

Available online at www.sciencedirect.com



Tetrahedron

Tetrahedron 64 (2008) 2359-2368

www.elsevier.com/locate/tet

# A simple route to enantiopure bis-lactones: synthesis of both enantiomers of *epi*-nor-canadensolide, nor-canadensolide, and canadensolide

Sujit Mondal, Subrata Ghosh\*

Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India

Received 26 September 2007; received in revised form 7 December 2007; accepted 3 January 2008 Available online 5 January 2008

#### Abstract

A simple strategy has been developed for the synthesis of both enantiomers of nor-canadensolide, *epi*-nor-canadensolide, and an intermediate to canadensolide. An orthoester Claisen rearrangement of an appropriately constructed allyl alcohol derivative prepared from R-(+)-2,3-di-O-cyclohexylidine glyceraldehyde followed by epoxidation of the resulting unsaturated esters produced hydroxy-lactones, which on oxidation gave keto-lactones. Stereoselective reduction of the keto-carbonyl using either a chelation controlled or a non-chelation controlled process led to the natural or the *epi*-series, respectively. The interplay of the electronic effect between the polar groups and the steric effect of the  $\beta$ -substituent during reduction of the keto-lactones turned out to be the key factors in deciding the stereochemical outcome. Regeneration of the aldehyde functionality latent in the ketal moiety of the hydroxy-lactones provided the lactols, which on oxidation gave the bis-lactones. © 2008 Elsevier Ltd. All rights reserved.

Keywords: Asymmetric synthesis; Bis-lactones; Chelation; Stereocontrol

#### 1. Introduction

The bis-lactone represented by the general structure 1 is found in a number of structurally related natural products such as canadensolide **1a**,<sup>1</sup> sporothriolide **1b**,<sup>2</sup> and xylobovide **1c**.<sup>3</sup> They differ only in the length of the side chain. These compounds exhibit important biological activities. For example, canadensolide 1a, a mold metabolite formed by Penicillium canadense, possesses an antigerminative activity against fungi. Sporothriolide is an antibacterial, fungicidal, algicidal, and herbicidal agent while xylobovide is a phytotoxic agent. Due to the novel structure with three contiguous stereocenters and interesting biological activities, considerable attention has been focused on the development of new methodology for their synthesis.<sup>4-21</sup> As part of our interest in the synthesis of natural products containing fused butyro-lactones,<sup>22</sup> we initiated a program for developing a general flexible route toward the synthesis of these bis-lactones.

We envisaged the bicyclic lactols 2 with appropriate alkyl chain (R) as the intermediates to the bis-lactones (Scheme 1). In a few earlier approaches to canadensolide, the lactol 2a has served as an intermediate. The lactol 2 would become available from the keto-lactone 3. The ketal moiety in 3 would provide the aldehyde functionality and a stereocontrolled hydride reduction of the carbonyl group would deliver the hydroxyl group required for lactol formation. The keto-lactone 3 in principle should be available from the unsaturated ester 4 through lactonisation initiated by addition of an electrophile to the carbon-carbon double bond. Hydride reduction of the carbonyl group with a heteroatom at the  $\alpha$ -chiral center generally proceeds with high diastereoselectivity especially when the reaction proceeds through a metal chelated intermediate. The keto-lactone **3** possesses a heteroatom (ring oxygen) next to the carbonyl group. In addition, it has a bulky substituent at  $\beta$  to the carbonyl group. Presumably, the stereochemical outcome during reduction of the keto-carbonyl in 3 would be determined by the interplay of the electronic effect exerted by the lactone oxygen and the steric hindrance posed by the ketal substituent. During the present synthetic investigation we had the opportunity to explore the stereochemical

<sup>\*</sup> Corresponding author. Tel.: +91 33 2473 4971; fax: +91 33 2473 2805. *E-mail address:* ocsg@iacs.res.in (S. Ghosh).

outcome in the reduction of the keto-lactone **3** along with its other three possible diastereomers. This investigation has allowed access to either the natural series or the *epi*-series of the bis-lactones. In this paper the approach is illustrated by a total synthesis of both enantiomers of nor-canadensolide, *epi*-nor-canadensolide and a formal synthesis of (+)-canadensolide and (-)-canadensolide.



#### 2. Results and discussion

The unsaturated ester required for canadensolide was prepared from the allylic alcohol **5** as delineated in Scheme 2. The allylic alcohol **5** was obtained from R-(+)-2,3-di-O-cyclohexylidine glyceraldehyde according to the known procedure.<sup>23</sup> Oxidation of the alcohol **5** with Dess-Martin periodinane (DMP)<sup>24</sup> afforded the aldehyde **6** in excellent yield. Addition of *n*-BuLi to the aldehyde **6** followed by orthoester Claisen rearrangement of the resulting alcohol **7** led to a 1:1 mixture of the two diastereomers **8** and **9** in 37% and 35% yields, respectively.



Scheme 2. (i) DMP, CH<sub>2</sub>Cl<sub>2</sub>, 2 h; (ii) *n*-BuLi, THF, -78 °C; (iii) H<sub>3</sub>CC(OEt)<sub>3</sub>, propionic acid (cat.), 140 °C, 4 h.

The gross structure of the compounds 8 and 9 was easily ascertained from spectroscopic data. Stereochemical assignment to the compounds 8 and 9 followed from their transformation to (+)-nor-canadensolide 35 and (-)-nor-canadensolide (vide infra). Toward this end, the ester 8 was hydrolyzed with aqueous ethanolic KOH and the resulting acid was treated with m-CPBA to produce the lactones 12 and 13 in 46% and 45% isolated yields, respectively (Scheme 3). The lactone 12 was treated with 75% aqueous acetic acid and the liberated vicinal diol was cleaved with NaIO<sub>4</sub> to afford an inseparable mixture of the lactols 14a and 14b in 1:2 ratio as determined by integration of the proton attached to the anomeric carbon at  $\delta$  5.36 (s) for 14a and at  $\delta$  5.54 (d, J=4.5 Hz) for 14b. The stereochemical assignment to 14a and 14b is based on comparison of the observed coupling constants to those reported in the literature.<sup>25</sup> The mixture of the lactols 14a and 14b on Jones oxidation produced the bis-lactone 15,  $[\alpha]_{D}^{26}$  +25.03 (c 1.67, CHCl<sub>3</sub>). The spectral data of the bis-lactone thus obtained were found to be comparable with those reported<sup>18</sup> for epi-nor-canadensolide. This confirmed the structure of the hydroxy-lactone as 12 and the intermediate epoxide as 10. That the vicinal substituents in the lactone 13 are trans to each other was confirmed by its failure to undergo lactonisation when subjected to the reaction sequence for conversion of 12 to 15.

A similar protocol was employed to establish the structure of the unsaturated ester 9. Thus, the acid obtained from the





Scheme 3. (i) (a) KOH–EtOH–H<sub>2</sub>O, 85 °C, 2 h; (b) *m*-CPBA, ClCH<sub>2</sub>CH<sub>2</sub>Cl, 0 °C to rt, 6 h; (ii) (a) AcOH–H<sub>2</sub>O; (b) NaIO<sub>4</sub>, 80% (two steps); (iii) Jones reagent, acetone, 0 °C.

ester 9 on treatment with *m*-CPBA afforded a mixture of the hydroxy-lactones 16 and 17 in 35% and 44% yields, respectively (Scheme 4). The hydroxy-lactone 16 was converted to the bis-lactone 18 using the protocol for transformation of the hydroxy-lactone 12 to the bis-lactone 15. The bis-lactone 18 has specific rotation  $[\alpha]_{D}^{26}$  -28.73 (*c* 1.41, CHCl<sub>3</sub>) nearly equal and opposite to that observed for 15. Thus, a synthesis of (+)-*epi*-nor-canadensolide and (-)-*epi*-nor-canadensolide from an *R*-(+)-glyceraldehyde derivative is achieved.

By analogy to the formation of the lactones 12 and 13 from the ester 8, the hydroxy-lactone obtained along with 16 from the ester 9 was assigned the structure 17. This assignment was further corroborated by its transformation to the hydroxy-lactone 12 as delineated in Scheme 4.

The hydroxyl group in **17** was protected to afford the silyl ether **19** in 87% yield. Reaction of lithium enolate of **19** with PhSeBr afforded the lactone **20**, which on treatment with hydrogen peroxide underwent selenoxide elimination to give the butenolide **21**. Hydrogenation of the butenolide **21** in the presence of PtO<sub>2</sub> as catalyst afforded exclusively the cis-disubstituted lactone **22**. Desilylation finally afforded **12**, the structure of which has already been established (Scheme 3).

After achieving the synthesis of both enantiomers of nor-*epi*-canadensolide, we next focused our attention on the synthesis of canadensolide. For this purpose it is necessary to invert the stereochemistry of the butyl group in the *cis*-hydroxy-lactones **12** and **16**. An inversion of configuration at C-4 and the stereocenter bearing the butyl group in **13** and **17** can also be considered toward this end. We decided to pursue both this approach so that all the diastereomeric lactones obtained above can be converted to canadensolide. We thought that reduction of the keto-lactones derived from these hydroxy-lactones would be the simplest way of inverting the

stereochemistry of the butyl group. This led us to investigate the reduction of all the four possible diastereoisomers of the keto-lactones 23, 25, 27, and 28. The keto-lactones 23, 25, 27, and 28 were obtained by oxidation of the hydroxy-lactones 12, 13, 16, and 17, respectively, with DMP in excellent yields. Reduction of these ketones was carried out using NaBH<sub>4</sub>– MeOH (condition A) as well as with NaBH<sub>4</sub>–MeOH–CeCl<sub>3</sub> (condition B) (Scheme 5). The results are summarized in Table 1.

