseveen, H. Hiemstra, Angew. Chem. 2006, 118, 943-945; Angew. Chem. Int. Ed. 2006, 45, 929-931; f) Y. Sohtome, Y. Hashimoto, K. Nagasawa, Eur. J. Org. Chem. 2006, 2894–2897; g) T. Mandal, S. Samanta, C. G. Zhao, Org. Lett. 2007, 9, 943-945; h) M. Bandini, R. Sinisi, A. Umani-Ronchi, Chem. Commun. 2008, 4360-4362; i) K. Kanagaraj, P. Suresh, K. Pitchumani, Org. Lett. 2010, 12, 4070-4073.
- [10] References for the biocatalytic asymmetric Henry reaction: a) T. Purkarthofer, K. Gruber, M. Gruber-Khadjawi, K. Waich, W. Skrane, D. Mink, H. Griengl, Angew. Chem. 2006, 118, 3532–3535; Angew. Chem. Int. Ed. 2006, 45, 3454-3456; b) M. G. Khadjawi, T. Purkarthofer, W. Skrane, H. Griengl, Adv. Synth. Catal. 2007, 349, 1445-1450.
- [11] Selected references for application of Schiff base and salen ligands in asymmetric synthesis: a) Z. B. Li, L. Pu, Org. Lett. 2004, 6, 1065-1068; b) C. Chen, L. Hong,

Z. Q. Xu, L. Liu, R. Wang, Org. Lett. 2006, 8, 2277-2280; c) Z. B. Li, T. D. Liu, L. Pu, J. Org. Chem. 2007, 72, 4340-4343; d) E. M. McGarrigle, D. G. Gilheany, Chem. Rev. 2005, 105, 1563-1602; e) P. J. Walsh, H. Li, C. A. de Parrodi, Chem. Rev. 2007, 107, 2503-2545; f) T. Niimi, T. Uchida, R. Irie, T. Katsuki, Adv. Synth. Catal. 2001, 343, 79-88; g) H. Mizutani, S. J. Degrado, A. H. Hoveyda, J. Am. Chem. Soc. 2002, 124, 779-781; h) Y. Kato, M. Furutachi, Z. Chen, H. Mitsunuma, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2009, 131, 9168-9169; i) Q. Fan, L. Lin, J. Liu, Y. Huang, X. Feng, G. Zhang, Org. Lett. 2004, 6, 2185-2188; j) Y. Yasutomi, H. Suematsu, T. Katsuki, J. Am. Chem. Soc. 2010, 132, 4510-4511.

- [12] References for the application of Schiff base ligands in asymmetric Henry reaction: a) C. Gan, G. Lai, Z. Zhang, Z. Wang, M.-M. Zhoub, Tetrahedron: Asymmetry 2006, 17, 725-728; b) J.-J. Jianga, M. Shi, Tetrahedron: Asymmetry 2007, 18, 1376-1382; c) G. Lai, S. Wang, Z. Wang, Tetrahedron: Asymmetry 2008, 19, 1813-1819; d) J. Guo, J. Mao, Chirality 2009, 21, 619-627; e) M. L. Ingalsbe, J. D. St. Denis, J. L. Gleason, G. P. Savage, R. Priefer, Synthesis 2010, 98-102; f) D. Xin, Y. Ma, F. He, Tetrahedron: Asymmetry 2010, 21, 333-338; g) G. Oztürk, M. Colak, N. Demirel, Chirality 2011, 23, 374-378.
- [13] References on successful asymmetric catalysts developed in our laboratory: a) X.-R. Huang, C. Chen, G.-H. Lee, S.-M. Peng, Adv. Synth. Catal. 2009, 351, 3089-3095; b) X.-R. Huang, X.-H. Pan, G.-H. Lee, C. Chen, Adv. Synth. Catal. 2011, 353, 1949-1954; c) R. Boobalan, C. Chen, G. H. Lee, Org. Biomol. Chem. 2012, 10, 1625-1638.
- [14] References for the influence of achiral additives in asymmetric Henry reaction: a) refs. $^{[3d,3e,3q,3o,3u]}$; b) S. Handa, K. Nagawa, Y. Sohtome, S. Matsunaga, M. Shibasaki, Angew. Chem. 2008, 120, 3274-3277; Angew. Chem. Int. Ed. 2008, 47, 3230-3233; c) T. Arai, R. Takashita, Y. Endo, M. Watanabe, A. Yanagisawa, J. Org. Chem. 2008, 73, 4903-4906; d) H. Y. Kim, K. Oh, Org. Lett. 2009, 11, 5682-5685; e) S. Selvakumar, D. Sivasankaran, V. K. Singh, Org. Biomol. Chem. 2009, 7, 3156-3162; f) W. Jin, X. Li, B. Wan, J. Org. Chem. 2011, 76, 484-491; g) Y. Zhou, J. Dong, F. Zhang, Y. Gong, J. Org. Chem. 2011, 76, 588-600.

asc.wiley-vch.de **FF** These are not the final page numbers!

10

FULL PAPERS

Copper Complex of Aminoisoborneol Schiff Base Cu₂(SBAIB-d)₂: An Efficient Catalyst for Direct Catalytic Asymmetric Nitroaldol (Henry) Reaction

Adv. Synth. Catal. 2012, 354, 1-11

Ramalingam Boobalan, Gene-Hsian Lee, Chinpiao Chen*

asc.wiley-vch.de

11

11