Reduction of the ketone 23 with NaBH<sub>4</sub> in MeOH gave a mixture of the hydroxy-lactones 12 and 24 in1:1 ratio. When the reduction was carried out in the presence of CeCl<sub>3</sub>, the hydroxy-lactones 12 and 24 were obtained in a ratio of 1:9 (entry 1, Table 1). The predominant formation of 24 in the presence of CeCl<sub>3</sub> dictates that the latter plays a significant role in determining stereoselectivity and could be attributed to hydride delivery from the convex face of the chelated intermediate 30 (Fig. 1). Chromatographic purification of this mixture afforded the pure diastereomer 24 in 85% yield. Interestingly reduction of the ketone 27 with NaBH<sub>4</sub> alone or in the presence of CeCl<sub>3</sub> produced exclusively the hydroxy-lactone 16 (entry 2, Table 1). Inspection of the Drieding model revealed that of the two different conformers 31 and 32 of the keto-lactone 27, the conformer 32 is preferred over 31 due to the presence of a steric interaction between the butyl residue and the ketal group in the latter.

In order to delve into the matter, we have performed some semi-empirical quantum mechanical calculations<sup>26</sup> on the conformers **31** and **32** in regard to their minimum energies by AM1 method developed by Dewar et al.<sup>27</sup> The results indicate that the conformer **32** (E=-4796.8791 kcal/mol) in which the butyl residue is away from the ketal is more stable than the conformer **31** (E=-4796.2877 kcal/mol) by ca. 0.6 kcal/mol.



For Structures 16-22 (except 18): R<sup>1</sup>, R<sup>2</sup> = -(CH<sub>2</sub>)<sub>5</sub>-

Scheme 4. (i) (a) KOH–EtOH–H<sub>2</sub>O, 85 °C, 2 h; (b) *m*-CPBA, ClCH<sub>2</sub>CH<sub>2</sub>Cl, 0 °C to rt, 6 h; (ii) (a) AcOH–H<sub>2</sub>O–NaIO<sub>4</sub>, 82%; (b) Jones reagent, acetone, 0 °C, 90%; (iii) TBDMSOTf, 2,6-lutidine, DCM, 0 °C; (iv) LDA, THF, -78 °C, HMPA, PhSeBr; (v) H<sub>2</sub>O<sub>2</sub>, Py, DCM–THF (2:1), 8 h; (vi) H<sub>2</sub>–PtO<sub>2</sub>, MeOH, 5 h; (vii) TBAF, THF, 0 °C–rt.



For structures 23-29: R<sup>1</sup>, R<sup>2</sup> = -(CH<sub>2</sub>)<sub>5</sub>-

Scheme 5. (i) DMP,  $CH_2Cl_2$ , 2–2.5 h; (ii) NaBH<sub>4</sub>, MeOH,  $CeCl_3 \cdot 7H_2O$ , –20 °C, 30 min; (iii) NaBH<sub>4</sub>, MeOH, 0 °C, 30 min.

Table 1 Reduction of keto-lactones

| Entry | Keto-lactones | Hydroxy-lactones | Product ratio                            |
|-------|---------------|------------------|------------------------------------------|
| 1     | 23            | 12+24            | 50:50 <sup>a</sup><br>5:95 <sup>b</sup>  |
| 2     | 27            | 16               | 100 <sup>a,b</sup>                       |
| 3     | 25            | 13+26            | 50:50 <sup>a</sup><br>40:60 <sup>b</sup> |
| 4     | 28            | 17<br>29         | 100 <sup>a</sup><br>100 <sup>b</sup>     |

<sup>a</sup> Condition A.

<sup>b</sup> Condition B.

Thus reduction of the carbonyl group under both the conditions proceeds through the conformation 32 by addition of hydride from the *Re*-face to produce exclusively the hydroxy-lactone

16. The observed diastereoselectivity may also be attributed by Felkin-Anh model as depicted in structure 33. Reduction of the ketone 25 with NaBH<sub>4</sub> gave 1:1 mixture of the hydroxy-lactones 13 and 26. However, in the presence of CeCl<sub>3</sub> the ratio of the hydroxy-lactones did not change significantly producing 13 and 26 in 2:3 ratio (entry 3). The ketal unit and the chain bearing the carbonyl group in the lactone 25 are anti to each other ruling out the possibility of chelation. Thus, no significant face selectivity was observed during reduction in the presence of  $CeCl_3$ . The major diastereomer 26 was isolated in 50% yield through column chromatography. The reduction of the ketone 28 (entry 4) with  $NaBH_4$  produced the hydroxy-lactone 17 exclusively while with NaBH<sub>4</sub>-CeCl<sub>3</sub> it gave the hydroxy-lactone 29 exclusively. Thus, a combination of electronic factor and steric factor influences the reduction of the carbonyl group in the keto-lactones 23, 25, 27, and 28.

The hydroxy-lactone 24 has the desired stereochemistry at C-4 and the center bearing the butyl group for synthesis of norcanadensolide. Thus, treatment of the hydroxy-lactone 24 with aqueous acetic acid followed by cleavage of the resulting diol produced exclusively the lactol 34,  $[\alpha]_{D}^{26}$  +9.8 (c 1.64, CHCl<sub>3</sub>) (Scheme 6). The stereochemical assignment to the lactol 34 follows from the coupling constant (J=0) of the proton attached to the anomeric center, which appeared as a singlet at  $\delta$  5.32. Notably, under identical conditions the ketal derivative 12 produced a mixture of the lactols 14a and 14b in 1:2 ratio (Scheme 3). The contrasting behavior of the ketals toward the formation of the bicycles is probably guided by the thermodynamic stability of the products leading predominantly the lactol 14b from 12 and exclusively 34 from 24. Jones oxidation of the lactol **34** finally afforded (+)-nor-canadensolide **35**,  $[\alpha]_D^{24}$ +24.50 (c 1.2, CHCl<sub>3</sub>); [lit.<sup>6</sup>  $[\alpha]_{D}^{23}$  +26.2 (c 0.50, CHCl<sub>3</sub>)]. The lactol 34 has already been converted to (+)canadensolide.6



Scheme 6. (i) HOAc-H<sub>2</sub>O then NaIO<sub>4</sub>; (ii) Jones reagent, acetone, 0 °C.

Finally, the hydroxy-lactone 26 obtained by reduction of the ketone 25 was transformed to (-)-nor-canadensolide (-)-35 as delineated in Scheme 7. To this end, the hydroxy group in 26 was protected to give the silyl ether 36. The lactone 36 was then converted to selenophenyl derivative 37 in 73% yield through alkylation of its lithium enolate with



Figure 1.



For structures **36-40**: R<sup>1</sup>, R<sup>2</sup> = -(CH<sub>2</sub>)<sub>5</sub>-

Scheme 7. (i) TBDMSOTf, 2,6-lutidine, DCM, 0 °C-rt; (ii) LDA, THF, -78 °C, HMPA, PhSeBr; (iii) H<sub>2</sub>O<sub>2</sub>, Py, DCM-THF (2:1), 8 h; (iv) H<sub>2</sub>-PtO<sub>2</sub>, MeOH, 5 h; (v) TBAF, THF, 0 °C to rt; (vi) HOAc-H<sub>2</sub>O then NaIO<sub>4</sub>; (vii) Jones reagent, acetone, 0 °C.

phenylselenyl bromide. Elimination of selenoxide from 37 afforded the butenolide 38 in near quantitative yield. Hydrogenation of the butenolide 38 over PtO2 afforded after chromatographic purification the cis compound **39** (70%). Desilylation of the lactone 39 gave the hydroxy-lactone 40. Treatment of 40 with aqueous acetic acid followed by cleavage of the resulting diol with periodate afforded the lactol 41,  $\left[\alpha\right]_{D}^{25}$ -10.0 (c 0.2, CHCl<sub>3</sub>) [lit.<sup>5</sup> [ $\alpha$ ]<sub>D</sub> -14.9 (c 1.0, CHCl<sub>3</sub>) (for an anomeric mixture of lactols)]. Jones oxidation of the lactol 41 gave (-)-nor-canadensolide (-)-35. The spectral data and  $[\alpha]_D^{26} - 21.5 (c \ 1.09, \text{CHCl}_3) [\text{lit.} [\alpha]_D^{23} - 18.9 (c \ 4.79, \text{CHCl}_3)]$ for the sample prepared by us were comparable with those reported in the literature.<sup>10</sup> The lactol **41** has already been converted to (-)-canadensolide by earlier workers.4,5,10 Thus, starting with R-(+)-2,3-di-O-cyclohexylidine glyceraldehyde a formal synthesis of both enantiomers of canadensolide is achieved.

#### 3. Conclusion

We have developed a general strategy for synthesis of the bis-lactone **1** in enantiomerically pure form. The strategy has been illustrated by a formal synthesis of both enantiomers of canadensolide starting from R-(+)-2,3-di-O-cyclohexilidine glyceraldehyde. Stereocontrolled reduction of the carbonyl group in an appropriately constructed keto-lactone gave both canadensolide and *epi*-canadensolide. The stereochemical outcome during reduction of the carbonyl group in the keto-

lactones has been demonstrated to be influenced significantly by steric and electronic effects imposed by the polar groups present in the keto-lactones.

#### 4. Experimental section

#### 4.1. General

Melting points were taken in open capillaries in a sulfuric acid bath. Petroleum ether refers to the fraction having bp 60-80 °C. A usual workup of the reaction mixture consists of extraction with ether, washing with brine, drying over Na<sub>2</sub>SO<sub>4</sub>, and removal of the solvent in vacuo. Column chromatography was carried out with silica gel (60–120 mesh). Peak positions in <sup>1</sup>H and <sup>13</sup>C NMR spectra are indicated in parts per million downfield from internal TMS in  $\delta$  units. NMR spectra were taken in CDCl<sub>3</sub> at 300 MHz for <sup>1</sup>H and 75 MHz for <sup>13</sup>C. <sup>13</sup>C peak assignment is based on DEPT experiment. IR spectra were recorded as neat for liquid and in KBr for solids. Unless otherwise indicated, all reactions were carried out under blanket of Ar.

### 4.1.1. (1E)-1-[(2S)-1,4-Dioxaspiro[4.5]dec-2-yl]hept-1-en-3-ol 7

To a magnetically stirred suspension of Dess-Martin periodinane (7.7 g, 18.2 mmol) in dichloromethane (30 mL) at 0 °C, the allylic alcohol 5 (3.0 g, 15.2 mmol) in dichloromethane (15 mL) was added drop-wise. The reaction mixture was stirred for 30 min and was quenched with 10% Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (15 mL) doped with NaHCO<sub>3</sub>. The organic layer was separated and the aqueous part extracted with diethyl ether  $(2 \times 100 \text{ mL})$ . The combined organic layer was dried to afford the enal 6 (2.8 g, 94%). Without further purification, it was used in the next step. To a solution of the enal 6(2.8 g, 14.2 mmol) in THF (40 mL) cooled to -78 °C n-BuLi (14.4 mL, 17.2 mmol, 1.5 M in hexane) was added drop-wise. The reaction mixture was stirred for 30 min at -78 °C and then warmed to -30 °C and guenched with saturated aqueous NH<sub>4</sub>Cl (3 mL). Usual workup of the reaction mixture with diethyl ether  $(2 \times 80 \text{ mL})$  followed by column chromatography (ether-petroleum ether 1:5) afforded the allylic alcohol 7 (1.5 g, 82%) as a colorless liquid. IR 3419.6, 1448.4 cm<sup>-1</sup>; <sup>1</sup>H NMR (of the diastereomeric mixture)  $\delta$  0.87 (3H, t, J=6.5 Hz), 1.24–1.45 (6H, m), 1.47–1.60 (10H, m), 1.87 (1H, br s), 3.52–3.58 (1H, m), 4.03–4.10 (2H, m), 4.49 (1H, q, J=6.8 Hz), 5.63 (1H, m), 5.77 (1H, m);  ${}^{13}$ C NMR  $\delta$  14.1, 14.2, 22.7, 23.9, 24.0, 24.1, 25.2, 27.7, 35.5, 35.6, 36.3, 36.6, 36.9, 69.2, 69.3, 72.0, 72.2, 76.3, 110.08, 110.12, 128.1, 128.3, 137.2, 137.3; HRMS (ESI) calcd for  $C_{15}H_{26}O_3Na$  (M+Na)<sup>+</sup>, 277.1780; found, 277.1772.

#### 4.1.2. Ethyl (3R,4E)-3-[(2S)-1,4-dioxaspiro[4.5]dec-2-yl]hex-4-enoate **8** and ethyl (3S,4E)-3-[(2S)-1,4-dioxaspiro[4.5]dec-2-yl]hex-4-enoate **9**

A mixture of the allylic alcohol 7 (1.26 g, 5.0 mmol), triethylorthoacetate (7.2 mL, 50.0 mmol), propionic acid (10 mg,

172.0 µmol), and xylene (20 mL) was heated at 140 °C for 4 h. The excess triethylorthoacetate and xylene was removed by distillation at reduced pressure. The residual mass was then purified by flash chromatography (ether-petroleum ether 1:20) to afford the ester 8 (570 mg, 37%):  $R_t=0.6$  (EtOAc-petroleum ether 1:9);  $[\alpha]_D^{24}$  +7.20 (c 1.5, CHCl<sub>3</sub>); IR 1737.7 cm<sup>-1</sup>; <sup>1</sup>H NMR δ 0.84 (3H, t, J=7.0 Hz), 1.21 (3H, t, J=7.2 Hz), 1.25-1.29 (4H, m), 1.36 (2H, br s), 1.54 (4H, br s), 1.58 (4H, br s), 1.94 (2H, dt, J=6.7, 6.6 Hz), 2.25 (1H, dd, J=9.3, 14.5 Hz), 2.57 (1H, m), 2.69 (1H, dd, J=4.5, 14.5 Hz), 3.63 (1H, dd, J=5.7, 7.3 Hz), 3.87 (1H, dd, J=4.8, 7.3 Hz), 3.91 (1H, q, J=6.1 Hz), 4.09 (2H, q, J=7.2 Hz), 5.14 (1H, dd, J=8.8, 15.4 Hz), 5.52 (1H, td, J=6.7, 15.4 Hz); <sup>13</sup>C NMR  $\delta$  13.9, 14.4, 22.1, 23.9, 24.1, 25.3, 31.5, 32.3, 35.2, 36.6, 37.6, 44.6, 60.3, 67.9, 77.8, 110.0, 128.0, 134.3, 172.6; HRMS (ESI) calcd for  $C_{19}H_{32}O_4Na (M+Na)^+$ , 347.2198; found, 347.2191 and the ester **9** (550 mg, 35%):  $R_f=0.5$  (EtOAc-petroleum ether 1:9);  $[\alpha]_{D}^{24}$  +35.75 (c 1.6, CHCl<sub>3</sub>); IR 1737.7 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.84 (3H, t, J=6.8 Hz), 1.20 (3H, t, J=7.1 Hz), 1.27 (4H, m), 1.35 (2H, br s), 1.53 (4H, br s), 1.56 (4H, br s), 1.97 (2H, dt, J=7.8, 7.8 Hz), 2.31 (1H, dd, J=9.3, 15.0 Hz), 2.49 (1H, dd, J=5.3, 15.0 Hz), 2.70 (1H, m), 3.60 (1H, t, J=7.6 Hz), 3.90 (1H, t, J=7.6 Hz), 4.04–4.11 (3H, m), 5.26 (1H, dd, J=8.5, 15.4 Hz), 5.48 (1H, td, J=6.7, 15.4 Hz); <sup>13</sup>C NMR  $\delta$  14.0, 14.3, 22.1, 23.9, 24.0, 25.3, 31.5, 32.3, 34.9, 35.9, 36.5, 41.7, 60.4, 66.2, 77.2, 109.6, 127.4, 134.2, 172.6; HRMS (ESI) calcd for  $C_{19}H_{32}O_4Na (M+Na)^+$ , 347.2198; found, 347.2197.

#### 4.1.3. (4S,5S)-4-[(2S)-1,4-Dioxaspiro[4.5]dec-2-yl]-5-[(1R)-1-hydroxypentyl]dihydrofuran-2(3H)-one **12** and (4S,5R)-4-[(2S)-1,4-dioxaspiro[4.5]dec-2-yl]-5-[(1S)-1-hydroxypentyl]dihydrofuran-2(3H)-one **13**

A solution of the ester 8 (1.8 g, 5.6 mmol) in EtOH (15 mL) was heated under reflux with KOH (1.6 g, 28.0 mmol) and water (4 mL) for 2.5 h. After removing ethanol under reduced pressure the residual mass at ice-cold condition was diluted with water (3 mL) and was acidified carefully with HCl (5 mL, 4 N). The organic compound was then worked up to afford the acid (1.5 g, 91%) as sticky yellowish liquid. To a magnetically stirred cooled (0 °C) solution of the unsaturated acid (1.7 g, 5.7 mmol) in 1,2-dichloroethane (25 mL) was added m-CPBA (1.7 g, 7.6 mmol) portion-wise. Stirring was continued for 6 h at rt. The precipitated white solid was filtered off and washed thoroughly with diethyl ether. The combined filtrate and washing was washed sequentially with saturated Na<sub>2</sub>SO<sub>3</sub>  $(3 \times 2 \text{ mL})$  and saturated NaHCO<sub>3</sub>  $(3 \times 2 \text{ mL})$ , and dried (Na<sub>2</sub>SO<sub>4</sub>). Evaporation of the solvent followed by column chromatography of the residual mass afforded the hydroxylactone 12 (810 mg, 46%):  $R_f=0.3$  (EtOAc-petroleum ether 1:1); IR 3419.6, 1766.7 cm<sup>-1</sup>;  $[\alpha]_{D}^{26}$  +7.56 (*c* 1.5, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.90 (3H, t, J=6.8 Hz), 1.35 (6H, br s), 1.43– 1.60 (10H, m), 1.80 (1H, br s), 2.49 (1H, dd, J=8.4, 17.1 Hz), 2.60 (1H, dd, J=5.1, 17.1 Hz), 2.68–2.73 (1H, m), 3.58 (1H, t, J=7.6 Hz), 3.88 (1H, dt, J=2.0, 7.5 Hz), 4.10 (1H, t, J=7.6 Hz), 4.23 (1H, t, J=7.3 Hz), 4.60 (1H, dt, J=2.3, 6.7 Hz); <sup>13</sup>C NMR  $\delta$  14.1, 22.7, 23.9, 24.0, 25.1, 27.3, 29.8, 34.2, 34.3, 35.7, 40.0, 67.6, 70.0, 72.4, 83.4,

110.8, 176.1; HRMS (ESI) calcd for  $C_{17}H_{28}O_5Na (M+Na)^+$ , 335.1834; found, 335.1837 and the hydroxy-lactone **13** (800 mg, 45%):  $R_f$ =0.4 (EtOAc-petroleum ether 1:1); IR 3446.6, 1774.4 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  -9.2 (*c* 1.75, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.91 (3H, t, *J*=6.9 Hz), 1.32–1.41 (6H, m), 1.46 (2H, m), 1.54 (4H, br s), 1.59 (4H, br s), 2.93 (1H, br s), 2.47–2.64 (2H, m), 2.72 (1H, m), 3.55 (1H, dd, *J*=6.7, 8.1 Hz), 3.83 (1H, dt, *J*=3.5, 8.2 Hz), 4.04 (1H, t, *J*=7.5 Hz), 4.17 (1H, dt, *J*=3.8, 6.4 Hz), 4.29 (1H, t, *J*=3.1 Hz); <sup>13</sup>C NMR  $\delta$  14.1, 22.7, 23.8, 24.0, 25.2, 27.9, 30.1, 32.2, 34.4, 36.1, 37.4, 66.9, 72.3, 75.9, 85.0, 110.3, 177.3; HRMS (ESI) calcd for  $C_{17}H_{28}O_5Na (M+Na)^+$ , 335.1834; found, 335.1832.

# 4.1.4. (3aR,6R,6aS)-6-Butyl-4-hydroxytetrahydrofuro[3,4-b] furan-2(3H)-one 14

A solution of the hydroxy-lactone 12 (110 mg, 0.35 mmol) in CH<sub>3</sub>CN (0.5 mL) was treated with 75% aqueous AcOH (2 mL) at rt for 6 h. To the resulting solution cooled to 0 °C NaIO<sub>4</sub> (374 mg, 1.75 mmol) was added pinch-wise. After stirring for 4 h at rt the reaction mixture was diluted with diethyl ether (20 mL). The entire mass was transferred to a separatory funnel and washed with saturated NaHCO<sub>3</sub> solution  $(3 \times 1 \text{ mL})$ until alkaline. The organic layer was dried (Na2SO4) and concentrated to afford a mixture of the lactols 14a and 14b (57 mg, 80%) as a low melting solid (mp 42-45 °C). IR 3444.6, 1770.5 cm<sup>-1</sup>; <sup>1</sup>H NMR (of the anomeric mixture)  $\delta$  0.91 (3H, t, J=6.0 Hz), 1.37–1.49 (4H, m), 1.62–1.74 (2H, m), 2.50-2.60 (1H, m), 2.74-2.88 (1H, m), 2.96-3.06 (1H, m), 4.21 (1H, t, J=7.7 Hz), 4.27-4.32 (1H, m), 4.60 (1H, dd, J=3.0, 7.8 Hz), 4.89 (1H, m), 5.36 (1H, s), 5.54 (1H, d, J=4.4 Hz); <sup>13</sup>C NMR  $\delta$  14.0, 14.1, 22.4, 22.6, 27.6, 28.0, 29.2, 32.0, 32.8, 34.2, 43.8, 46.3, 82.8, 85.6, 86.7, 87.4, 97.4, 104.7, 176.3, 177.3; HRMS (ESI) calcd for  $C_{10}H_{16}O_4Na (M+Na)^+$ , 223.0946; found, 223.0920.

# 4.1.5. (3aR,6R,6aS)-6-Butyltetrahydrofuro[3,4-b]furan-2, 4-dione 15

The lactol **14** (50 mg, 2.5 mmol) in acetone (1 mL) as obtained above was immediately treated with Jones reagent at 0 °C until the color of the reagent persisted. Workup of the reaction mixture with diethyl ether followed by column chromatography (ethyl acetate—petroleum ether 1:3) afforded bis-lactone **15** (46 mg, 92%) as a white crystalline solid. Mp 85–86 °C (lit. (±)-**15**, mp 85–86 °C); IR 1772.5 cm<sup>-1</sup>;  $[\alpha]_D^{26}$  +25.03 (*c* 1.67, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.92 (3H, t, *J*=6.8 Hz), 1.44 (4H, m), 1.67 (2H, dt, *J*=7.2, 7.2 Hz), 2.82–2.95 (2H, m), 3.45 (1H, ddd, *J*=3.4, 6.3, 9.2 Hz), 4.67 (1H, t, *J*=7.0 Hz), 4.87 (1H, d, *J*=6.5 Hz); <sup>13</sup>C NMR  $\delta$  13.9, 22.3, 26.7, 31.0, 32.6, 39.8, 82.0, 84.2, 173.4, 175.4; HRMS (ESI) calcd for C<sub>10</sub>H<sub>14</sub>O<sub>4</sub>Na (M+Na)<sup>+</sup>, 221.0790; found, 221.0799.

# 4.1.6. (4R,5R)-4-[(2S)-1,4-Dioxaspiro[4.5]dec-2-yl]-5-[(1S)-1-hydroxypentyl]dihydrofuran-2(3H)-one **16** and (4R,5S)-4-[(2S)-1,4-dioxaspiro[4.5]dec-2-yl]-5-[(1R)-1-hydroxypentyl]dihydrofuran-2(3H)-one **17**

Following the procedure similar to the conversion of the ester 8 to the hydroxy-lactones 12 and 13, the ester 9

(550 mg, 1.7 mmol) was converted to a diastereomeric mixture of the hydroxy-lactone 16 (110 mg, 35%).  $R_{f}=0.4$ (EtOAc-petroleum ether 1:1); IR 3444.6, 1770.5 cm<sup>-1</sup>;  $[\alpha]_{D}^{24}$  -42.3 (c 1.2, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.90 (3H, t, J=6.9 Hz), 1.24-1.43 (6H, m), 1.47-1.60 (10H, m), 2.15 (1H, dd, J=4.2, 17.7 Hz), 2.58 (1H, m), 2.76 (1H, dd, J=9.8, 17.7 Hz), 3.60 (1H, m), 3.82 (1H, m), 4.08 (2H, m), 4.41 (1H, t, J=3.5 Hz); <sup>13</sup>C NMR  $\delta$  14.1, 22.7, 23.8, 24.0, 25.1, 27.7, 32.0, 32.4, 34.7, 36.4, 39.6, 67.5, 72.8, 76.8, 85.2, 110.7, 176.6; HRMS (ESI) calcd for C17H28O5Na  $(M+Na)^+$ , 335.1834; found, 335.1832 and the hydroxylactone 17 (140 mg, 44%): R<sub>f</sub>=0.5 (EtOAc-petroleum ether 1:1); IR 3431.1, 1780.2 cm<sup>-1</sup>;  $[\alpha]_D^{24}$  -10.32 (*c* 2.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.91 (3H, t, J=7.1 Hz), 1.33–1.43 (6H, m), 1.45-1.60 (8H, m), 1.75 (2H, m), 2.08 (1H, dd, J=5.5, 21.0 Hz), 2.74 (1H, m), 2.76 (1H, dd, J=8.1, 20.6 Hz), 3.60 (1H, t, J=7.6 Hz), 3.87 (1H, dt, J=2.6, 8.2 Hz), 4.15 (1H, t, J=7.2 Hz), 4.18-4.28 (2H, m); <sup>13</sup>C NMR δ 14.2, 22.9, 24.0, 24.1, 24.9, 27.3, 32.9, 33.6, 35.1, 36.2, 42.2, 68.6, 69.3, 73.1, 84.6, 111.6, 174.9; HRMS (ESI) calcd for  $C_{17}H_{28}O_5Na$  (M+Na)<sup>+</sup>, 335.1834; found, 335.1831.

### 4.1.7. (3aS,6S,6aR)-6-Butyltetrahydrofuro[3,4-b]furan-2,4dione 18

Following the procedure for the conversion of the hydroxylactone **12** to the bis-lactone **15**, the hydroxy-lactone **16** (100 mg, 0.32 mmol) was first converted to a cyclic hemiacetal (52 mg, 82%) followed by Jones oxidation to afford the bislactone **18** (46 mg, 90%), an enantiomer of the bis-lactone **15** as a white crystalline solid.  $[\alpha]_D^{26} - 28.73$  (*c* 1.41, CHCl<sub>3</sub>); HRMS (ESI) calcd for C<sub>10</sub>H<sub>14</sub>O<sub>4</sub>Na (M+Na)<sup>+</sup>, 221.0790; found, 221.0799.

# 4.1.8. 5-[1(R)-1-(tert-Butyl-dimethyl-silanyloxy)-pentyl]-(4R,5S)-4-[(2S)-1,4-dioxa-spiro[4.5]dec-2-yl]dihydrofuran-2-one **19**

To a stirring solution of the secondary alcohol 17 (140 mg, 0.45 mmol) in dichloromethane (8 mL) 2,6-lutidine (0.1 mL, 0.90 mmol) was added drop-wise. After stirring for 5 min at rt the reaction mixture was cooled to 0 °C. TBDMSOTf (0.14 mL, 0.58 mmol) was then added drop-wise and stirred for 10 min at the same temperature. The solvent was removed by blowing nitrogen and the residual organic material was chromatographed (ether-petroleum ether 1:9) to afford the lactone 19 (167 mg, 87%) as a colorless liquid. IR 1782.1 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  –24.54 (*c* 2.07, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.00 (3H, br s), 0.03 (3H, br s), 0.82 (12H, br s), 1.20-1.32 (6H, m), 1.50–1.54 (10H, m), 2.23 (1H, dd, J=9.1, 16.8 Hz), 2.42 (1H, dd, J=11.3, 16.7 Hz), 2.72 (1H, m), 3.44 (1H, t, J=7.7 Hz), 4.00 (2H, dd, J=6.0, 7.9 Hz), 4.45–4.56 (2H, m); <sup>13</sup>C NMR  $\delta$  –4.4, –4.3, 14.4, 18.3, 23.2, 24.2, 24.3, 25.5, 26.3 (3CH<sub>3</sub>), 28.5, 31.9, 33.9, 35.5, 36.9, 42.7, 68.6, 73.9, 76.0, 83.0, 110.5, 176.3; HRMS (ESI) calcd for  $C_{23}H_{42}O_5SiNa$  (M+Na)<sup>+</sup>, 449.2699; found, 449.2671.

#### 4.1.9. 5-[1(R)-1-(tert-Butyl-dimethyl-silanyloxy)-pentyl]-(4R,5S)-4-[(2S)-1,4-dioxa-spiro[4.5]dec-2-yl]-3phenylselanyl-dihydro-furan-2-one **20**

To a magnetically stirred solution of diisopropylamine (0.16 mL, 1.08 mmol) in anhydrous THF (3 mL) cooled to -20 °C under argon atmosphere was added drop-wise *n*-BuLi (0.57 mL, 0.85 mmol, 1.5 M in hexane), and stirred for 40 min. The solution was then cooled to -78 °C and a solution of the protected lactone 19 (180 mg, 0.42 mmol) in THF (4 mL) was added drop-wise. The reaction mixture was then slowly warmed to  $-30 \,^{\circ}$ C and stirred at that temperature for 30 min. The temperature of the reaction mixture was again brought to -78 °C and to it HMPA (0.1 mL) and phenylselenvl bromide (120 mg, 0.50 mmol) in THF (3 mL) were added sequentially. The reaction mixture was then allowed to attain rt. After quenching with saturated NH<sub>4</sub>Cl solution, the reaction mixture was worked up in the usual way with diethyl ether  $(3 \times 12 \text{ mL})$  to afford after column chromatography (ether-petroleum ether 1:8) the lactone 20 (200 mg, 81%) as a light yellow liquid. <sup>1</sup>H NMR  $\delta$  0.00 (3H, br s), 0.02 (3H, br s), 0.80 (12H, m), 1.22 (4H, m), 1.40 (2H, br s), 1.51 (10H, br s), 2.68 (1H, q, J=7.5 Hz), 3.79 (1H, d, J=7.7 Hz), 3.88 (2H, m), 4.01 (1H, dd, J=5.8, 8.7 Hz), 4.33 (1H, dd, J=3.3, 7.3 Hz), 4.45 (1H, q, J=7.0 Hz), 7.30 (3H, m), 7.62 (2H, d, J=6.6 Hz); <sup>13</sup>C NMR  $\delta$  -4.3, -4.1, 14.5, 18.4, 23.2, 24.2, 24.3 25.5, 26.3 (3CH<sub>3</sub>), 27.9, 33.9, 35.4, 36.7, 40.9, 47.6, 67.6, 73.7, 74.5, 81.7, 109.4, 127.0, 129.6, 129.8 (2CH), 136.3 (2CH), 175.9; HRMS (ESI) calcd for C<sub>29</sub>H<sub>46</sub>O<sub>5</sub>SeSiNa (M+Na)<sup>+</sup>, 605.2180; found, 605.2188.

#### *4.1.10.* 5-[1(*R*)-1-(tert-Butyl-dimethyl-silanyloxy)-pentyl]-(5S)-4-[(2S)-1,4-dioxa-spiro[4.5]dec-2-yl]-5H-furan-2-one **21**

To a solution of the lactone 20 (200 mg, 0.34 mmol) in dichloromethane (6 mL) and THF (3 mL), pyridine (0.05 mL, 0. 57 mmol) was added followed by addition of 30% H<sub>2</sub>O<sub>2</sub> (5 mL) drop-wise. The reaction mixture was stirred at rt for about 8 h. It was then worked up with diethyl ether to afford after column chromatography (ether-petroleum ether 1:10) the unsaturated lactone 21 (145 mg, 100%) as a light yellow liquid. IR 1760.9 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +48.3 (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR δ 0.05 (3H, br s), 0.06 (3H, br s), 0.83-0.92 (12H, m), 1.31 (4H, m), 1.41 (4H, m), 1.60 (8H, br s), 3.91 (1H, dd, J=6.6, 8.2 Hz), 4.12 (1H, t, J=6.4 Hz), 4.28 (1H, dd, J=6.4, 8.2 Hz), 4.81 (1H, t, J=6.2 Hz), 5.08 (1H, s), 5.92 (1H, s);  ${}^{13}$ C NMR  $\delta$  -4.7, -4.5, 14.1, 18.1, 22.7, 23.9, 24.0, 25.0, 25.9 (3CH<sub>3</sub>), 28.4, 32.7, 35.1, 36.0, 68.4, 71.8, 72.6, 86.6, 111.1, 117.6, 167.8, 172.4; HRMS (ESI) calcd for  $C_{23}H_{40}O_5SiNa (M+Na)^+$ , 447.2543; found, 447.2541.

#### 4.1.11. 5-[1(R)-1-(tert-Butyl-dimethyl-silanyloxy)-pentyl]-(4S,5S)-4-[(2S)-1,4-dioxa-spiro[4.5]dec-2-yl]dihydrofuran-2-one **22**

To a solution of the unsaturated lactone **21** (110 mg, 0.26 mmol) in methanol (8 mL) at rt was added  $PtO_2$  (10 mg). The reaction mixture was stirred under hydrogen atmosphere for 5 h and then filtered through filter paper.

Removal of methanol under reduced pressure followed by column chromatography (ether—petroleum ether 1:9) gave the lactone **22** (90 mg, 81%) as colorless oil. IR 1778.2 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +14.56 (*c* 1.6, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.05 (3H, br s), 0.07 (3H, br s), 0.87 (12H, br s), 1.30–1.51 (8H, m), 1.56 (4H, br s), 1.60 (4H, br s), 2.46 (1H, dd, *J*=3.8, 17.7 Hz), 2.61 (1H, dd, *J*=9.8, 17.7 Hz), 2.75 (1H, m), 3.54 (1H, t, *J*=7.5 Hz), 3.89 (1H, m), 4.04 (1H, t, *J*=7.3 Hz), 4.16 (1H, dd, *J*=4.5, 6.4 Hz), 4.36 (1H, t, *J*=2.6 Hz); <sup>13</sup>C NMR  $\delta$  -4.6, -4.5, 14.1, 18.1, 23.0, 23.9, 24.0, 25.2, 26.0 (3CH<sub>3</sub>), 27.6, 30.4, 33.6, 34.5, 36.2, 36.5, 66.8, 73.4, 76.2, 83.9, 110.3, 176.7; HRMS (ESI) calcd for C<sub>23</sub>H<sub>42</sub>O<sub>5</sub>SiNa (M+Na)<sup>+</sup>, 449.2699; found, 449.2684.

#### 4.1.12. Deprotection of silyl group from the lactone 22

Deprotection of TBDMS group from the lactone **22** (70 mg, 0.16 mmol) in tetrahydrofuran (5 mL) was accomplished with tetrabutylammonium fluoride (68 mg, 0.24 mmol). After stirring the reaction mixture at rt for 4 h, it was worked up to afford after column chromatography (ethyl acetate—petroleum ether 1:3) the hydroxy-lactone **12** (41 mg, 80%).  $[\alpha]_{D}^{26}$  +7.6 (*c* 0.71, CHCl<sub>3</sub>).

#### 4.1.13. (4S,5S)-4-[(2S)-1,4-Dioxaspiro[4.5]dec-2-yl]-5pentanoyldihydrofuran-2(3H)-one 23

Following the procedure for oxidation of the alcohol **5** the hydroxy-lactone **12** (150 mg, 0.48 mmol) in dichloromethane (10 mL) was carried out with Dess–Martin periodinane (244 mg, 0.58 mmol) to afford after column chromatography (ether–petroleum ether 1:4) the keto-lactone **23** (146 mg, 98%) as white crystalline solid. Mp 71–72 °C; IR 1780.2, 1714.6 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +39.3 (*c* 1.8, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.90 (3H, t, *J*=7.3 Hz), 1.29–1.63 (14H, m), 2.59–2.66 (2H, m), 2.69–2.79 (2H, m), 2.89 (1H, m), 3.53 (1H, dd, *J*=6.3, 8.3 Hz), 4.04 (1H, t, *J*=7.8 Hz), 4.24 (1H, t, *J*=6.2 Hz), 4.81 (1H, d, *J*=8.0 Hz); <sup>13</sup>C NMR  $\delta$  14.0, 22.3, 23.8, 24.1, 24.6, 25.2, 29.0, 33.8, 35.6, 40.0, 40.6, 67.0, 72.1, 84.0, 111.0, 175.5, 209.8; HRMS (ESI) calcd for C<sub>17</sub>H<sub>26</sub>O<sub>5</sub>Na (M+Na)<sup>+</sup>, 333.1678; found, 333.1672.

#### 4.1.14. General procedure for the reduction of the ketolactones with $NaBH_4$ —MeOH at 0 °C (Condition A): (4S,5S)-4-[(2S)-1,4-dioxaspiro[4.5]dec-2-yl]-5-[(1S)-1hydroxypentyl]dihydrofuran-2(3H)-one **24**

To a magnetically stirred solution of the keto-lactone **23** (150 mg, 0.48 mmol) in methanol (12 mL) at 0 °C was added NaBH<sub>4</sub> (22 mg, 0.56 mmol) portion-wise. After stirring for 20 min at that temperature the reaction mixture was quenched by addition of AcOH. Usual workup of the reaction mixture afforded after column chromatography (ethyl acetate-petroleum ether 1: 3) a 1:1 diastereomeric mixture of hydroxyl-lactones **12** (60 mg, 40%) and **24** (41 mg, 41%) as light yellow viscous liquid. IR 3489.0, 1772.5 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +8.24 (*c* 0.93, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.89 (3H, t, *J*=6.7 Hz), 1.31–1.45 (6H, m), 1.46–1.68 (10H, m), 2.43 (1H, dd, *J*=7.8, 13.4 Hz), 2.77 (1H, dd, *J*=9.8, 13.2 Hz), 2.82 (1H, m), 3.22 (1H, br s), 3.58 (1H, t, *J*=7.8 Hz), 3.78 (1H, t, *J*=3.9 Hz), 4.12 (1H,

t, J=7.3 Hz), 4.37-4.43 (2H, m); <sup>13</sup>C NMR  $\delta$  14.1, 22.7, 23.9, 24.0, 25.0, 28.2, 29.1, 32.8, 34.8, 35.8, 40.4, 67.9, 71.0, 72.3, 82.8, 111.1, 176.2; HRMS (ESI) calcd for  $C_{17}H_{28}O_5Na$  (M+Na)<sup>+</sup>, 335.1834; found, 335.1828.

#### 4.1.15. (4S,5R)-4-[(2S)-1,4-Dioxaspiro[4.5]dec-2-yl]-5pentanoyldihydrofuran-2(3H)-one **25**

Following the procedure for oxidation of the hydroxy-acetone **12**, the hydroxy-lactone **13** (500 mg, 1.6 mmol) was oxidized with Dess-Martin periodinane to afford the keto-lactone **25** (480 mg, 97%) as a crystalline white solid. Mp 68–69 °C; IR 1789.8, 1716.5 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  –93.9 (*c* 1.41, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.90 (3H, t, *J*=7.3 Hz), 1.24–1.40 (4H, m), 1.52– 1.62 (10H, m), 2.52–2.73 (5H, m), 3.58 (1H, dd, *J*=6.4, 8.5 Hz), 4.10 (1H, dd, *J*=6.9, 8.3 Hz), 4.33 (1H, dt, *J*=3.4, 6.4 Hz), 4.68 (1H, d, *J*=5.4 Hz); <sup>13</sup>C NMR  $\delta$  13.9, 22.3, 23.8, 24.0, 25.0, 25.2, 28.5, 34.4, 36.0, 39.0, 40.7, 67.0, 74.8, 83.8, 110.6, 175.2, 208.1; HRMS (ESI) calcd for C<sub>17</sub>H<sub>26</sub>O<sub>5</sub>Na (M+Na)<sup>+</sup>, 333.1678; found, 333.1674.

#### 4.1.16. (4S,5R)-4-[(2S)-1,4-Dioxaspiro[4.5]dec-2-yl]-5-[(1R)-1-hydroxypentyl]dihydrofuran-2(3H)-one **26**

Following the reduction condition A, the keto-lactone **25** (120 mg, 1.3 mmol) was reduced to a 1:1 diastereomeric mixture of separable hydroxyl-lactones **13** (49 mg, 38%) and **26** (48 mg, 37%). IR 3444.6, 1778.2 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  -5.4 (*c* 0.8, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.94 (3H, t, *J*=6.7 Hz), 1.44 (6H, m), 1.59 (4H, br s), 1.63 (6H, br s), 2.64 (2H, dd, *J*=3.6, 7.7 Hz), 2.75 (1H, m), 3.60 (2H, m), 4.08 (1H, t, *J*=7.4 Hz), 4.22 (1H, dt, *J*=5.2, 6.4 Hz), 4.34 (1H, dd, *J*=1.5, 5.0 Hz); <sup>13</sup>C NMR  $\delta$  14.1, 22.6, 23.8, 24.0, 25.2, 28.0, 29.7, 33.7, 34.6, 36.0, 39.4, 67.0, 72.3, 74.8, 84.2, 110.4, 176.8; HRMS (ESI) calcd for C<sub>17</sub>H<sub>28</sub>O<sub>5</sub>Na (M+Na)<sup>+</sup>, 335.1834; found, 335.1838.

# 4.1.17. (4R,5R)-4-[(2S)-1,4-Dioxaspiro[4.5]dec-2-yl]-5pentanoyldihydrofuran-2(3H)-one 27

Following the procedure for oxidation of the hydroxy-acetone **12**, the hydroxy-acetone **16** (200 mg, 0.64 mmol) was oxidized with Dess-Martin periodinane to afford the ketolactone **27** (188 mg, 95%) as a crystalline white solid. Mp 72–73 °C; IR 1793.7, 1714.6 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.90 (3H, t, *J*=7.2 Hz), 1.25–1.37 (4H, m), 1.54–1.60 (10H, m), 2.32 (1H, m), 2.49–2.71 (4H, m), 3.70 (1H, dd, *J*=4.7, 8.3 Hz), 4.06–4.16 (2H, m), 4.88 (1H, d, *J*=2.8 Hz); <sup>13</sup>C NMR  $\delta$  13.9, 22.3, 23.8, 24.1, 25.0, 25.1, 30.4, 34.3, 36.4, 39.2, 40.8, 61.5, 75.9, 82.8, 110.7, 175.2, 207.7; HRMS (ESI) calcd for C<sub>17</sub>H<sub>26</sub>O<sub>5</sub>Na (M+Na)<sup>+</sup>, 333.1678; found, 333.1693.

#### 4.1.18. (4R,5S)-4-[(2S)-1,4-Dioxaspiro[4.5]dec-2-yl]-5pentanoyldihydrofuran-2(3H)-one 28

Following the procedure for oxidation of the hydroxy-acetone **12**, the hydroxy-acetone **17** (200 mg, 0.64 mmol) was oxidized with Dess-Martin periodinane to afford the ketolactone **28** (190 mg, 96%) as a crystalline white solid. Mp 69–71 °C; IR 1784.2, 1714.2 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.91 (3H, t, *J*=7.3 Hz), 1.30–1.40 (4H, m), 1.52–1.60 (10H, m), 2.39 (2H, m), 2.60 (1H, m), 2.80–2.90 (2H, m), 3.53 (1H, dd, J=6.1, 8.0 Hz), 3.90 (1H, m), 4.04 (1H, dd, J=6.0, 8.0 Hz), 5.04 (1H, d, J=7.6 Hz); <sup>13</sup>C NMR  $\delta$  14.0, 22.3, 23.9, 24.1, 25.0, 25.1, 30.0, 34.9, 36.6, 42.0, 43.9, 68.1, 74.4, 81.4, 111.0, 175.0, 207.4; HRMS (ESI) calcd for C<sub>17</sub>H<sub>26</sub>O<sub>5</sub>Na (M+Na)<sup>+</sup>, 333.1678; found, 333.1676.

## 4.1.19. General procedure for the reduction of the ketolactones with $NaBH_4$ — $CeCl_3 \cdot 7H_2O$ —MeOH at $-20 \,^{\circ}C$ (Condition B): (4S,5S)-4-[(2S)-1,4-dioxaspiro[4.5]dec-2yl]-5-[(1S)-1-hydroxypentyl]dihydrofuran-2(3H)-one **24**

To a magnetically stirred solution of the keto-lactone **23** (200 mg, 0.64 mmol) in methanol (15 mL) was added  $CeCl_3 \cdot H_2O$  (169 mg, 0.64 mmol) and stirred for 5 min at rt. The reaction mixture was then cooled to -20 °C (ice–salt bath) and to it NaBH<sub>4</sub> (30 mg, 0.77 mmol) was added portion-wise. After stirring for 30 min at -20 °C the reaction mixture was quenched by addition of AcOH. Usual workup of the reaction mixture afforded after column chromatography (ethyl acetate–petroleum ether 1:3) the hydroxyl-lactone **24** (172 mg, 85%) as a light yellow viscous liquid.

# 4.1.20. (4S,5R)-4-[(2S)-1,4-Dioxaspiro[4.5]dec-2-yl]-5-[(1R)-1-hydroxypentyl]dihydrofuran-2(3H)-one **26**

Following the reduction condition B, the keto-lactone **25** (400 mg, 1.3 mmol) was reduced to a 2:3 diastereomeric mixture of alcohols **13** and **26**. Separation of the major diastereomer by flash chromatography on silica gel with 3:1 petroleum ether—EtOAc for elution gave hydroxyl-lactone **26** (200 mg, 50%) as a colorless viscous liquid.

#### 4.1.21. (4R,5S)-4-[(2S)-1,4-Dioxaspiro[4.5]dec-2-yl]-5-[(1S)-1-hydroxypentyl]dihydrofuran-2(3H)-one **29**

Following the reduction condition B, the keto-lactone **28** (100 mg, 0.32 mmol) was reduced to afford exclusively the hydroxyl-lactone **29** (85 mg, 86%). IR 3440.8, 1779.2 cm<sup>-1</sup>; <sup>1</sup>H NMR  $\delta$  0.90 (3H, t, *J*=6.8 Hz), 1.27–1.40 (6H, m), 1.44–1.63 (10H, m), 1.93–2.20 (2H, m), 2.59–2.67 (1H, m), 3.61–3.70 (2H, m), 4.00–4.12 (3H, m); <sup>13</sup>C NMR  $\delta$  14.0, 22.7, 23.8, 24.1, 25.0, 26.6, 30.5, 31.5, 34.9, 36.2, 42.0, 67.5, 71.2, 79.2, 82.3, 111.2, 176.4; HRMS (ESI) calcd for C<sub>17</sub>H<sub>28</sub>O<sub>5</sub>Na (M+Na)<sup>+</sup>, 335.1834; found, 335.1836.

# 4.1.22. (3aR,4R,6S,6aS)-6-Butyl-4-hydroxytetrahydrofuro [3,4-b]furan-2(3H)-one **34**

Following the procedure for conversion of the hydroxy-lactone **12** to the lactol **14**, the hydroxy-lactone **24** (100 mg, 0.32 mmol) was converted to the hemiacetal **34** (52 mg, 80%) as colorless sticky liquid. IR 3471.6, 1774.4 cm<sup>-1</sup>;  $[\alpha]_D^{26}$  +9.8 (*c* 1.64, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.91 (3H, t, *J*=6.9 Hz), 1.33–1.45 (4H, m), 1.68 (2H, m), 2.50 (1H, dd *J*=3.5, 18.6 Hz), 2.83 (1H, dd, *J*=11.2, 18.6 Hz), 3.07 (1H, ddd, *J*=3.5, 7.0, 11.0 Hz), 4.24 (1H, dt, *J*=3.6, 6.9 Hz), 4.99 (1H, dd, *J*=3.6, 6.9 Hz), 5.32 (1H, s); <sup>13</sup>C NMR  $\delta$  14.1, 22.8, 28.3, 28.5, 32.2, 46.3, 80.2, 83.7, 103.1, 176.3; HRMS (ESI) calcd for C<sub>10</sub>H<sub>16</sub>O<sub>4</sub>Na (M+Na)<sup>+</sup>, 223.0946; found, 223.0944.

# 4.1.23. (3aR,6S,6aS)-6-Butyltetrahydrofuro[3,4-b]furan-2,4-dione 35

Following the procedure described for oxidation of the lactol **14**, the lactol **34** (35 mg, 0.18 mmol) in acetone (1 mL) was oxidized with Jones reagent to afford after column chromatography bis-lactone **35** (32 mg, 92%) as a white crystalline solid. Mp 84–86 °C (lit. 85–85.5 °C); IR 1770.5 cm<sup>-1</sup>;  $[\alpha]_{D}^{26}$  +24.50 (*c* 1.3, CHCl<sub>3</sub>), [lit.  $[\alpha]_{D}^{23}$  +26.20 (*c* 0.50, CHCl<sub>3</sub>)]; <sup>1</sup>H NMR  $\delta$  0.93 (3H, t, *J*=7.0 Hz), 1.36–1.51 (4H, m), 1.81–1.92 (2H, m), 2.91–2.95 (2H, m), 3.49 (1H, ddd, *J*=3.8, 6.1, 7.9 Hz), 4.58 (1H, ddd, *J*=3.9, 6.5, 7.7 Hz), 5.10 (1H, dd, *J*=3.9, 6.1 Hz); <sup>13</sup>C NMR  $\delta$  13.9, 22.5, 27.5, 28.6, 31.2, 41.9, 79.9, 82.5, 173.5, 175.3; HRMS (ESI) calcd for C<sub>10</sub>H<sub>14</sub>O<sub>4</sub>Na (M+Na)<sup>+</sup>, 221.0790; found, 221.0780.

# 4.1.24. 5-[1(R)-1-(tert-Butyl-dimethyl-silanyloxy)-pentyl]-(4S,5R)-4-[(2S)-1,4-dioxa-spiro[4.5]dec-2-yl]dihydrofuran-2-one **36**

Following the procedure for the protection of the hydroxylactone **17**, the secondary alcohol **26** (160 mg, 0.51 mmol) was protected as TBDMS ether using TBDMSOTf (0.14 mL, 0.61 mmol) and 2,6-lutidine (0.12 mL, 1.02 mmol) to afford after column chromatography the lactone **36** (180 mg, 97%) as a colorless liquid. IR 1778.6 cm<sup>-1</sup>;  $[\alpha]_D^{27}$  –4.82 (*c* 1.1, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.08 (3H, s), 0.09 (3H, s), 0.88 (12H, br s), 1.25–1.33 (6H, m), 1.40 (2H, br s), 1.56 (4H, br s), 1.61 (4H, br s), 2.49–2.63 (3H, m), 3.56 (1H, dd, *J*=6.7, 8.2 Hz), 3.72 (1H, dt, *J*=2.6, 6.6 Hz), 4.05 (1H, dd, *J*=6.7, 8.1 Hz), 4.20 (1H, dt, *J*=3.5, 6.2 Hz), 4.39 (1H, t, *J*=2.5 Hz); <sup>13</sup>C NMR  $\delta$  –4.3, –4.2, 14.1, 18.1, 22.9, 23.8, 24.0, 25.2, 25.9 (3CH<sub>3</sub>), 27.8, 30.0, 32.7, 34.6, 36.2, 39.0, 66.9, 73.7, 75.8, 82.8, 110.3, 176.6; HRMS (ESI) calcd for C<sub>23</sub>H<sub>42</sub>O<sub>5</sub>SiNa (M+Na)<sup>+</sup>, 449.2699; found, 449.2694.

#### 4.1.25. 5-[1(R)-1-(tert-Butyl-dimethyl-silanyloxy)-pentyl]-(4S,5R)-4-[(2S)-1,4-dioxa-spiro[4.5]dec-2-yl]-3-phenylselanyl-dihydro-furan-2-one **37**

Following the procedure for the alkylation of the lactone **19** the lithium enolate of the lactone **36** (150 mg, 0.35 mmol) generated with LDA was alkylated with PhSeBr to afford the lactone **37** (150 mg, 73%) as a light yellow liquid. <sup>1</sup>H NMR (of diastereomeric mixture)  $\delta$  0.10 (6H, br s), 0.98 (12H, br s), 1.28 (12H, m), 1.57 (4H, br s), 2.70 (1H, m), 3.68 (1H, d, J=5.8 Hz), 3.94–4.08 (3H, m), 4.18–4.33 (2H, m), 7.28–7.40 (3H, m), 7.58–7.75 (2H, m); <sup>13</sup>C NMR  $\delta$  –4.3, –3.9, 14.1, 14.3, 18.1, 22.8, 23.0, 23.8, 24.0, 25.2, 26.0 (3CH<sub>3</sub>), 26.1 (3CH<sub>3</sub>), 29.5, 29.8, 29.9 (grease), 32.1, 33.5, 34.6, 36.2, 37.5, 44.3, 46.0, 65.8, 66.1, 72.6, 73.2, 74.7, 75.7, 81.9, 82.1, 110.3, 110.4, 127.9, 128.6, 129.0 (2CH), 129.6 (2CH), 131.7, 134.9, 135.3 (2CH), 136.2 (2CH), 176.4; HRMS (ESI) calcd for C<sub>29</sub>H<sub>46</sub>O<sub>5</sub>SeSiNa (M+Na)<sup>+</sup>, 605.2180; found, 605.2177.

#### 4.1.26. 5-[1(R)-1-(tert-Butyl-dimethyl-silanyloxy)-pentyl]-(5R)-4-[(2S)-1,4-dioxa-spiro[4.5]dec-2-yl]-5H-furan-2one **38**

Following the procedure described above for the conversion of lactone **20** to unsaturated lactone **21** the lactone **37** (150 mg,

0.35 mmol) was converted to unsaturated lactone **38** (109 mg, 100%). IR 1764.7 cm<sup>-1</sup>;  $[\alpha]_D^{25}$  +63.4 (*c* 0.65, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.07 (3H, br s), 0.09 (3H, br s), 0.84–0.91 (12H, m), 1.25–1.49 (8H, m), 1.61 (8H, br s), 3.85 (1H, t, *J*=7.6 Hz), 4.16 (1H, m), 4.31 (1H, dd, *J*=6.6, 8.0 Hz), 4.88 (1H, t, *J*=6.5 Hz), 5.05 (1H, s), 6.00 (1H, s); <sup>13</sup>C NMR  $\delta$  –4.6, –4.5, 14.1, 18.1, 22.7, 23.9, 24.0, 25.1, 25.9 (3CH<sub>3</sub>), 28.4, 32.7, 35.1, 36.0, 68.4, 71.8, 72.6, 86.6, 111.1, 117.6, 167.8, 176.4; HRMS (ESI) calcd for C<sub>23</sub>H<sub>40</sub>O<sub>5</sub>SiNa (M+Na)<sup>+</sup>, 447.2543; found, 447.2542.

#### 4.1.27. 5-[1(R)-1-(tert-Butyl-dimethyl-silanyloxy)-pentyl]-(4R,5R)-4-[(2S)-1,4-dioxa-spiro[4.5]dec-2-yl]dihydrofuran-2-one **39**

A solution of the unsaturated lactone **38** (100 mg, 0.24 mmol) in EtOH (6 mL) was hydrogenated using PtO<sub>2</sub> as catalyst to afford after column chromatography (ether—petroleum ether 1:9) the lactone **39** (70 mg, 70%) as colorless oil. IR 1780.2 cm<sup>-1</sup>;  $[\alpha]_D^{27}$  +31.63 (*c* 0.43, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.07 (3H, br s), 0.10 (3H, br s), 0.87 (12H, br s), 1.24–1.47 (8H, m), 1.55 (4H, br s), 1.59 (4H, br s), 2.15 (1H, dd, *J*=3.7, 17.7 Hz), 2.51 (1H, m), 2.68 (1H, dd, *J*=10.0, 17.7 Hz), 3.54 (1H, t, *J*=4.4 Hz), 3.68 (1H, m), 4.06 (2H, m), 4.54 (1H, br s); <sup>13</sup>C NMR  $\delta$  –4.4, –4.0, 14.1, 18.1, 22.8, 23.9, 24.1, 25.2, 25.9 (3CH<sub>3</sub>), 27.6, 31.6, 33.4, 34.7, 36.6, 40.2, 67.4, 74.4, 77.2, 82.8, 110.4, 176.5; HRMS (ESI) calcd for C<sub>23</sub>H<sub>42</sub>O<sub>5</sub>SiNa (M+Na)<sup>+</sup>, 449.2699; found, 449.2689.

#### 4.1.28. (4R,5R)-4-[(2S)-1,4-Dioxaspiro[4.5]dec-2-yl]-5-[(1R)-1-hydroxypentyl]dihydrofuran-2(3H)-one **40**

Following the procedure of deprotection of the silyl group of the lactone **22**, the protected lactone **39** (70 mg, 0.16 mmol) in tetrahydrofuran (5 mL) at 0 °C was deprotected using tetrabutylammonium fluoride (68 mg, 0.24 mmol) to afford after column chromatography (ethyl acetate—petroleum ether 1:3) the hydroxy-lactone **40** (42 mg, 82%) as a colorless liquid. IR 3458.1, 1770.5 cm<sup>-1</sup>;  $[\alpha]_{D}^{26}$  +8.93 (*c* 2.06, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta$  0.91 (3H, t, *J*=6.8 Hz), 1.38 (6H, m), 1.55 (6H, br s), 1.60 (4H, br s), 2.21 (1H, m), 2.60–2.76 (2H, m), 3.56– 3.67 (2H, m), 4.07 (2H, m), 4.45 (1H, t, *J*=2.2); <sup>13</sup>C NMR  $\delta$  14.1, 22.6, 23.9, 24.1, 25.1, 28.0, 31.7, 33.7, 34.8, 36.5, 40.4, 67.5, 72.9, 77.2, 84.6, 110.6, 176.4; HRMS (ESI) calcd for C<sub>17</sub>H<sub>28</sub>O<sub>5</sub>Na (M+Na)<sup>+</sup>, 335.1834; found, 335.1830.

# 4.1.29. (3aS,4S,6R,6aR)-6-Butyl-4-hydroxytetrahydrofuro [3,4-b]furan-2(3H)-one **41**

Following the similar protocol as used for the conversion of the hydroxy-lactone **12** to lactols **14**, the hydroxy-lactone **40** (40 mg, 0.13 mmol) was converted to the lactol **41** (20 mg, 78%). IR 3471.6, 1770.5 cm<sup>-1</sup>;  $[\alpha]_D^{25} - 10.0$  (*c* 0.2, CHCl<sub>3</sub>) [lit. (mixture of lactols)  $[\alpha]_D - 14.9$  (*c* 1.0, CHCl<sub>3</sub>)]; HRMS (ESI) calcd for C<sub>10</sub>H<sub>16</sub>O<sub>4</sub>Na (M+Na)<sup>+</sup>, 223.0946; found, 223.0942.

#### *4.1.30.* (*3aS*,*6R*,*6aR*)-6-*Butyltetrahydrofuro*[*3*,*4-b*]*furan-2*,*4-dione* (–)-**35**

Jones oxidation of lactol **41** (20 mg, 0.1 mmol) in acetone following the usual procedure afforded the bis-lactone (–)-**35** (18 mg, 91%) as white crystal. Mp 83–85 °C [(lit. 85–85.5 °C)]; IR 1770.5 cm<sup>-1</sup>;  $[\alpha]_D^{26}$  –21.5 (*c* 1.09, CHCl<sub>3</sub>) [lit.  $[\alpha]_D^{23}$  –18.9 (*c* 4.79, CHCl<sub>3</sub>)]; HRMS (ESI) calcd for C<sub>10</sub>H<sub>14</sub>O<sub>4</sub>Na (M+Na)<sup>+</sup>, 221.0790; found, 221.0778.

#### Acknowledgements

S.G. thanks Department of Science and Technology, Government of India for Ramanna Fellowship. S.M. thanks CSIR, New Delhi for Junior Research Fellowship. We are thankful to Professor D. Datta of Inorganic Chemistry Department of this Institute for AM1 calculations.

#### **References and notes**

- McCorkindale, N. J.; Wright, J. L. C.; Brian, P. W.; Clarke, S. M.; Hutchinson, S. A. *Tetrahedron Lett.* 1968, 6, 727.
- Krohn, K.; Ludewig, K.; Aust, H. J.; Draeger, S.; Schulz, B. J. Antibiot. 1994, 47, 113.
- 3. Abate, D.; Abraham, W.-R.; Meyer, H. Phytochemistry 1997, 44, 1443.
- Al-Abed, Y.; Naz, N.; Mootoo, D.; Voelter, W. Tetrahedron Lett. 1996, 37, 8641.
- 5. Honda, T.; Kobayashi, Y.; Tsubuki, M. Tetrahedron 1993, 49, 1211.
- 6. Nubbemeyer, U. Synthesis 1993, 1120.
- 7. Sharma, G. V. M.; Vepachedu, S. R. Tetrahedron Lett. 1991, 47, 519.
- 8. Honda, T.; Kobayashi, Y.; Tsubuki, M. Tetrahedron Lett. 1990, 31, 4891.
- Tochtermann, W.; Schroeder, G. R.; Snatzke, G.; Peters, E. M.; Peters, K.; Von Schnering, H. G. *Chem. Ber.* 1988, 121, 1625.
- 10. Anderson, R. C.; Fraser-Reid, B. J. Org. Chem. 1985, 50, 4786.
- Sakai, T.; Yoshida, M.; Kohmoto, S.; Utaka, M.; Takeda, A. *Tetrahedron Lett.* **1982**, *23*, 5185.
- 12. Ohrui, H.; Sueda, N.; Kuzuhara, H. Nippon Kagaku Kaishi 1981, 769.
- 13. Anderson, R. C.; Fraser-Reid, B. Tetrahedron Lett. 1978, 35, 3233.
- Tsuboi, S.; Muranaka, K.; Sakai, T.; Takeda, A. J. Org. Chem. 1986, 51, 4944.
- Tsuboi, S.; Fujita, H.; Muranaka, K.; Seko, K.; Takeda, A. Chem. Lett. 1982, 1909.
- Kosugi, H.; Sekiguchi, S.; Sekita, R.; Uda, H. Bull. Chem. Soc. Jpn. 1976, 49, 520.
- 17. Carlson, R. M.; Oyler, A. R. J. Org. Chem. 1976, 41, 4065.
- Kato, M.; Kageyama, M.; Tanaka, R.; Kuwahara, K.; Yoshikoshi, A. J. Org. Chem. 1975, 40, 1932.
- Kato, M.; Tanaka, R.; Yoshikoshi, A. J. Chem. Soc., Chem. Commun. 1971, 1561.
- 20. Sharma, G. V. M.; Krishnudu, K. Tetrahedron Lett. 1995, 36, 2661.
- 21. Yu, M.; Lynch, V.; Pagenkopf, B. L. Org. Lett. 2001, 3, 2563.
- 22. Ghosh, S.; Sinha, S.; Drew, M. G. B. Org. Lett. 2006, 8, 3781.
- Banerjee, S.; Ghosh, S.; Sinha, S.; Ghosh, S. J. Org. Chem. 2005, 70, 4199.
- 24. Dess, D. B.; Martin, J. C. J. J. Am. Chem. Soc. 1991, 113, 7277.
- 25. Panda, J.; Ghosh, S. Tetrahedron Lett. 1999, 40, 6693.
- 26. AM1 calculations were performed by using Hyper Chem (version 6.0).
- Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. J. Am. Chem. Soc. 1985, 107, 3902.